You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
nvidia-texture-tools/src/nvtt/tests/bc1enc.cpp

695 lines
23 KiB
C++

#define _CRT_SECURE_NO_WARNINGS
#include <assert.h>
#include <stdlib.h>
//#define STBI_ASSERT(x)
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#define STB_DXT_IMPLEMENTATION
#include "stb_dxt.h"
#include "../extern/libsquish-1.15/squish.h"
#include "../extern/CMP_Core/source/CMP_Core.h"
#include "nvtt/CompressorDXT1.h"
#include "nvmath/Vector.h"
#include "nvmath/Color.h"
#include "nvcore/Timer.h"
#include "nvcore/Array.inl"
using namespace nv;
typedef unsigned char u8;
typedef unsigned int u32;
// Defer statement:
#define CONCAT_INTERNAL(x, y) x##y
#define CONCAT(x, y) CONCAT_INTERNAL(x, y)
template<typename T>
struct ExitScope
{
T lambda;
ExitScope(T lambda)
: lambda(lambda)
{
}
~ExitScope() { lambda(); }
private:
ExitScope& operator=(const ExitScope&);
};
class ExitScopeHelp
{
public:
template<typename T>
ExitScope<T> operator+(T t) { return t; }
};
#define defer const auto& __attribute__((unused)) CONCAT(defer__, __LINE__) = ExitScopeHelp() + [&]()
static float mse_to_psnr(float mse) {
float rms = sqrtf(mse);
float psnr = rms ? (float)clamp(log10(255.0 / rms) * 20.0, 0.0, 300.0) : 1e+10f;
return psnr;
}
/*
void image_metrics::calc(const image &a, const image &b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error, bool use_601_luma)
{
//assert((first_chan < 4U) && (first_chan + total_chans <= 4U));
const uint32_t width = std::min(a.get_width(), b.get_width());
const uint32_t height = std::min(a.get_height(), b.get_height());
double hist[256];
memset(hist, 0, sizeof(hist));
for (uint32_t y = 0; y < height; y++)
{
for (uint32_t x = 0; x < width; x++)
{
const color_rgba &ca = a(x, y), &cb = b(x, y);
for (uint32_t c = 0; c < 3; c++)
hist[iabs(ca[first_chan + c] - cb[first_chan + c])]++;
}
}
m_max = 0;
double sum = 0.0f, sum2 = 0.0f;
for (uint32_t i = 0; i < 256; i++)
{
if (hist[i])
{
m_max = std::max<float>(m_max, (float)i);
double v = i * hist[i];
sum += v;
sum2 += i * v;
}
}
double total_values = (double)width * (double)height;
if (avg_comp_error)
total_values *= (double)clamp<uint32_t>(total_chans, 1, 4);
m_mean = (float)clamp<double>(sum / total_values, 0.0f, 255.0);
m_mean_squared = (float)clamp<double>(sum2 / total_values, 0.0f, 255.0 * 255.0);
m_rms = (float)sqrt(m_mean_squared);
m_psnr = m_rms ? (float)clamp<double>(log10(255.0 / m_rms) * 20.0, 0.0f, 300.0f) : 1e+10f;
}
*/
// Returns mse.
float evaluate_dxt1_mse(uint8 * rgba, uint8 * block, int block_count, int decoder = 2) {
double total = 0.0f;
for (int b = 0; b < block_count; b++) {
total += nv::evaluate_dxt1_error(rgba, (BlockDXT1 *)block, decoder) / 255.0;
rgba += 4 * 4 * 4;
block += 8;
}
return float(total / (3 * 16 * block_count));
}
#define MAKEFOURCC(str) (uint(str[0]) | (uint(str[1]) << 8) | (uint(str[2]) << 16) | (uint(str[3]) << 24 ))
bool output_dxt_dds (u32 w, u32 h, const u8* data, const char * filename) {
const u32 DDSD_CAPS = 0x00000001;
const u32 DDSD_PIXELFORMAT = 0x00001000;
const u32 DDSD_WIDTH = 0x00000004;
const u32 DDSD_HEIGHT = 0x00000002;
const u32 DDSD_LINEARSIZE = 0x00080000;
const u32 DDPF_FOURCC = 0x00000004;
const u32 DDSCAPS_TEXTURE = 0x00001000;
struct DDS {
u32 fourcc = MAKEFOURCC("DDS ");
u32 size = 124;
u32 flags = DDSD_CAPS|DDSD_PIXELFORMAT|DDSD_WIDTH|DDSD_HEIGHT|DDSD_LINEARSIZE;
u32 height;
u32 width;
u32 pitch;
u32 depth;
u32 mipmapcount;
u32 reserved [11];
struct {
u32 size = 32;
u32 flags = DDPF_FOURCC;
u32 fourcc = MAKEFOURCC("DXT1");
u32 bitcount;
u32 rmask;
u32 gmask;
u32 bmask;
u32 amask;
} pf;
struct {
u32 caps1 = DDSCAPS_TEXTURE;
u32 caps2;
u32 caps3;
u32 caps4;
} caps;
u32 notused;
} dds;
static_assert(sizeof(DDS) == 128, "DDS size must be 128");
dds.width = w;
dds.height = h;
dds.pitch = 8 * ((w+3)/4 * (h+3)/4); // linear size
FILE * fp = fopen(filename, "wb");
if (fp == nullptr) return false;
// Write header:
fwrite(&dds, sizeof(dds), 1, fp);
// Write dxt data:
fwrite(data, dds.pitch, 1, fp);
fclose(fp);
return true;
}
const int COMPRESSOR_COUNT = 7;
struct Stats {
const char * compressorName;
Array<float> mseArray;
Array<float> timeArray;
};
bool test_bc1(const char * inputFileName, int index, Stats * stats) {
int w, h, n;
unsigned char *input_data = stbi_load(inputFileName, &w, &h, &n, 4);
defer { stbi_image_free(input_data); };
if (input_data == nullptr) {
printf("Failed to load input image '%s'.\n", inputFileName);
return false;
}
int block_count = (w / 4) * (h / 4);
u8 * rgba_block_data = (u8 *)malloc(block_count * 4 * 4 * 4);
defer { free(rgba_block_data); };
int bw = 4 * (w / 4); // Round down.
int bh = 4 * (h / 4);
// Convert to block layout.
for (int y = 0, b = 0; y < bh; y += 4) {
for (int x = 0; x < bw; x += 4, b++) {
for (int yy = 0; yy < 4; yy++) {
for (int xx = 0; xx < 4; xx++) {
if (x + xx < w && y + yy < h) {
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 0] = input_data[((y + yy) * w + x + xx) * 4 + 0];
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 1] = input_data[((y + yy) * w + x + xx) * 4 + 1];
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 2] = input_data[((y + yy) * w + x + xx) * 4 + 2];
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 3] = input_data[((y + yy) * w + x + xx) * 4 + 3];
}
else {
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 0] = 0;
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 1] = 0;
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 2] = 0;
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 3] = 0;
}
}
}
}
}
u8 * block_data = (u8 *)malloc(block_count * 8);
Timer timer;
// Warmup.
for (int b = 0; b < block_count; b++) {
stb_compress_dxt_block(block_data + b * 8, rgba_block_data + b * 4 * 4 * 4, 0, STB_DXT_NORMAL);
}
#if _DEBUG
const int repeat_count = 1;
#else
const int repeat_count = 1; // 8
#endif
{
memset(block_data, 0, block_count * 8);
timer.start();
for (int i = 0; i < repeat_count; i++) {
for (int b = 0; b < block_count; b++) {
stb_compress_dxt_block(block_data + b * 8, rgba_block_data + b * 4 * 4 * 4, 0, STB_DXT_NORMAL);
}
}
timer.stop();
float mse = evaluate_dxt1_mse(rgba_block_data, block_data, block_count);
//printf("stb_dxt \t%f\t-> %f %f\n", timer.elapsed(), sqrt(mse), mse_to_psnr(mse));
//output_dxt_dds(bw, bh, block_data, "stb_dxt.dds");
stats->compressorName = "stb";
stats->mseArray[index] = mse;
stats->timeArray[index] = timer.elapsed();
stats++;
}
{
memset(block_data, 0, block_count * 8);
timer.start();
for (int i = 0; i < repeat_count; i++) {
for (int b = 0; b < block_count; b++) {
stb_compress_dxt_block(block_data + b * 8, rgba_block_data + b * 4 * 4 * 4, 0, STB_DXT_HIGHQUAL);
}
}
timer.stop();
float mse = evaluate_dxt1_mse(rgba_block_data, block_data, block_count);
//printf("stb_dxt hq \t%f\t-> %f %f\n", timer.elapsed(), sqrt(mse), mse_to_psnr(mse));
//output_dxt_dds(bw, bh, block_data, "stb_dxt_hq.dds");
stats->compressorName = "stb-hq";
stats->mseArray[index] = mse;
stats->timeArray[index] = timer.elapsed();
stats++;
}
{
memset(block_data, 0, block_count * 8);
Vector3 color_weights(1);
timer.start();
for (int i = 0; i < repeat_count; i++) {
for (int b = 0; b < block_count; b++) {
Vector4 input_colors[16];
float input_weights[16];
for (int j = 0; j < 16; j++) {
input_colors[j].x = rgba_block_data[b * 4 * 4 * 4 + j * 4 + 0] / 255.0f;
input_colors[j].y = rgba_block_data[b * 4 * 4 * 4 + j * 4 + 1] / 255.0f;
input_colors[j].z = rgba_block_data[b * 4 * 4 * 4 + j * 4 + 2] / 255.0f;
input_colors[j].w = 255.0f;
input_weights[j] = 1.0f;
}
compress_dxt1_fast(input_colors, input_weights, color_weights, (BlockDXT1*)(block_data + b * 8));
}
}
timer.stop();
float mse = evaluate_dxt1_mse(rgba_block_data, block_data, block_count);
//printf("nvtt fast \t%f\t-> %f %f\n", timer.elapsed(), sqrt(mse), mse_to_psnr(mse));
//output_dxt_dds(bw, bh, block_data, "nvtt_fast.dds");
stats->compressorName = "nvtt-fast";
stats->mseArray[index] = mse;
stats->timeArray[index] = timer.elapsed();
stats++;
}
{
memset(block_data, 0, block_count * 8);
timer.start();
for (int i = 0; i < repeat_count; i++) {
for (int b = 0; b < block_count; b++) {
//compress_dxt1_fast2(rgba_block_data + b * 4 * 4 * 4, (BlockDXT1*)(block_data + b * 8));
compress_dxt1_fast_geld(rgba_block_data + b * 4 * 4 * 4, (BlockDXT1*)(block_data + b * 8));
}
}
timer.stop();
float mse = evaluate_dxt1_mse(rgba_block_data, block_data, block_count);
//printf("nvtt fast2 \t%f\t-> %f %f\n", timer.elapsed(), sqrt(mse), mse_to_psnr(mse));
//output_dxt_dds(bw, bh, block_data, "nvtt_fast2.dds");
stats->compressorName = "nvtt-geld";
stats->mseArray[index] = mse;
stats->timeArray[index] = timer.elapsed();
stats++;
}
{
memset(block_data, 0, block_count * 8);
Vector3 color_weights(1);
timer.start();
for (int i = 0; i < repeat_count; i++) {
for (int b = 0; b < block_count; b++) {
Vector4 input_colors[16];
float input_weights[16];
for (int j = 0; j < 16; j++) {
input_colors[j].x = rgba_block_data[b * 4 * 4 * 4 + j * 4 + 0] / 255.0f;
input_colors[j].y = rgba_block_data[b * 4 * 4 * 4 + j * 4 + 1] / 255.0f;
input_colors[j].z = rgba_block_data[b * 4 * 4 * 4 + j * 4 + 2] / 255.0f;
input_colors[j].w = 1.0f;
input_weights[j] = 1.0f;
}
compress_dxt1(input_colors, input_weights, color_weights, false, (BlockDXT1*)(block_data + b * 8));
}
}
timer.stop();
float mse = evaluate_dxt1_mse(rgba_block_data, block_data, block_count);
//printf("nvtt hq \t%f\t-> %f %f\n", timer.elapsed(), sqrt(mse), mse_to_psnr(mse));
//output_dxt_dds(bw, bh, block_data, "nvtt_hq.dds");
stats->compressorName = "nvtt-hq";
stats->mseArray[index] = mse;
stats->timeArray[index] = timer.elapsed();
stats++;
}
{
memset(block_data, 0, block_count * 8);
timer.start();
for (int i = 0; i < repeat_count; i++) {
for (int b = 0; b < block_count; b++) {
squish::Compress(rgba_block_data + b * 4 * 4 * 4, block_data + b * 8, squish::kDxt1);
}
}
timer.stop();
float mse = evaluate_dxt1_mse(rgba_block_data, block_data, block_count);
//printf("squish \t%f\t-> %f %f\n", timer.elapsed(), sqrt(mse), mse_to_psnr(mse));
//output_dxt_dds(bw, bh, block_data, "squish.dds");
stats->compressorName = "squish";
stats->mseArray[index] = mse;
stats->timeArray[index] = timer.elapsed();
stats++;
}
/*{
memset(block_data, 0, block_count * 8);
timer.start();
for (int i = 0; i < repeat_count; i++) {
for (int b = 0; b < block_count; b++) {
squish::Compress(rgba_block_data + b * 4 * 4 * 4, block_data + b * 8, squish::kDxt1 | squish::kColourIterativeClusterFit);
}
}
timer.stop();
float mse = evaluate_dxt1_mse(rgba_block_data, block_data, block_count);
//printf("squish hq\t%f\t-> %f %f\n", timer.elapsed(), sqrt(mse), mse_to_psnr(mse));
//output_dxt_dds(bw, bh, block_data, "squish_hq.dds");
stats->compressorName = "squish-hq";
stats->mseArray[index] = mse;
stats->timeArray[index] = timer.elapsed();
stats++;
}*/
{
memset(block_data, 0, block_count * 8);
timer.start();
for (int i = 0; i < repeat_count; i++) {
for (int b = 0; b < block_count; b++) {
CompressBlockBC1(rgba_block_data + b * 4 * 4 * 4, 16, block_data + b * 8, nullptr);
}
}
timer.stop();
float mse = evaluate_dxt1_mse(rgba_block_data, block_data, block_count);
//printf("squish \t%f\t-> %f %f\n", timer.elapsed(), sqrt(mse), mse_to_psnr(mse));
//output_dxt_dds(bw, bh, block_data, "squish.dds");
stats->compressorName = "cmp";
stats->mseArray[index] = mse;
stats->timeArray[index] = timer.elapsed();
stats++;
}
return false;
}
bool analyze_bc1(const char * inputFileName) {
int w, h, n;
unsigned char *input_data = stbi_load(inputFileName, &w, &h, &n, 4);
defer { stbi_image_free(input_data); };
if (input_data == nullptr) {
printf("Failed to load input image '%s'.\n", inputFileName);
return false;
}
int block_count = (w / 4) * (h / 4);
u8 * rgba_block_data = (u8 *)malloc(block_count * 4 * 4 * 4);
defer { free(rgba_block_data); };
int bw = 4 * (w / 4); // Round down.
int bh = 4 * (h / 4);
// Convert to block layout.
for (int y = 0, b = 0; y < bh; y += 4) {
for (int x = 0; x < bw; x += 4, b++) {
for (int yy = 0; yy < 4; yy++) {
for (int xx = 0; xx < 4; xx++) {
if (x + xx < w && y + yy < h) {
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 0] = input_data[((y + yy) * w + x + xx) * 4 + 0];
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 1] = input_data[((y + yy) * w + x + xx) * 4 + 1];
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 2] = input_data[((y + yy) * w + x + xx) * 4 + 2];
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 3] = input_data[((y + yy) * w + x + xx) * 4 + 3];
}
else {
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 0] = 0;
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 1] = 0;
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 2] = 0;
rgba_block_data[b * 4 * 4 * 4 + (yy * 4 + xx) * 4 + 3] = 0;
}
}
}
}
}
u8 * block_data = (u8 *)malloc(block_count * 8);
memset(block_data, 0, block_count * 8);
Timer timer;
int stb_better_than_nvtt_fast = 0;
int stb_better_than_nvtt_hq = 0;
int squish_better_than_nvtt_hq = 0;
int this_should_never_happen = 0;
int this_should_never_happen_either = 0;
Vector3 color_weights(1);
for (int b = 0; b < block_count; b++) {
uint8 * rgba_block = rgba_block_data + b * 4 * 4 * 4;
uint8 * dxt_block = block_data + b * 8;
Vector4 input_colors[16];
float input_weights[16];
for (int j = 0; j < 16; j++) {
input_colors[j].x = rgba_block[j * 4 + 0] / 255.0f;
input_colors[j].y = rgba_block[j * 4 + 1] / 255.0f;
input_colors[j].z = rgba_block[j * 4 + 2] / 255.0f;
input_colors[j].w = 255.0f;
input_weights[j] = 1.0f;
}
// Compare all the different modes on the same block:
stb_compress_dxt_block(dxt_block, rgba_block, 0, STB_DXT_NORMAL);
float mse_stb = nv::evaluate_dxt1_error(rgba_block, (BlockDXT1 *)dxt_block);
stb_compress_dxt_block(dxt_block, rgba_block, 0, STB_DXT_HIGHQUAL);
float mse_stb_hq = nv::evaluate_dxt1_error(rgba_block, (BlockDXT1 *)dxt_block);
compress_dxt1_fast(input_colors, input_weights, color_weights, (BlockDXT1*)dxt_block);
float mse_nvtt_fast = nv::evaluate_dxt1_error(rgba_block, (BlockDXT1 *)dxt_block);
compress_dxt1_fast2(rgba_block, (BlockDXT1*)dxt_block);
float mse_nvtt_fast2 = nv::evaluate_dxt1_error(rgba_block, (BlockDXT1 *)dxt_block);
compress_dxt1_fast_geld(rgba_block, (BlockDXT1*)dxt_block);
float mse_nvtt_geld = nv::evaluate_dxt1_error(rgba_block, (BlockDXT1 *)dxt_block);
compress_dxt1(input_colors, input_weights, color_weights, false, (BlockDXT1*)dxt_block);
float mse_nvtt_hq = nv::evaluate_dxt1_error(rgba_block, (BlockDXT1 *)dxt_block);
squish::Compress(rgba_block, dxt_block, squish::kDxt1);
float mse_squish = nv::evaluate_dxt1_error(rgba_block, (BlockDXT1 *)dxt_block);
squish::Compress(rgba_block, dxt_block, squish::kDxt1 | squish::kColourIterativeClusterFit);
float mse_squish_hq = nv::evaluate_dxt1_error(rgba_block, (BlockDXT1 *)dxt_block);
if (mse_stb < mse_nvtt_fast) {
stb_better_than_nvtt_fast++;
}
if (mse_stb < mse_nvtt_hq) {
stb_better_than_nvtt_hq++;
}
if (mse_squish < mse_nvtt_hq) {
squish_better_than_nvtt_hq++;
}
if (mse_nvtt_fast < mse_nvtt_hq) {
this_should_never_happen++;
}
if (mse_nvtt_fast2 < mse_nvtt_fast) {
this_should_never_happen_either++;
}
}
return true;
}
const char * image_set[] = {
"testsuite/kodak/kodim01.png",
"testsuite/kodak/kodim02.png",
"testsuite/kodak/kodim03.png",
"testsuite/kodak/kodim04.png",
"testsuite/kodak/kodim05.png",
"testsuite/kodak/kodim06.png",
"testsuite/kodak/kodim07.png",
"testsuite/kodak/kodim08.png",
"testsuite/kodak/kodim09.png",
"testsuite/kodak/kodim10.png",
"testsuite/kodak/kodim11.png",
"testsuite/kodak/kodim12.png",
"testsuite/kodak/kodim13.png",
"testsuite/kodak/kodim14.png",
"testsuite/kodak/kodim15.png",
"testsuite/kodak/kodim16.png",
"testsuite/kodak/kodim17.png",
"testsuite/kodak/kodim18.png",
"testsuite/kodak/kodim19.png",
"testsuite/kodak/kodim20.png",
"testsuite/kodak/kodim21.png",
"testsuite/kodak/kodim22.png",
"testsuite/kodak/kodim23.png",
"testsuite/kodak/kodim24.png",
"testsuite/waterloo/clegg.png",
"testsuite/waterloo/frymire.png",
"testsuite/waterloo/lena.png",
"testsuite/waterloo/monarch.png",
"testsuite/waterloo/peppers.png",
"testsuite/waterloo/sail.png",
"testsuite/waterloo/serrano.png",
"testsuite/waterloo/tulips.png",
};
const char * roblox_set[] = {
"Roblox/asphalt_side/diffuse.tga",
"Roblox/asphalt_top/diffuse.tga",
"Roblox/basalt/diffuse.tga",
"Roblox/brick/diffuse.tga",
"Roblox/cobblestone_side/diffuse.tga",
"Roblox/cobblestone_top/diffuse.tga",
"Roblox/concrete_side/diffuse.tga",
"Roblox/concrete_top/diffuse.tga",
"Roblox/crackedlava/diffuse.tga",
"Roblox/glacier_bottom/diffuse.tga",
"Roblox/glacier_side/diffuse.tga",
"Roblox/glacier_top/diffuse.tga",
"Roblox/grass_bottom/diffuse.tga",
"Roblox/grass_side/diffuse.tga",
"Roblox/grass_top/diffuse.tga",
"Roblox/ground/diffuse.tga",
"Roblox/ice_side/diffuse.tga",
"Roblox/ice_top/diffuse.tga",
"Roblox/leafygrass_side/diffuse.tga",
"Roblox/leafygrass_top/diffuse.tga",
"Roblox/limestone_side/diffuse.tga",
"Roblox/limestone_top/diffuse.tga",
"Roblox/mud/diffuse.tga",
"Roblox/pavement_side/diffuse.tga",
"Roblox/pavement_top/diffuse.tga",
"Roblox/rock/diffuse.tga",
"Roblox/salt_side/diffuse.tga",
"Roblox/salt_top/diffuse.tga",
"Roblox/sand_side/diffuse.tga",
"Roblox/sand_top/diffuse.tga",
"Roblox/sandstone_bottom/diffuse.tga",
"Roblox/sandstone_side/diffuse.tga",
"Roblox/sandstone_top/diffuse.tga",
"Roblox/slate/diffuse.tga",
"Roblox/snow/diffuse.tga",
"Roblox/woodplanks/diffuse.tga",
};
int main(int argc, char *argv[])
{
const char * inputFileName = "testsuite/kodak/kodim14.png";
//const char * inputFileName = "testsuite/kodak/kodim18.png";
//const char * inputFileName = "testsuite/kodak/kodim15.png";
//const char * inputFileName = "testsuite/waterloo/frymire.png";
// test_bc1(inputFileName, 0);
analyze_bc1(inputFileName);
//const char ** set = roblox_set;
//int count = sizeof(roblox_set) / sizeof(char*);
const char ** set = image_set;
int count = sizeof(image_set) / sizeof(char*);
Stats stats[COMPRESSOR_COUNT];
for (int i = 0; i < COMPRESSOR_COUNT; i++) {
stats[i].compressorName = nullptr;
stats[i].mseArray.resize(count, 0.0f);
stats[i].timeArray.resize(count, 0.0f);
}
for (int i = 0; i < count; i++) {
printf("\nImage '%s'\n", set[i]);
test_bc1(set[i], i, stats);
for (int c = 0; c < COMPRESSOR_COUNT; c++) {
if (stats[c].compressorName) {
printf("%-16s %f\t%f\n", stats[c].compressorName, sqrtf(stats[c].mseArray[i]), stats[c].timeArray[i]);
}
}
}
// Print stats.
printf("\nAverage Results:\n");
for (int c = 0; c < COMPRESSOR_COUNT; c++) {
if (stats[c].compressorName) {
float sum = 0.0f;
for (float it : stats[c].mseArray) {
sum += it;
}
sum /= count;
float time = 0.0f;
for (float it : stats[c].timeArray) {
time += it;
}
printf("%-16s %f\t%f\n", stats[c].compressorName, sqrtf(sum), time);
}
}
return EXIT_SUCCESS;
}