KSP-Conformal-Decals/Source/ConformalDecals/Util/OrientedBounds.cs
2020-06-02 17:17:33 -07:00

180 lines
6.6 KiB
C#

using UnityEngine;
namespace ConformalDecals.Util {
public struct OrientedBounds {
private Bounds _localBounds;
public Bounds LocalBounds {
get => _localBounds;
set => _localBounds = value;
}
public Vector3 Center {
get => _localBounds.center;
set => _localBounds.center = value;
}
public Vector3 Extents {
get => _localBounds.extents;
set => _localBounds.extents = value;
}
public Vector3 Min {
get => _localBounds.min;
set => _localBounds.min = value;
}
public Vector3 Max {
get => _localBounds.max;
set => _localBounds.max = value;
}
public Vector3 Size {
get => _localBounds.size;
set => _localBounds.size = value;
}
public Vector3 UnitX {
get => OrientationMatrix.GetColumn(0);
private set => OrientationMatrix.SetColumn(0, value);
}
public Vector3 UnitY {
get => OrientationMatrix.GetColumn(1);
private set => OrientationMatrix.SetColumn(1, value);
}
public Vector3 UnitZ {
get => OrientationMatrix.GetColumn(2);
private set => OrientationMatrix.SetColumn(2, value);
}
public Matrix4x4 OrientationMatrix { get; private set; }
public OrientedBounds(Matrix4x4 matrix, Bounds aabb) {
Vector3 unitX = matrix.GetColumn(0);
Vector3 unitY = matrix.GetColumn(1);
Vector3 unitZ = matrix.GetColumn(2);
var scale = new Vector3(unitX.magnitude, unitY.magnitude, unitZ.magnitude);
_localBounds = new Bounds {
center = matrix.MultiplyPoint3x4(aabb.center),
extents = new Vector3(aabb.extents.x / scale.x, aabb.extents.y / scale.y, aabb.extents.z / scale.z)
};
OrientationMatrix = Matrix4x4.zero;
UnitX = unitX / scale.x;
UnitY = unitY / scale.y;
UnitZ = unitZ / scale.z;
}
public bool Contains(Vector3 point) {
var delta = point - Center;
var localPoint = Center + OrientationMatrix.transpose.MultiplyVector(delta);
return _localBounds.Contains(localPoint);
}
public bool Intersects(OrientedBounds other) {
// OrientationMatrix should always be orthogonal,
// so we can cheat and use the transpose for the inverse
var inverseOrientationMatrix = OrientationMatrix.transpose;
// matrix expressing other in our coordinate frame
var R = inverseOrientationMatrix * other.OrientationMatrix;
// compute translation vector t in our coordinate frame
var t = inverseOrientationMatrix.MultiplyVector(other.Center - Center);
return IntersectOBBSeperatingAxis(R, t, Extents, other.Extents);
}
public bool Intersects(Bounds other) {
// matrix expressing other in our coordinate frame
var R = OrientationMatrix.transpose;
// compute translation vector t in our coordinate frame
var t = R.MultiplyVector(other.center - Center);
return IntersectOBBSeperatingAxis(R, t, Extents, other.extents);
}
private static bool IntersectOBBSeperatingAxis(Matrix4x4 R, Vector3 t, Vector3 a, Vector3 b) {
// Compute common subexpressions. Add in an epsilon term to
// counteract arithmetic errors when two edges are parallel and
// their cross product is (near) null
var absR = R;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
absR[i, j] = Mathf.Abs(R[i, j]) + Mathf.Epsilon;
}
}
float ra, rb;
// Test axes L = A0, L = A1, L = A2
for (int i = 0; i < 3; i++) {
ra = a[i];
rb = b[0] * absR[i, 0] + b[1] * absR[i, 1] + b[2] * absR[i, 2];
if (Mathf.Abs(t[i]) > ra + rb) return false;
}
// Test axes L = B0, L = B1, L = B2
for (int i = 0; i < 3; i++) {
ra = a[0] * absR[0, i] + a[1] * absR[1, i] + a[2] * absR[2, i];
rb = b[i];
if (Mathf.Abs(t[0] * R[0, i] + t[1] * R[1, i] + t[2] * R[2, i]) > ra + rb) return false;
}
// Test axis L = A0 x B0
ra = a[1] * absR[2, 0] + a[2] * absR[1, 0];
rb = b[1] * absR[0, 2] + b[2] * absR[0, 1];
if (Mathf.Abs(t[2] * R[1, 0] - t[1] * R[2, 0]) > ra + rb) return false;
// Test axis L = A0 x B1
ra = a[1] * absR[2, 1] + a[2] * absR[1, 1];
rb = b[0] * absR[0, 2] + b[2] * absR[0, 0];
if (Mathf.Abs(t[2] * R[1, 1] - t[1] * R[2, 1]) > ra + rb) return false;
// Test axis L = A0 x B2
ra = a[1] * absR[2, 2] + a[2] * absR[1, 2];
rb = b[0] * absR[0, 1] + b[1] * absR[0, 0];
if (Mathf.Abs(t[2] * R[1, 2] - t[1] * R[2, 2]) > ra + rb) return false;
// Test axis L = A1 x B0
ra = a[0] * absR[2, 0] + a[2] * absR[0, 0];
rb = b[1] * absR[1, 2] + b[2] * absR[1, 1];
if (Mathf.Abs(t[0] * R[2, 0] - t[2] * R[0, 0]) > ra + rb) return false;
// Test axis L = A1 x B1
ra = a[0] * absR[2, 1] + a[2] * absR[0, 1];
rb = b[0] * absR[1, 2] + b[2] * absR[1, 0];
if (Mathf.Abs(t[0] * R[2, 1] - t[2] * R[0, 1]) > ra + rb) return false;
// Test axis L = A1 x B2
ra = a[0] * absR[2, 2] + a[2] * absR[0, 2];
rb = b[0] * absR[1, 1] + b[1] * absR[1, 0];
if (Mathf.Abs(t[2] * R[1, 2] - t[1] * R[2, 2]) > ra + rb) return false;
// Test axis L = A2 x B0
ra = a[0] * absR[1, 0] + a[1] * absR[0, 1];
rb = b[1] * absR[2, 2] + b[2] * absR[2, 1];
if (Mathf.Abs(t[1] * R[0, 0] - t[0] * R[1, 0]) > ra + rb) return false;
// Test axis L = A2 x B1
ra = a[0] * absR[1, 1] + a[1] * absR[0, 1];
rb = b[0] * absR[2, 2] + b[2] * absR[2, 0];
if (Mathf.Abs(t[1] * R[0, 1] - t[0] * R[1, 1]) > ra + rb) return false;
// Test axis L = A2 x B2
ra = a[0] * absR[1, 2] + a[1] * absR[0, 2];
rb = b[0] * absR[2, 1] + b[1] * absR[2, 0];
if (Mathf.Abs(t[1] * R[0, 2] - t[0] * R[1, 2]) > ra + rb) return false;
// Since no separating axis is found, the OBBs must be intersecting
return true;
}
}
}