Cleanup filters.

This commit is contained in:
castano 2007-12-03 08:34:32 +00:00
parent 3359090581
commit 067f3abf54
3 changed files with 101 additions and 257 deletions

View File

@ -100,6 +100,10 @@ Filter::Filter(float width) : m_width(width)
{ {
} }
/*virtual*/ Filter::~Filter()
{
}
float Filter::sample(float x, float scale, int samples) const float Filter::sample(float x, float scale, int samples) const
{ {
// return evaluate(x * scale); // return evaluate(x * scale);
@ -223,11 +227,9 @@ KaiserFilter::KaiserFilter(float w) : Filter(w) { setParameters(4.0f, 1.0f); }
float KaiserFilter::evaluate(float x) const float KaiserFilter::evaluate(float x) const
{ {
const float sinc_value = sincf(PI * x * stretch); const float sinc_value = sincf(PI * x * stretch);
float t = x / m_width; const float t = x / m_width;
if (t * t <= 1.0f) if ((1 - t * t) >= 0) return sinc_value * bessel0(alpha * sqrtf(1 - t * t)) / bessel0(alpha);
return sinc_value * bessel0(alpha * sqrtf(1 - t * t)) / bessel0(alpha); else return 0;
else
return 0;
} }
void KaiserFilter::setParameters(float alpha, float stretch) void KaiserFilter::setParameters(float alpha, float stretch)
@ -239,17 +241,31 @@ void KaiserFilter::setParameters(float alpha, float stretch)
/// Ctor. /// Ctor.
Kernel1::Kernel1(uint ws) : m_windowSize(ws) Kernel1::Kernel1(const Filter & f, int iscale, int samples/*= 32*/)
{ {
m_data = new float[m_windowSize]; nvDebugCheck(iscale > 1);
} nvDebugCheck(samples > 0);
/// Copy ctor. const float scale = 1.0f / iscale;
Kernel1::Kernel1(const Kernel1 & k) : m_windowSize(k.m_windowSize)
{ m_width = f.width() * iscale;
m_windowSize = ceilf(2 * m_width);
m_data = new float[m_windowSize]; m_data = new float[m_windowSize];
for(uint i = 0; i < m_windowSize; i++) {
m_data[i] = k.m_data[i]; const float offset = float(m_windowSize) / 2;
float total = 0.0f;
for (int i = 0; i < m_windowSize; i++)
{
const float sample = f.sample(i - offset, scale, samples);
m_data[i] = sample;
total += sample;
}
const float inv = 1.0f / total;
for (int i = 0; i < m_windowSize; i++)
{
m_data[i] *= inv;
} }
} }
@ -259,103 +275,10 @@ Kernel1::~Kernel1()
delete m_data; delete m_data;
} }
/// Normalize the filter.
void Kernel1::normalize()
{
float total = 0.0f;
for(uint i = 0; i < m_windowSize; i++) {
total += m_data[i];
}
float inv = 1.0f / total;
for(uint i = 0; i < m_windowSize; i++) {
m_data[i] *= inv;
}
}
#if 0
/// Init 1D filter.
void Kernel1::initFilter(Filter::Enum f, int samples /*= 1*/)
{
nvDebugCheck(f < Filter::Num);
nvDebugCheck(samples >= 1);
float (* filter_function)(float) = s_filter_array[f].function;
const float support = s_filter_array[f].support;
const float halfWindowSize = float(m_windowSize) / 2.0f;
const float scale = support / halfWindowSize;
for(uint i = 0; i < m_windowSize; i++)
{
m_data[i] = sampleFilter(filter_function, i - halfWindowSize, scale, samples);
}
normalize();
}
/// Init 1D sinc filter.
void Kernel1::initSinc(float stretch /*= 1*/)
{
const float halfWindowSize = float(m_windowSize) / 2;
const float nudge = 0.5f;
for(uint i = 0; i < m_windowSize; i++) {
const float x = (i - halfWindowSize) + nudge;
m_data[i] = sincf(PI * x * stretch);
}
normalize();
}
/// Init 1D Kaiser-windowed sinc filter.
void Kernel1::initKaiser(float alpha /*= 4*/, float stretch /*= 0.5*/, int samples/*= 1*/)
{
const float halfWindowSize = float(m_windowSize) / 2;
const float s_scale = 1.0f / float(samples);
const float x_scale = 1.0f / halfWindowSize;
for(uint i = 0; i < m_windowSize; i++)
{
float sum = 0;
for(int s = 0; s < samples; s++)
{
float x = i - halfWindowSize + (s + 0.5f) * s_scale;
const float sinc_value = sincf(PI * x * stretch);
const float window_value = filter_kaiser(x * x_scale, alpha); // @@ should the window be streched? I don't think so.
sum += sinc_value * window_value;
}
m_data[i] = sum;
}
normalize();
}
/// Init 1D Mitchell filter.
void Kernel1::initMitchell(float b, float c)
{
const float halfWindowSize = float(m_windowSize) / 2;
const float nudge = 0.5f;
for (uint i = 0; i < m_windowSize; i++) {
const float x = (i - halfWindowSize) + nudge;
m_data[i] = filter_mitchell(x / halfWindowSize, b, c);
}
normalize();
}
#endif
/// Print the kernel for debugging purposes. /// Print the kernel for debugging purposes.
void Kernel1::debugPrint() void Kernel1::debugPrint()
{ {
for (uint i = 0; i < m_windowSize; i++) { for (int i = 0; i < m_windowSize; i++) {
nvDebug("%d: %f\n", i, m_data[i]); nvDebug("%d: %f\n", i, m_data[i]);
} }
} }
@ -590,41 +513,13 @@ void Kernel2::initBlendedSobel(const Vector4 & scale)
} }
static float frac(float f) PolyphaseKernel::PolyphaseKernel(const Filter & f, uint srcLength, uint dstLength, int samples/*= 32*/)
{ {
return f - floorf(f); nvCheck(srcLength >= dstLength); // @@ Upsampling not implemented!
} nvDebugCheck(samples > 0);
static bool isMonoPhase(float w) const float scale = float(dstLength) / float(srcLength);
{ const float iscale = 1.0f / scale;
return isZero(frac(w));
}
/*
PolyphaseKernel::PolyphaseKernel(float w, uint l) :
m_width(w),
m_size(ceilf(w) + 1),
m_length(l)
{
// size = width + (length - 1) * phase
m_data = new float[m_size * m_length];
}
PolyphaseKernel::PolyphaseKernel(const PolyphaseKernel & k) :
m_width(k.m_width),
m_size(k.m_size),
m_length(k.m_length)
{
m_data = new float[m_size * m_length];
memcpy(m_data, k.m_data, sizeof(float) * m_size * m_length);
}
*/
PolyphaseKernel::PolyphaseKernel(const Filter & f, uint srcLength, uint dstLength)
{
float scale = float(dstLength) / float(srcLength);
float iscale = 1.0f / scale;
m_length = dstLength; m_length = dstLength;
m_width = f.width() * iscale; m_width = f.width() * iscale;
@ -637,14 +532,14 @@ PolyphaseKernel::PolyphaseKernel(const Filter & f, uint srcLength, uint dstLengt
{ {
const float center = (0.5f + i) * iscale; const float center = (0.5f + i) * iscale;
int left = floor(center - m_width); const int left = floorf(center - m_width);
int right = ceil(center + m_width); const int right = ceilf(center + m_width);
nvCheck(right - left <= (int)m_windowSize); nvDebugCheck(right - left <= m_windowSize);
float total = 0.0f; float total = 0.0f;
for (int j = 0; j < m_windowSize; j++) for (int j = 0; j < m_windowSize; j++)
{ {
float sample = f.sample(left + j - center, scale, 40); const float sample = f.sample(left + j - center, scale, samples);
m_data[i * m_windowSize + j] = sample; m_data[i * m_windowSize + j] = sample;
total += sample; total += sample;
@ -670,7 +565,7 @@ void PolyphaseKernel::debugPrint() const
for (uint i = 0; i < m_length; i++) for (uint i = 0; i < m_length; i++)
{ {
nvDebug("%d: ", i); nvDebug("%d: ", i);
for (uint j = 0; j < m_windowSize; j++) for (int j = 0; j < m_windowSize; j++)
{ {
nvDebug(" %6.4f", m_data[i * m_windowSize + j]); nvDebug(" %6.4f", m_data[i * m_windowSize + j]);
} }

View File

@ -4,6 +4,7 @@
#define NV_IMAGE_FILTER_H #define NV_IMAGE_FILTER_H
#include <nvimage/nvimage.h> #include <nvimage/nvimage.h>
#include <nvcore/Debug.h>
namespace nv namespace nv
{ {
@ -14,6 +15,7 @@ namespace nv
{ {
public: public:
NVIMAGE_API Filter(float width); NVIMAGE_API Filter(float width);
NVIMAGE_API virtual ~Filter();
NVIMAGE_API float width() const { return m_width; } NVIMAGE_API float width() const { return m_width; }
NVIMAGE_API float sample(float x, float scale, int samples) const; NVIMAGE_API float sample(float x, float scale, int samples) const;
@ -116,31 +118,29 @@ namespace nv
/// A 1D kernel. Used to precompute filter weights. /// A 1D kernel. Used to precompute filter weights.
class Kernel1 class Kernel1
{ {
NV_FORBID_COPY(Kernel1);
public: public:
NVIMAGE_API Kernel1(uint windowSize); NVIMAGE_API Kernel1(const Filter & f, int iscale, int samples = 32);
NVIMAGE_API Kernel1(const Kernel1 & k);
NVIMAGE_API ~Kernel1(); NVIMAGE_API ~Kernel1();
NVIMAGE_API void normalize();
float valueAt(uint x) const { float valueAt(uint x) const {
nvDebugCheck(x < (uint)m_windowSize);
return m_data[x]; return m_data[x];
} }
uint windowSize() const { int windowSize() const {
return m_windowSize; return m_windowSize;
} }
/*
NVIMAGE_API void initFilter(Filter::Enum filter, int samples = 1); float width() const {
NVIMAGE_API void initSinc(float stretch = 1); return m_width;
NVIMAGE_API void initKaiser(float alpha = 4.0f, float stretch = 1.0f, int sampes = 1); }
NVIMAGE_API void initMitchell(float b = 1.0f/3.0f, float c = 1.0f/3.0f);
*/
NVIMAGE_API void debugPrint(); NVIMAGE_API void debugPrint();
private: private:
const uint m_windowSize; int m_windowSize;
float m_width;
float * m_data; float * m_data;
}; };
@ -180,12 +180,12 @@ namespace nv
/// A 1D polyphase kernel /// A 1D polyphase kernel
class PolyphaseKernel class PolyphaseKernel
{ {
NV_FORBID_COPY(PolyphaseKernel) NV_FORBID_COPY(PolyphaseKernel);
public: public:
NVIMAGE_API PolyphaseKernel(const Filter & f, uint srcLength, uint dstLength); NVIMAGE_API PolyphaseKernel(const Filter & f, uint srcLength, uint dstLength, int samples = 32);
NVIMAGE_API ~PolyphaseKernel(); NVIMAGE_API ~PolyphaseKernel();
uint windowSize() const { int windowSize() const {
return m_windowSize; return m_windowSize;
} }
@ -199,14 +199,14 @@ namespace nv
float valueAt(uint column, uint x) const { float valueAt(uint column, uint x) const {
nvDebugCheck(column < m_length); nvDebugCheck(column < m_length);
nvDebugCheck(x < m_windowSize); nvDebugCheck(x < (uint)m_windowSize);
return m_data[column * m_windowSize + x]; return m_data[column * m_windowSize + x];
} }
NVIMAGE_API void debugPrint() const; NVIMAGE_API void debugPrint() const;
private: private:
uint m_windowSize; int m_windowSize;
uint m_length; uint m_length;
float m_width; float m_width;
float * m_data; float * m_data;

View File

@ -599,17 +599,18 @@ FloatImage * FloatImage::downSample(const Filter & filter, WrapMode wm) const
return downSample(filter, w, h, wm); return downSample(filter, w, h, wm);
} }
/// Downsample applying a 1D kernel separately in each dimension. /// Downsample applying a 1D kernel separately in each dimension.
FloatImage * FloatImage::downSample(const Filter & filter, uint w, uint h, WrapMode wm) const FloatImage * FloatImage::downSample(const Filter & filter, uint w, uint h, WrapMode wm) const
{ {
// @@ Use monophase filters when frac(m_width / w) == 0 // @@ Use monophase filters when frac(m_width / w) == 0
PolyphaseKernel xkernel(filter, m_width, w);
PolyphaseKernel ykernel(filter, m_height, h);
AutoPtr<FloatImage> tmp_image( new FloatImage() ); AutoPtr<FloatImage> tmp_image( new FloatImage() );
AutoPtr<FloatImage> dst_image( new FloatImage() ); AutoPtr<FloatImage> dst_image( new FloatImage() );
PolyphaseKernel xkernel(filter, m_width, w, 32);
PolyphaseKernel ykernel(filter, m_height, h, 32);
// @@ Select fastest filtering order: // @@ Select fastest filtering order:
//if (w * m_height <= h * m_width) //if (w * m_height <= h * m_width)
{ {
@ -748,12 +749,12 @@ float FloatImage::applyKernelHorizontal(const Kernel1 * k, int x, int y, int c,
/// Apply 1D vertical kernel at the given coordinates and return result. /// Apply 1D vertical kernel at the given coordinates and return result.
void FloatImage::applyKernelVertical(const PolyphaseKernel & k, int x, int c, WrapMode wm, float * output) const void FloatImage::applyKernelVertical(const PolyphaseKernel & k, int x, int c, WrapMode wm, float * output) const
{ {
uint length = k.length(); const uint length = k.length();
float scale = float(length) / float(m_height); const float scale = float(length) / float(m_height);
float iscale = 1.0f / scale; const float iscale = 1.0f / scale;
float width = k.width(); const float width = k.width();
float windowSize = k.windowSize(); const int windowSize = k.windowSize();
const float * channel = this->channel(c); const float * channel = this->channel(c);
@ -761,9 +762,8 @@ void FloatImage::applyKernelVertical(const PolyphaseKernel & k, int x, int c, Wr
{ {
const float center = (0.5f + i) * iscale; const float center = (0.5f + i) * iscale;
int left = floor(center - width); const int left = floor(center - width);
int right = ceil(center + width); const int right = ceil(center + width);
nvCheck(right - left <= windowSize); nvCheck(right - left <= windowSize);
float sum = 0; float sum = 0;
@ -776,43 +776,17 @@ void FloatImage::applyKernelVertical(const PolyphaseKernel & k, int x, int c, Wr
output[i] = sum; output[i] = sum;
} }
/*
const float kernelWidth = k->width();
const float kernelOffset = kernelWidth * 0.5f;
const int kernelLength = k->length();
const int kernelWindow = k->windowSize();
//const float offset = 0.5f * scale * (1 - kw);
const float offset = (0.5f * scale) - kernelOffset;
const float * channel = this->channel(c);
for (int y = 0; y < kernelLength; y++)
{
float sum = 0.0f;
for (int i = 0; i < kernelWindow; i++)
{
const int src_y = int(y * scale + offset) + i;
const int idx = this->index(x, src_y, wm);
sum += k->valueAt(y, i) * channel[idx];
}
output[y] = sum;
}
*/
} }
/// Apply 1D horizontal kernel at the given coordinates and return result. /// Apply 1D horizontal kernel at the given coordinates and return result.
void FloatImage::applyKernelHorizontal(const PolyphaseKernel & k, int y, int c, WrapMode wm, float * output) const void FloatImage::applyKernelHorizontal(const PolyphaseKernel & k, int y, int c, WrapMode wm, float * output) const
{ {
uint length = k.length(); const uint length = k.length();
float scale = float(length) / float(m_width); const float scale = float(length) / float(m_width);
float iscale = 1.0f / scale; const float iscale = 1.0f / scale;
float width = k.width(); const float width = k.width();
float windowSize = k.windowSize(); const int windowSize = k.windowSize();
const float * channel = this->channel(c); const float * channel = this->channel(c);
@ -820,9 +794,9 @@ void FloatImage::applyKernelHorizontal(const PolyphaseKernel & k, int y, int c,
{ {
const float center = (0.5f + i) * iscale; const float center = (0.5f + i) * iscale;
int left = floor(center - width); const int left = floorf(center - width);
int right = ceil(center + width); const int right = ceilf(center + width);
nvCheck(right - left <= (int)windowSize); nvDebugCheck(right - left <= windowSize);
float sum = 0; float sum = 0;
for (int j = 0; j < windowSize; ++j) for (int j = 0; j < windowSize; ++j)
@ -834,30 +808,5 @@ void FloatImage::applyKernelHorizontal(const PolyphaseKernel & k, int y, int c,
output[i] = sum; output[i] = sum;
} }
/*
const float kernelWidth = k->width();
const float kernelOffset = kernelWidth * 0.5f;
const int kernelLength = k->length();
const int kernelWindow = k->windowSize();
const float offset = (0.5f * scale) - kernelOffset;
const float * channel = this->channel(c);
for (int x = 0; x < kernelLength; x++)
{
float sum = 0.0f;
for (int e = 0; e < kernelWindow; e++)
{
const int src_x = int(x * scale + offset) + e;
const int idx = this->index(src_x, y, wm);
sum += k->valueAt(x, e) * channel[idx];
}
output[x] = sum;
}
*/
} }