mirror of
https://github.com/drewcassidy/TexTools-Blender
synced 2024-09-01 14:54:44 +00:00
273 lines
8.4 KiB
Python
273 lines
8.4 KiB
Python
import bpy
|
|
import os
|
|
import bmesh
|
|
import math
|
|
import operator
|
|
|
|
from mathutils import Vector
|
|
from collections import defaultdict
|
|
from itertools import chain # 'flattens' collection of iterables
|
|
|
|
from . import utilities_uv
|
|
|
|
|
|
|
|
|
|
class op(bpy.types.Operator):
|
|
bl_idname = "uv.textools_island_align_world"
|
|
bl_label = "Align World"
|
|
bl_description = "Align selected UV islands to world / gravity directions"
|
|
bl_options = {'REGISTER', 'UNDO'}
|
|
|
|
bool_face : bpy.props.BoolProperty(name="Per face", default=False, description="Use if every face is an island in uv space; this speeds up the script dramatically.")
|
|
bool_simple : bpy.props.BoolProperty(name="Simple align", default=False, description="Only process one edge per island, enough for nearly undistorted uvs.")
|
|
steps : bpy.props.IntProperty(name="Iterations", min=1, max=100, soft_min=1, soft_max=5, default=1, description="Using multiple steps (up to 5, usually 2 or 3) is useful in certain cases, especially uv hulls with high localized distortion.")
|
|
|
|
# is_global = bpy.props.BoolProperty(
|
|
# name = "Global Axis",
|
|
# description = "Global or local object axis alignment",
|
|
# default = False
|
|
# )
|
|
|
|
# def draw(self, context):
|
|
# layout = self.layout
|
|
# layout.prop(self, "is_global")
|
|
|
|
@classmethod
|
|
def poll(cls, context):
|
|
if not bpy.context.active_object:
|
|
return False
|
|
|
|
#Only in Edit mode
|
|
if bpy.context.active_object.mode != 'EDIT':
|
|
return False
|
|
|
|
#Requires UV map
|
|
if not bpy.context.object.data.uv_layers:
|
|
return False
|
|
|
|
if bpy.context.scene.tool_settings.use_uv_select_sync:
|
|
return False
|
|
|
|
#Only in UV editor mode
|
|
if bpy.context.area.type != 'IMAGE_EDITOR':
|
|
return False
|
|
|
|
return True
|
|
|
|
def execute(self, context):
|
|
main(self, context)
|
|
return {'FINISHED'}
|
|
|
|
def invoke(self, context, event):
|
|
wm = context.window_manager
|
|
return wm.invoke_props_dialog(self)
|
|
|
|
|
|
def main(self, context):
|
|
print("\n________________________\nis_global")
|
|
|
|
#Store selection
|
|
utilities_uv.selection_store()
|
|
|
|
bm = bmesh.from_edit_mesh(bpy.context.active_object.data)
|
|
uv_layers = bm.loops.layers.uv.verify()
|
|
|
|
#Only in Face or Island mode
|
|
if bpy.context.scene.tool_settings.uv_select_mode is not 'FACE' or 'ISLAND':
|
|
bpy.context.scene.tool_settings.uv_select_mode = 'FACE'
|
|
|
|
obj = bpy.context.object
|
|
bm = bmesh.from_edit_mesh(bpy.context.active_object.data);
|
|
uv_layers = bm.loops.layers.uv.verify();
|
|
|
|
if self.bool_face:
|
|
islands = [[f] for f in bm.faces if f.select and f.loops[0][uv_layers].select]
|
|
else:
|
|
islands = utilities_uv.getSelectionIslands()
|
|
|
|
for faces in islands:
|
|
avg_normal = Vector((0,0,0))
|
|
if self.bool_face:
|
|
avg_normal = faces[0].normal
|
|
else:
|
|
# Get average viewport normal of UV island
|
|
for face in faces:
|
|
avg_normal+=face.normal
|
|
avg_normal/=len(faces)
|
|
|
|
# Which Side
|
|
x = 0
|
|
y = 1
|
|
z = 2
|
|
max_size = max(abs(avg_normal.x), abs(avg_normal.y), abs(avg_normal.z))
|
|
|
|
for i in range(self.steps): # Use multiple steps
|
|
if(abs(avg_normal.x) == max_size):
|
|
print("x normal")
|
|
if self.bool_simple:
|
|
align_island_simple(obj, bm, uv_layers, faces, y, z, avg_normal.x < 0, False)
|
|
else:
|
|
align_island(obj, bm, uv_layers, faces, y, z, avg_normal.x < 0, False)
|
|
elif(abs(avg_normal.y) == max_size):
|
|
print("y normal")
|
|
if self.bool_simple:
|
|
align_island_simple(obj, bm, uv_layers, faces, x, z, avg_normal.y > 0, False)
|
|
else:
|
|
align_island(obj, bm, uv_layers, faces, x, z, avg_normal.y > 0, False)
|
|
elif(abs(avg_normal.z) == max_size):
|
|
print("z normal")
|
|
if self.bool_simple:
|
|
align_island_simple(obj, bm, uv_layers, faces, x, y, False, avg_normal.z < 0)
|
|
else:
|
|
align_island(obj, bm, uv_layers, faces, x, y, False, avg_normal.z < 0)
|
|
|
|
print("align island: faces {}x n:{}, max:{}".format(len(faces), avg_normal, max_size))
|
|
|
|
#Restore selection
|
|
utilities_uv.selection_restore()
|
|
|
|
|
|
def align_island(obj, bm, uv_layers, faces, x=0, y=1, flip_x=False, flip_y=False):
|
|
|
|
# Find lowest and highest verts
|
|
minmax_val = [0,0]
|
|
minmax_vert = [None, None]
|
|
|
|
axis_names = ['x', 'y', 'z']
|
|
print("Align shell {}x at {},{} flip {},{}".format(len(faces), axis_names[x], axis_names[y], flip_x, flip_y))
|
|
|
|
# print(" Min #{} , Max #{} along '{}'".format(minmax_vert[0].index, minmax_vert[1].index, axis_names[y] ))
|
|
# print(" A1 {:.1f} , A2 {:.1f} along ".format(minmax_val[0], minmax_val[1] ))
|
|
|
|
# Collect UV to Vert
|
|
vert_to_uv = {}
|
|
for face in faces:
|
|
for loop in face.loops:
|
|
vert = loop.vert
|
|
uv = loop[uv_layers]
|
|
if vert not in vert_to_uv:
|
|
vert_to_uv[vert] = [uv];
|
|
else:
|
|
vert_to_uv[vert].append(uv)
|
|
#uv_to_vert = utilities_uv.get_uv_to_vert(bm, uv_layers)
|
|
processed_edges = []
|
|
n_edges = 0
|
|
avg_angle = 0
|
|
for face in faces:
|
|
for edge in face.edges:
|
|
if edge not in processed_edges:
|
|
processed_edges.append(edge)
|
|
delta = edge.verts[0].co -edge.verts[1].co
|
|
max_side = max(abs(delta.x), abs(delta.y), abs(delta.z))
|
|
# Check edges dominant in active axis
|
|
if( abs(delta[x]) == max_side or abs(delta[y]) == max_side):
|
|
n_edges += 1
|
|
uv0 = vert_to_uv[ edge.verts[0] ][0]
|
|
uv1 = vert_to_uv[ edge.verts[1] ][0]
|
|
|
|
delta_verts = Vector((
|
|
edge.verts[1].co[x] - edge.verts[0].co[x],
|
|
edge.verts[1].co[y] - edge.verts[0].co[y]
|
|
))
|
|
if flip_x:
|
|
delta_verts.x = -edge.verts[1].co[x] + edge.verts[0].co[x]
|
|
if flip_y:
|
|
delta_verts.y = -edge.verts[1].co[y] + edge.verts[0].co[y]
|
|
|
|
delta_uvs = Vector((
|
|
uv1.uv.x - uv0.uv.x,
|
|
uv1.uv.y - uv0.uv.y
|
|
))
|
|
|
|
a0 = math.atan2(delta_verts.y, delta_verts.x) #- math.pi/2
|
|
a1 = math.atan2(delta_uvs.y, delta_uvs.x) #- math.pi/2
|
|
|
|
a_delta = math.atan2(math.sin(a0-a1), math.cos(a0-a1))
|
|
|
|
# Consolidation (math.atan2 gives the lower angle between -Pi and Pi, this triggers errors when using the average avg_angle /= n_edges for rotation angles close to Pi)
|
|
if n_edges > 1:
|
|
if abs((avg_angle / (n_edges-1)) - a_delta) > 2.8:
|
|
if a_delta > 0:
|
|
avg_angle+=(a_delta-math.pi*2)
|
|
else:
|
|
avg_angle+=(a_delta+math.pi*2)
|
|
else:
|
|
avg_angle+=a_delta
|
|
else:
|
|
avg_angle+=a_delta
|
|
|
|
avg_angle /= n_edges
|
|
|
|
print("Edges {}x".format(n_edges))
|
|
print("Turn {:.1f}".format(avg_angle * 180/math.pi))
|
|
|
|
bpy.ops.uv.select_all(action='DESELECT')
|
|
for face in faces:
|
|
for loop in face.loops:
|
|
loop[uv_layers].select = True
|
|
|
|
bpy.context.tool_settings.transform_pivot_point = 'MEDIAN_POINT'
|
|
bpy.ops.transform.rotate(value=-avg_angle, orient_axis='Z') # minus angle; Blender uses unconventional rotation notation (positive for clockwise)
|
|
|
|
|
|
def align_island_simple(obj, bm, uv_layers, faces, x=0, y=1, flip_x=False, flip_y=False):
|
|
|
|
# Find lowest and highest verts
|
|
minmax_val = [0,0]
|
|
minmax_vert = [None, None]
|
|
|
|
axis_names = ['x', 'y', 'z']
|
|
print("Align shell {}x at {},{} flip {},{}".format(len(faces), axis_names[x], axis_names[y], flip_x, flip_y))
|
|
|
|
# Collect UV to Vert
|
|
vert_to_uv = {}
|
|
face = faces[0]
|
|
for loop in face.loops:
|
|
vert = loop.vert
|
|
uv = loop[uv_layers]
|
|
vert_to_uv[vert] = [uv]
|
|
uv.select = True
|
|
|
|
edge = faces[0].edges[0]
|
|
delta = edge.verts[0].co -edge.verts[1].co
|
|
max_side = max(abs(delta.x), abs(delta.y), abs(delta.z))
|
|
a_delta = 0
|
|
|
|
# Check edges dominant in active axis
|
|
if abs(delta[x]) == max_side or abs(delta[y]) == max_side :
|
|
uv0 = vert_to_uv[ edge.verts[0] ][0]
|
|
uv1 = vert_to_uv[ edge.verts[1] ][0]
|
|
|
|
delta_verts = Vector((
|
|
edge.verts[1].co[x] - edge.verts[0].co[x],
|
|
edge.verts[1].co[y] - edge.verts[0].co[y]
|
|
))
|
|
if flip_x:
|
|
delta_verts.x = -edge.verts[1].co[x] + edge.verts[0].co[x]
|
|
if flip_y:
|
|
delta_verts.y = -edge.verts[1].co[y] + edge.verts[0].co[y]
|
|
|
|
delta_uvs = Vector((
|
|
uv1.uv.x - uv0.uv.x,
|
|
uv1.uv.y - uv0.uv.y
|
|
))
|
|
|
|
a0 = math.atan2(delta_verts.y, delta_verts.x)
|
|
a1 = math.atan2(delta_uvs.y, delta_uvs.x)
|
|
|
|
a_delta = math.atan2(math.sin(a0-a1), math.cos(a0-a1))
|
|
|
|
print("Turn {:.1f}".format(a_delta * 180/math.pi))
|
|
|
|
bpy.ops.uv.select_all(action='DESELECT')
|
|
for face in faces:
|
|
for loop in face.loops:
|
|
loop[uv_layers].select = True
|
|
|
|
bpy.context.tool_settings.transform_pivot_point = 'MEDIAN_POINT'
|
|
bpy.ops.transform.rotate(value=-a_delta, orient_axis='Z') # minus angle; Blender uses unconventional rotation notation (positive for clockwise)
|
|
|
|
|
|
bpy.utils.register_class(op)
|