Correct polyphase filters.
This commit is contained in:
parent
4d51088d96
commit
3359090581
@ -9,6 +9,7 @@
|
||||
*
|
||||
* References from Thacher Ulrich:
|
||||
* See _Graphics Gems III_ "General Filtered Image Rescaling", Dale A. Schumacher
|
||||
* http://tog.acm.org/GraphicsGems/gemsiii/filter.c
|
||||
*
|
||||
* References from Paul Heckbert:
|
||||
* A.V. Oppenheim, R.W. Schafer, Digital Signal Processing, Prentice-Hall, 1975
|
||||
@ -27,6 +28,9 @@
|
||||
* Reconstruction Filters in Computer Graphics
|
||||
* http://www.mentallandscape.com/Papers_siggraph88.pdf
|
||||
*
|
||||
* More references:
|
||||
* http://www.worldserver.com/turk/computergraphics/ResamplingFilters.pdf
|
||||
* http://www.dspguide.com/ch16.htm
|
||||
*/
|
||||
|
||||
|
||||
@ -39,28 +43,107 @@ using namespace nv;
|
||||
|
||||
namespace
|
||||
{
|
||||
// Sinc function.
|
||||
inline static float sincf(const float x)
|
||||
{
|
||||
if (fabs(x) < NV_EPSILON) {
|
||||
//return 1.0;
|
||||
return 1.0f + x*x*(-1.0f/6.0f + x*x*1.0f/120.0f);
|
||||
}
|
||||
else {
|
||||
return sin(x) / x;
|
||||
}
|
||||
}
|
||||
|
||||
// support = 0.5
|
||||
inline static float filter_box(float x)
|
||||
// Bessel function of the first kind from Jon Blow's article.
|
||||
// http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
|
||||
// http://en.wikipedia.org/wiki/Bessel_function
|
||||
inline static float bessel0(float x)
|
||||
{
|
||||
const float EPSILON_RATIO = 1E-6;
|
||||
float xh, sum, pow, ds;
|
||||
int k;
|
||||
|
||||
xh = 0.5 * x;
|
||||
sum = 1.0;
|
||||
pow = 1.0;
|
||||
k = 0;
|
||||
ds = 1.0;
|
||||
while (ds > sum * EPSILON_RATIO) {
|
||||
++k;
|
||||
pow = pow * (xh / k);
|
||||
ds = pow * pow;
|
||||
sum = sum + ds;
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
/*// Alternative bessel function from Paul Heckbert.
|
||||
static float _bessel0(float x)
|
||||
{
|
||||
const float EPSILON_RATIO = 1E-6;
|
||||
float sum = 1.0f;
|
||||
float y = x * x / 4.0f;
|
||||
float t = y;
|
||||
for(int i = 2; t > EPSILON_RATIO; i++) {
|
||||
sum += t;
|
||||
t *= y / float(i * i);
|
||||
}
|
||||
return sum;
|
||||
}*/
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
Filter::Filter(float width) : m_width(width)
|
||||
{
|
||||
if( x < -0.5f ) return 0.0f;
|
||||
if( x <= 0.5 ) return 1.0f;
|
||||
}
|
||||
|
||||
float Filter::sample(float x, float scale, int samples) const
|
||||
{
|
||||
// return evaluate(x * scale);
|
||||
|
||||
float sum = 0;
|
||||
float isamples = 1.0f / float(samples);
|
||||
|
||||
for(int s = 0; s < samples; s++)
|
||||
{
|
||||
float p = (x + (float(s) + 0.5f) * isamples) * scale;
|
||||
float value = evaluate(p);
|
||||
sum += value;
|
||||
}
|
||||
|
||||
return sum * isamples;
|
||||
}
|
||||
|
||||
|
||||
BoxFilter::BoxFilter() : Filter(0.5f) {}
|
||||
BoxFilter::BoxFilter(float width) : Filter(width) {}
|
||||
|
||||
float BoxFilter::evaluate(float x) const
|
||||
{
|
||||
if (fabs(x) <= m_width) return 1.0f;
|
||||
else return 0.0f;
|
||||
}
|
||||
|
||||
|
||||
TriangleFilter::TriangleFilter() : Filter(1.0f) {}
|
||||
TriangleFilter::TriangleFilter(float width) : Filter(width) {}
|
||||
|
||||
float TriangleFilter::evaluate(float x) const
|
||||
{
|
||||
x = fabs(x);
|
||||
if( x < m_width ) return m_width - x;
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
// support = 1.0
|
||||
inline static float filter_triangle(float x)
|
||||
{
|
||||
if( x < -1.0f ) return 0.0f;
|
||||
if( x < 0.0f ) return 1.0f + x;
|
||||
if( x < 1.0f ) return 1.0f - x;
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
// support = 1.5
|
||||
inline static float filter_quadratic(float x)
|
||||
QuadraticFilter::QuadraticFilter() : Filter(1.5f) {}
|
||||
|
||||
float QuadraticFilter::evaluate(float x) const
|
||||
{
|
||||
if( x < 0.0f ) x = -x;
|
||||
x = fabs(x);
|
||||
if( x < 0.5f ) return 0.75f - x * x;
|
||||
if( x < 1.5f ) {
|
||||
float t = x - 1.5f;
|
||||
@ -69,22 +152,23 @@ inline static float filter_quadratic(float x)
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
// @@ Filter from tulrich.
|
||||
// support 1.0
|
||||
inline static float filter_cubic(float x)
|
||||
|
||||
CubicFilter::CubicFilter() : Filter(1.0f) {}
|
||||
|
||||
float CubicFilter::evaluate(float x) const
|
||||
{
|
||||
// f(t) = 2|t|^3 - 3|t|^2 + 1, -1 <= t <= 1
|
||||
if( x < 0.0f ) x = -x;
|
||||
x = fabs(x);
|
||||
if( x < 1.0f ) return((2.0f * x - 3.0f) * x * x + 1.0f);
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
|
||||
// @@ Paul Heckbert calls this cubic instead of spline.
|
||||
// support = 2.0
|
||||
inline static float filter_spline(float x)
|
||||
BSplineFilter::BSplineFilter() : Filter(2.0f) {}
|
||||
|
||||
float BSplineFilter::evaluate(float x) const
|
||||
{
|
||||
if( x < 0.0f ) x = -x;
|
||||
x = fabs(x);
|
||||
if( x < 1.0f ) return (4.0f + x * x * (-6.0f + x * 3.0f)) / 6.0f;
|
||||
if( x < 2.0f ) {
|
||||
float t = 2.0f - x;
|
||||
@ -93,132 +177,64 @@ inline static float filter_spline(float x)
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
/// Sinc function.
|
||||
inline float sincf( const float x )
|
||||
|
||||
MitchellFilter::MitchellFilter() : Filter(2.0f) { setParameters(1.0f/3.0f, 1.0f/3.0f); }
|
||||
|
||||
float MitchellFilter::evaluate(float x) const
|
||||
{
|
||||
if( fabs(x) < NV_EPSILON ) {
|
||||
return 1.0 ;
|
||||
//return 1.0f + x*x*(-1.0f/6.0f + x*x*1.0f/120.0f);
|
||||
}
|
||||
else {
|
||||
return sin(x) / x;
|
||||
}
|
||||
}
|
||||
|
||||
// support = 3.0
|
||||
inline static float filter_lanczos3(float x)
|
||||
{
|
||||
if( x < 0.0f ) x = -x;
|
||||
if( x < 3.0f ) return sincf(x) * sincf(x / 3.0f);
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Mitchell & Netravali's two-param cubic
|
||||
// see "Reconstruction Filters in Computer Graphics", SIGGRAPH 88
|
||||
// support = 2.0
|
||||
inline static float filter_mitchell(float x, float b, float c)
|
||||
{
|
||||
// @@ Coefficients could be precomputed.
|
||||
// @@ if b and c are fixed, these are constants.
|
||||
const float p0 = (6.0f - 2.0f * b) / 6.0f;
|
||||
const float p2 = (-18.0f + 12.0f * b + 6.0f * c) / 6.0f;
|
||||
const float p3 = (12.0f - 9.0f * b - 6.0f * c) / 6.0f;
|
||||
const float q0 = (8.0f * b + 24.0f * c) / 6.0f;
|
||||
const float q1 = (-12.0f * b - 48.0f * c) / 6.0f;
|
||||
const float q2 = (6.0f * b + 30.0f * c) / 6.0f;
|
||||
const float q3 = (-b - 6.0f * c) / 6.0f;
|
||||
|
||||
if( x < 0.0f ) x = -x;
|
||||
x = fabs(x);
|
||||
if( x < 1.0f ) return p0 + x * x * (p2 + x * p3);
|
||||
if( x < 2.0f ) return q0 + x * (q1 + x * (q2 + x * q3));
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
inline static float filter_mitchell(float x)
|
||||
void MitchellFilter::setParameters(float b, float c)
|
||||
{
|
||||
return filter_mitchell(x, 1.0f/3.0f, 1.0f/3.0f);
|
||||
}
|
||||
|
||||
// Bessel function of the first kind from Jon Blow's article.
|
||||
// http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
|
||||
// http://en.wikipedia.org/wiki/Bessel_function
|
||||
static float bessel0(float x)
|
||||
{
|
||||
const float EPSILON_RATIO = 1E-6;
|
||||
float xh, sum, pow, ds;
|
||||
int k;
|
||||
|
||||
xh = 0.5 * x;
|
||||
sum = 1.0;
|
||||
pow = 1.0;
|
||||
k = 0;
|
||||
ds = 1.0;
|
||||
while (ds > sum * EPSILON_RATIO) {
|
||||
++k;
|
||||
pow = pow * (xh / k);
|
||||
ds = pow * pow;
|
||||
sum = sum + ds;
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
/*// Alternative bessel function from Paul Heckbert.
|
||||
static float _bessel0(float x)
|
||||
{
|
||||
const float EPSILON_RATIO = 1E-6;
|
||||
float sum = 1.0f;
|
||||
float y = x * x / 4.0f;
|
||||
float t = y;
|
||||
for(int i = 2; t > EPSILON_RATIO; i++) {
|
||||
sum += t;
|
||||
t *= y / float(i * i);
|
||||
}
|
||||
return sum;
|
||||
}*/
|
||||
|
||||
// support = 1.0
|
||||
inline static float filter_kaiser(float x, float alpha)
|
||||
{
|
||||
return bessel0(alpha * sqrtf(1 - x * x)) / bessel0(alpha);
|
||||
}
|
||||
|
||||
inline static float filter_kaiser(float x)
|
||||
{
|
||||
return filter_kaiser(x, 4.0f);
|
||||
p0 = (6.0f - 2.0f * b) / 6.0f;
|
||||
p2 = (-18.0f + 12.0f * b + 6.0f * c) / 6.0f;
|
||||
p3 = (12.0f - 9.0f * b - 6.0f * c) / 6.0f;
|
||||
q0 = (8.0f * b + 24.0f * c) / 6.0f;
|
||||
q1 = (-12.0f * b - 48.0f * c) / 6.0f;
|
||||
q2 = (6.0f * b + 30.0f * c) / 6.0f;
|
||||
q3 = (-b - 6.0f * c) / 6.0f;
|
||||
}
|
||||
|
||||
|
||||
// Array of filters.
|
||||
static Filter s_filter_array[] = {
|
||||
{filter_box, 0.5f}, // Box
|
||||
{filter_triangle, 1.0f}, // Triangle
|
||||
{filter_quadratic, 1.5f}, // Quadratic
|
||||
{filter_cubic, 1.0f}, // Cubic
|
||||
{filter_spline, 2.0f}, // Spline
|
||||
{filter_lanczos3, 3.0f}, // Lanczos
|
||||
{filter_mitchell, 1.0f}, // Mitchell
|
||||
{filter_kaiser, 1.0f}, // Kaiser
|
||||
};
|
||||
LanczosFilter::LanczosFilter() : Filter(3.0f) {}
|
||||
|
||||
|
||||
inline static float sampleFilter(Filter::Function func, float x, float scale, int samples)
|
||||
float LanczosFilter::evaluate(float x) const
|
||||
{
|
||||
float sum = 0;
|
||||
|
||||
for(int s = 0; s < samples; s++)
|
||||
{
|
||||
sum += func((x + (float(s) + 0.5f) * (1.0f / float(samples))) * scale);
|
||||
}
|
||||
|
||||
return sum;
|
||||
x = fabs(x);
|
||||
if( x < 3.0f ) return sincf(PI * x) * sincf(PI * x / 3.0f);
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
|
||||
SincFilter::SincFilter(float w) : Filter(w) {}
|
||||
|
||||
} // namespace
|
||||
float SincFilter::evaluate(float x) const
|
||||
{
|
||||
return 0.0f;
|
||||
}
|
||||
|
||||
|
||||
KaiserFilter::KaiserFilter(float w) : Filter(w) { setParameters(4.0f, 1.0f); }
|
||||
|
||||
float KaiserFilter::evaluate(float x) const
|
||||
{
|
||||
const float sinc_value = sincf(PI * x * stretch);
|
||||
float t = x / m_width;
|
||||
if (t * t <= 1.0f)
|
||||
return sinc_value * bessel0(alpha * sqrtf(1 - t * t)) / bessel0(alpha);
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
void KaiserFilter::setParameters(float alpha, float stretch)
|
||||
{
|
||||
this->alpha = alpha;
|
||||
this->stretch = stretch;
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -257,7 +273,7 @@ void Kernel1::normalize()
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#if 0
|
||||
/// Init 1D filter.
|
||||
void Kernel1::initFilter(Filter::Enum f, int samples /*= 1*/)
|
||||
{
|
||||
@ -334,7 +350,7 @@ void Kernel1::initMitchell(float b, float c)
|
||||
|
||||
normalize();
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/// Print the kernel for debugging purposes.
|
||||
void Kernel1::debugPrint()
|
||||
@ -585,7 +601,7 @@ static bool isMonoPhase(float w)
|
||||
}
|
||||
|
||||
|
||||
|
||||
/*
|
||||
PolyphaseKernel::PolyphaseKernel(float w, uint l) :
|
||||
m_width(w),
|
||||
m_size(ceilf(w) + 1),
|
||||
@ -603,6 +619,44 @@ PolyphaseKernel::PolyphaseKernel(const PolyphaseKernel & k) :
|
||||
m_data = new float[m_size * m_length];
|
||||
memcpy(m_data, k.m_data, sizeof(float) * m_size * m_length);
|
||||
}
|
||||
*/
|
||||
|
||||
PolyphaseKernel::PolyphaseKernel(const Filter & f, uint srcLength, uint dstLength)
|
||||
{
|
||||
float scale = float(dstLength) / float(srcLength);
|
||||
float iscale = 1.0f / scale;
|
||||
|
||||
m_length = dstLength;
|
||||
m_width = f.width() * iscale;
|
||||
m_windowSize = ceilf(m_width * 2) + 1;
|
||||
|
||||
m_data = new float[m_windowSize * m_length];
|
||||
memset(m_data, 0, sizeof(float) * m_windowSize * m_length);
|
||||
|
||||
for (uint i = 0; i < m_length; i++)
|
||||
{
|
||||
const float center = (0.5f + i) * iscale;
|
||||
|
||||
int left = floor(center - m_width);
|
||||
int right = ceil(center + m_width);
|
||||
nvCheck(right - left <= (int)m_windowSize);
|
||||
|
||||
float total = 0.0f;
|
||||
for (int j = 0; j < m_windowSize; j++)
|
||||
{
|
||||
float sample = f.sample(left + j - center, scale, 40);
|
||||
|
||||
m_data[i * m_windowSize + j] = sample;
|
||||
total += sample;
|
||||
}
|
||||
|
||||
// normalize weights.
|
||||
for (int j = 0; j < m_windowSize; j++)
|
||||
{
|
||||
m_data[i * m_windowSize + j] /= total;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
PolyphaseKernel::~PolyphaseKernel()
|
||||
{
|
||||
@ -610,91 +664,15 @@ PolyphaseKernel::~PolyphaseKernel()
|
||||
}
|
||||
|
||||
|
||||
/* @@ Should we precompute left & right?
|
||||
|
||||
// scale factor
|
||||
double dScale = double(uDstSize) / double(uSrcSize);
|
||||
|
||||
if(dScale < 1.0) {
|
||||
// minification
|
||||
dWidth = dFilterWidth / dScale;
|
||||
dFScale = dScale;
|
||||
} else {
|
||||
// magnification
|
||||
dWidth= dFilterWidth;
|
||||
}
|
||||
|
||||
// window size is the number of sampled pixels
|
||||
m_WindowSize = 2 * (int)ceil(dWidth) + 1;
|
||||
m_LineLength = uDstSize;
|
||||
|
||||
// offset for discrete to continuous coordinate conversion
|
||||
double dOffset = (0.5 / dScale) - 0.5;
|
||||
|
||||
for(u = 0; u < m_LineLength; u++) {
|
||||
// scan through line of contributions
|
||||
double dCenter = (double)u / dScale + dOffset; // reverse mapping
|
||||
// find the significant edge points that affect the pixel
|
||||
int iLeft = MAX (0, (int)floor (dCenter - dWidth));
|
||||
int iRight = MIN ((int)ceil (dCenter + dWidth), int(uSrcSize) - 1);
|
||||
|
||||
...
|
||||
}
|
||||
*/
|
||||
|
||||
void PolyphaseKernel::initFilter(Filter::Enum f, int samples/*= 1*/)
|
||||
{
|
||||
nvCheck(f < Filter::Num);
|
||||
|
||||
float (* filter_function)(float) = s_filter_array[f].function;
|
||||
const float support = s_filter_array[f].support;
|
||||
|
||||
const float half_width = m_width / 2;
|
||||
const float scale = support / half_width;
|
||||
|
||||
for (uint j = 0; j < m_length; j++)
|
||||
{
|
||||
const float phase = frac(m_width * j);
|
||||
const float offset = half_width + phase;
|
||||
|
||||
nvDebug("%d: ", j);
|
||||
|
||||
float total = 0.0f;
|
||||
for (uint i = 0; i < m_size; i++)
|
||||
{
|
||||
float sample = sampleFilter(filter_function, i - offset, scale, samples);
|
||||
|
||||
nvDebug("(%5.3f | %d) ", sample, j + i - m_size/2);
|
||||
|
||||
m_data[j * m_size + i] = sample;
|
||||
total += sample;
|
||||
}
|
||||
|
||||
nvDebug("\n");
|
||||
|
||||
// normalize weights.
|
||||
for (uint i = 0; i < m_size; i++)
|
||||
{
|
||||
m_data[j * m_size + i] /= total;
|
||||
//m_data[j * m_size + i] /= samples;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void PolyphaseKernel::initKaiser(float alpha /*= 4.0f*/, float stretch /*= 1.0f*/)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
/// Print the kernel for debugging purposes.
|
||||
void PolyphaseKernel::debugPrint()
|
||||
void PolyphaseKernel::debugPrint() const
|
||||
{
|
||||
for (uint j = 0; j < m_length; j++)
|
||||
for (uint i = 0; i < m_length; i++)
|
||||
{
|
||||
nvDebug("%d: ", j);
|
||||
for (uint i = 0; i < m_size; i++)
|
||||
nvDebug("%d: ", i);
|
||||
for (uint j = 0; j < m_windowSize; j++)
|
||||
{
|
||||
nvDebug(" %6.4f", m_data[j * m_size + i]);
|
||||
nvDebug(" %6.4f", m_data[i * m_windowSize + j]);
|
||||
}
|
||||
nvDebug("\n");
|
||||
}
|
||||
|
@ -9,29 +9,109 @@ namespace nv
|
||||
{
|
||||
class Vector4;
|
||||
|
||||
/// A filter function.
|
||||
struct Filter
|
||||
/// Base filter class.
|
||||
class Filter
|
||||
{
|
||||
// Standard filters.
|
||||
enum Enum
|
||||
{
|
||||
Box,
|
||||
Triangle,
|
||||
Quadratic, // Bell
|
||||
Cubic,
|
||||
Spline,
|
||||
Lanczos,
|
||||
Mitchell,
|
||||
Kaiser, // Kaiser-windowed sinc filter
|
||||
Num
|
||||
};
|
||||
|
||||
typedef float (* Function)(float);
|
||||
public:
|
||||
NVIMAGE_API Filter(float width);
|
||||
|
||||
Function function;
|
||||
float support;
|
||||
NVIMAGE_API float width() const { return m_width; }
|
||||
NVIMAGE_API float sample(float x, float scale, int samples) const;
|
||||
|
||||
virtual float evaluate(float x) const = 0;
|
||||
|
||||
protected:
|
||||
const float m_width;
|
||||
};
|
||||
|
||||
// Box filter.
|
||||
class BoxFilter : public Filter
|
||||
{
|
||||
public:
|
||||
NVIMAGE_API BoxFilter();
|
||||
NVIMAGE_API BoxFilter(float width);
|
||||
NVIMAGE_API virtual float evaluate(float x) const;
|
||||
};
|
||||
|
||||
// Triangle (bilinear/tent) filter.
|
||||
class TriangleFilter : public Filter
|
||||
{
|
||||
public:
|
||||
NVIMAGE_API TriangleFilter();
|
||||
NVIMAGE_API TriangleFilter(float width);
|
||||
NVIMAGE_API virtual float evaluate(float x) const;
|
||||
};
|
||||
|
||||
// Quadratic (bell) filter.
|
||||
class QuadraticFilter : public Filter
|
||||
{
|
||||
public:
|
||||
NVIMAGE_API QuadraticFilter();
|
||||
NVIMAGE_API virtual float evaluate(float x) const;
|
||||
};
|
||||
|
||||
// Cubic filter from Thatcher Ulrich.
|
||||
class CubicFilter : public Filter
|
||||
{
|
||||
public:
|
||||
NVIMAGE_API CubicFilter();
|
||||
NVIMAGE_API virtual float evaluate(float x) const;
|
||||
};
|
||||
|
||||
// Cubic b-spline filter from Paul Heckbert.
|
||||
class BSplineFilter : public Filter
|
||||
{
|
||||
public:
|
||||
NVIMAGE_API BSplineFilter();
|
||||
NVIMAGE_API virtual float evaluate(float x) const;
|
||||
};
|
||||
|
||||
/// Mitchell & Netravali's two-param cubic
|
||||
/// @see "Reconstruction Filters in Computer Graphics", SIGGRAPH 88
|
||||
class MitchellFilter : public Filter
|
||||
{
|
||||
public:
|
||||
NVIMAGE_API MitchellFilter();
|
||||
NVIMAGE_API virtual float evaluate(float x) const;
|
||||
|
||||
NVIMAGE_API void setParameters(float a, float b);
|
||||
|
||||
private:
|
||||
float p0, p2, p3;
|
||||
float q0, q1, q2, q3;
|
||||
};
|
||||
|
||||
// Lanczos3 filter.
|
||||
class LanczosFilter : public Filter
|
||||
{
|
||||
public:
|
||||
NVIMAGE_API LanczosFilter();
|
||||
NVIMAGE_API virtual float evaluate(float x) const;
|
||||
};
|
||||
|
||||
// Sinc filter.
|
||||
class SincFilter : public Filter
|
||||
{
|
||||
public:
|
||||
NVIMAGE_API SincFilter(float w);
|
||||
NVIMAGE_API virtual float evaluate(float x) const;
|
||||
};
|
||||
|
||||
// Kaiser filter.
|
||||
class KaiserFilter : public Filter
|
||||
{
|
||||
public:
|
||||
NVIMAGE_API KaiserFilter(float w);
|
||||
NVIMAGE_API virtual float evaluate(float x) const;
|
||||
|
||||
NVIMAGE_API void setParameters(float a, float stretch);
|
||||
|
||||
private:
|
||||
float alpha;
|
||||
float stretch;
|
||||
};
|
||||
|
||||
|
||||
|
||||
/// A 1D kernel. Used to precompute filter weights.
|
||||
class Kernel1
|
||||
@ -50,11 +130,12 @@ namespace nv
|
||||
uint windowSize() const {
|
||||
return m_windowSize;
|
||||
}
|
||||
|
||||
/*
|
||||
NVIMAGE_API void initFilter(Filter::Enum filter, int samples = 1);
|
||||
NVIMAGE_API void initSinc(float stretch = 1);
|
||||
NVIMAGE_API void initKaiser(float alpha = 4.0f, float stretch = 1.0f, int sampes = 1);
|
||||
NVIMAGE_API void initMitchell(float b = 1.0f/3.0f, float c = 1.0f/3.0f);
|
||||
*/
|
||||
|
||||
NVIMAGE_API void debugPrint();
|
||||
|
||||
@ -95,39 +176,39 @@ namespace nv
|
||||
float * m_data;
|
||||
};
|
||||
|
||||
|
||||
/// A 1D polyphase kernel
|
||||
class PolyphaseKernel
|
||||
{
|
||||
NV_FORBID_COPY(PolyphaseKernel)
|
||||
public:
|
||||
NVIMAGE_API PolyphaseKernel(float width, uint lineLength);
|
||||
NVIMAGE_API PolyphaseKernel(const PolyphaseKernel & k);
|
||||
NVIMAGE_API PolyphaseKernel(const Filter & f, uint srcLength, uint dstLength);
|
||||
NVIMAGE_API ~PolyphaseKernel();
|
||||
|
||||
float valueAt(uint column, uint x) const {
|
||||
return m_data[column * m_size + x];
|
||||
}
|
||||
|
||||
float width() const {
|
||||
return m_width;
|
||||
}
|
||||
|
||||
uint windowSize() const {
|
||||
return m_size;
|
||||
return m_windowSize;
|
||||
}
|
||||
|
||||
uint length() const {
|
||||
return m_length;
|
||||
}
|
||||
|
||||
NVIMAGE_API void initFilter(Filter::Enum filter, int samples = 1);
|
||||
NVIMAGE_API void initKaiser(float alpha = 4.0f, float stretch = 0.5f);
|
||||
|
||||
NVIMAGE_API void debugPrint();
|
||||
|
||||
float width() const {
|
||||
return m_width;
|
||||
}
|
||||
|
||||
float valueAt(uint column, uint x) const {
|
||||
nvDebugCheck(column < m_length);
|
||||
nvDebugCheck(x < m_windowSize);
|
||||
return m_data[column * m_windowSize + x];
|
||||
}
|
||||
|
||||
NVIMAGE_API void debugPrint() const;
|
||||
|
||||
private:
|
||||
const float m_width;
|
||||
const uint m_size;
|
||||
const uint m_length;
|
||||
uint m_windowSize;
|
||||
uint m_length;
|
||||
float m_width;
|
||||
float * m_data;
|
||||
};
|
||||
|
||||
|
@ -535,7 +535,7 @@ FloatImage * FloatImage::fastDownSample() const
|
||||
return dst_image.release();
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
/// Downsample applying a 1D kernel separately in each dimension.
|
||||
FloatImage * FloatImage::downSample(const Kernel1 & kernel, WrapMode wm) const
|
||||
{
|
||||
@ -588,59 +588,83 @@ FloatImage * FloatImage::downSample(const Kernel1 & kernel, uint w, uint h, Wrap
|
||||
|
||||
return dst_image.release();
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
/// Downsample applying a 1D kernel separately in each dimension.
|
||||
FloatImage * FloatImage::downSample(uint w, uint h, WrapMode wm) const
|
||||
FloatImage * FloatImage::downSample(const Filter & filter, WrapMode wm) const
|
||||
{
|
||||
// Build polyphase kernels.
|
||||
const float xscale = float(m_width) / float(w);
|
||||
const float yscale = float(m_height) / float(h);
|
||||
|
||||
int kw = 1;
|
||||
float xwidth = kw * xscale;
|
||||
float ywidth = kw * yscale;
|
||||
|
||||
PolyphaseKernel xkernel(xwidth, w);
|
||||
PolyphaseKernel ykernel(ywidth, h);
|
||||
|
||||
xkernel.initFilter(Filter::Box, 32);
|
||||
ykernel.initFilter(Filter::Box, 32);
|
||||
// xkernel.initKaiser(4, 1.0f / xscale);
|
||||
// ykernel.initKaiser(4, 1.0f / yscale);
|
||||
|
||||
xkernel.debugPrint();
|
||||
|
||||
// @@ Select fastest filtering order:
|
||||
// w * m_height <= h * m_width -> XY, else -> YX
|
||||
const uint w = max(1, m_width / 2);
|
||||
const uint h = max(1, m_height / 2);
|
||||
|
||||
return downSample(filter, w, h, wm);
|
||||
}
|
||||
|
||||
/// Downsample applying a 1D kernel separately in each dimension.
|
||||
FloatImage * FloatImage::downSample(const Filter & filter, uint w, uint h, WrapMode wm) const
|
||||
{
|
||||
// @@ Use monophase filters when frac(m_width / w) == 0
|
||||
|
||||
PolyphaseKernel xkernel(filter, m_width, w);
|
||||
PolyphaseKernel ykernel(filter, m_height, h);
|
||||
|
||||
AutoPtr<FloatImage> tmp_image( new FloatImage() );
|
||||
tmp_image->allocate(m_componentNum, w, m_height);
|
||||
|
||||
AutoPtr<FloatImage> dst_image( new FloatImage() );
|
||||
dst_image->allocate(m_componentNum, w, h);
|
||||
|
||||
Array<float> tmp_column(h);
|
||||
tmp_column.resize(h);
|
||||
|
||||
for (uint c = 0; c < m_componentNum; c++)
|
||||
|
||||
// @@ Select fastest filtering order:
|
||||
//if (w * m_height <= h * m_width)
|
||||
{
|
||||
float * tmp_channel = tmp_image->channel(c);
|
||||
tmp_image->allocate(m_componentNum, w, m_height);
|
||||
dst_image->allocate(m_componentNum, w, h);
|
||||
|
||||
for(uint y = 0; y < m_height; y++) {
|
||||
this->applyKernelHorizontal(&xkernel, xscale, y, c, wm, tmp_channel + y * w);
|
||||
}
|
||||
Array<float> tmp_column(h);
|
||||
tmp_column.resize(h);
|
||||
|
||||
float * dst_channel = dst_image->channel(c);
|
||||
|
||||
for (uint x = 0; x < w; x++) {
|
||||
tmp_image->applyKernelVertical(&ykernel, yscale, x, c, wm, tmp_column.unsecureBuffer());
|
||||
for (uint c = 0; c < m_componentNum; c++)
|
||||
{
|
||||
float * tmp_channel = tmp_image->channel(c);
|
||||
|
||||
for(uint y = 0; y < h; y++) {
|
||||
dst_channel[y * w + x] = tmp_column[y];
|
||||
for (uint y = 0; y < m_height; y++) {
|
||||
this->applyKernelHorizontal(xkernel, y, c, wm, tmp_channel + y * w);
|
||||
}
|
||||
|
||||
float * dst_channel = dst_image->channel(c);
|
||||
|
||||
for (uint x = 0; x < w; x++) {
|
||||
tmp_image->applyKernelVertical(ykernel, x, c, wm, tmp_column.unsecureBuffer());
|
||||
|
||||
for (uint y = 0; y < h; y++) {
|
||||
dst_channel[y * w + x] = tmp_column[y];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/*else
|
||||
{
|
||||
tmp_image->allocate(m_componentNum, m_width, h);
|
||||
dst_image->allocate(m_componentNum, w, h);
|
||||
|
||||
Array<float> tmp_column(h);
|
||||
tmp_column.resize(h);
|
||||
|
||||
for (uint c = 0; c < m_componentNum; c++)
|
||||
{
|
||||
float * tmp_channel = tmp_image->channel(c);
|
||||
|
||||
for (uint x = 0; x < w; x++) {
|
||||
tmp_image->applyKernelVertical(ykernel, x, c, wm, tmp_column.unsecureBuffer());
|
||||
|
||||
for (uint y = 0; y < h; y++) {
|
||||
tmp_channel[y * w + x] = tmp_column[y];
|
||||
}
|
||||
}
|
||||
|
||||
float * dst_channel = dst_image->channel(c);
|
||||
|
||||
for (uint y = 0; y < m_height; y++) {
|
||||
this->applyKernelHorizontal(xkernel, y, c, wm, dst_channel + y * w);
|
||||
}
|
||||
}
|
||||
}*/
|
||||
|
||||
return dst_image.release();
|
||||
}
|
||||
@ -722,15 +746,46 @@ float FloatImage::applyKernelHorizontal(const Kernel1 * k, int x, int y, int c,
|
||||
|
||||
|
||||
/// Apply 1D vertical kernel at the given coordinates and return result.
|
||||
void FloatImage::applyKernelVertical(const PolyphaseKernel * k, float scale, int x, int c, WrapMode wm, float * output) const
|
||||
void FloatImage::applyKernelVertical(const PolyphaseKernel & k, int x, int c, WrapMode wm, float * output) const
|
||||
{
|
||||
nvDebugCheck(k != NULL);
|
||||
|
||||
uint length = k.length();
|
||||
float scale = float(length) / float(m_height);
|
||||
float iscale = 1.0f / scale;
|
||||
|
||||
float width = k.width();
|
||||
float windowSize = k.windowSize();
|
||||
|
||||
const float * channel = this->channel(c);
|
||||
|
||||
for (uint i = 0; i < length; i++)
|
||||
{
|
||||
const float center = (0.5f + i) * iscale;
|
||||
|
||||
int left = floor(center - width);
|
||||
int right = ceil(center + width);
|
||||
|
||||
nvCheck(right - left <= windowSize);
|
||||
|
||||
float sum = 0;
|
||||
for (int j = 0; j < windowSize; ++j)
|
||||
{
|
||||
const int idx = this->index(x, j+left, wm);
|
||||
|
||||
sum += k.valueAt(i, j) * channel[idx];
|
||||
}
|
||||
|
||||
output[i] = sum;
|
||||
}
|
||||
|
||||
/*
|
||||
const float kernelWidth = k->width();
|
||||
const float kernelOffset = kernelWidth * 0.5f;
|
||||
const int kernelLength = k->length();
|
||||
const int kernelWindow = k->windowSize();
|
||||
|
||||
//const float offset = 0.5f * scale * (1 - kw);
|
||||
const float offset = (0.5f * scale) - kernelOffset;
|
||||
|
||||
const float * channel = this->channel(c);
|
||||
|
||||
for (int y = 0; y < kernelLength; y++)
|
||||
@ -738,7 +793,7 @@ void FloatImage::applyKernelVertical(const PolyphaseKernel * k, float scale, int
|
||||
float sum = 0.0f;
|
||||
for (int i = 0; i < kernelWindow; i++)
|
||||
{
|
||||
const int src_y = int(y * scale) + i;
|
||||
const int src_y = int(y * scale + offset) + i;
|
||||
const int idx = this->index(x, src_y, wm);
|
||||
|
||||
sum += k->valueAt(y, i) * channel[idx];
|
||||
@ -746,18 +801,48 @@ void FloatImage::applyKernelVertical(const PolyphaseKernel * k, float scale, int
|
||||
|
||||
output[y] = sum;
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
/// Apply 1D horizontal kernel at the given coordinates and return result.
|
||||
void FloatImage::applyKernelHorizontal(const PolyphaseKernel * k, float scale, int y, int c, WrapMode wm, float * output) const
|
||||
void FloatImage::applyKernelHorizontal(const PolyphaseKernel & k, int y, int c, WrapMode wm, float * output) const
|
||||
{
|
||||
nvDebugCheck(k != NULL);
|
||||
|
||||
uint length = k.length();
|
||||
float scale = float(length) / float(m_width);
|
||||
float iscale = 1.0f / scale;
|
||||
|
||||
float width = k.width();
|
||||
float windowSize = k.windowSize();
|
||||
|
||||
const float * channel = this->channel(c);
|
||||
|
||||
for (uint i = 0; i < length; i++)
|
||||
{
|
||||
const float center = (0.5f + i) * iscale;
|
||||
|
||||
int left = floor(center - width);
|
||||
int right = ceil(center + width);
|
||||
nvCheck(right - left <= (int)windowSize);
|
||||
|
||||
float sum = 0;
|
||||
for (int j = 0; j < windowSize; ++j)
|
||||
{
|
||||
const int idx = this->index(left + j, y, wm);
|
||||
|
||||
sum += k.valueAt(i, j) * channel[idx];
|
||||
}
|
||||
|
||||
output[i] = sum;
|
||||
}
|
||||
|
||||
/*
|
||||
const float kernelWidth = k->width();
|
||||
const float kernelOffset = kernelWidth * 0.5f;
|
||||
const int kernelLength = k->length();
|
||||
const int kernelWindow = k->windowSize();
|
||||
|
||||
|
||||
const float offset = (0.5f * scale) - kernelOffset;
|
||||
|
||||
const float * channel = this->channel(c);
|
||||
|
||||
for (int x = 0; x < kernelLength; x++)
|
||||
@ -765,7 +850,7 @@ void FloatImage::applyKernelHorizontal(const PolyphaseKernel * k, float scale, i
|
||||
float sum = 0.0f;
|
||||
for (int e = 0; e < kernelWindow; e++)
|
||||
{
|
||||
const int src_x = int(x * scale) + e;
|
||||
const int src_x = int(x * scale + offset) + e;
|
||||
const int idx = this->index(src_x, y, wm);
|
||||
|
||||
sum += k->valueAt(x, e) * channel[idx];
|
||||
@ -773,5 +858,6 @@ void FloatImage::applyKernelHorizontal(const PolyphaseKernel * k, float scale, i
|
||||
|
||||
output[x] = sum;
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
|
@ -10,6 +10,7 @@
|
||||
namespace nv
|
||||
{
|
||||
class Image;
|
||||
class Filter;
|
||||
class Kernel1;
|
||||
class Kernel2;
|
||||
class PolyphaseKernel;
|
||||
@ -61,18 +62,18 @@ public:
|
||||
|
||||
|
||||
NVIMAGE_API FloatImage * fastDownSample() const;
|
||||
NVIMAGE_API FloatImage * downSample(const Kernel1 & filter, WrapMode wm) const;
|
||||
NVIMAGE_API FloatImage * downSample(const Kernel1 & filter, uint w, uint h, WrapMode wm) const;
|
||||
|
||||
// experimental polyphase filter:
|
||||
NVIMAGE_API FloatImage * downSample(uint w, uint h, WrapMode wm) const;
|
||||
NVIMAGE_API FloatImage * downSample(const Filter & filter, WrapMode wm) const;
|
||||
NVIMAGE_API FloatImage * downSample(const Filter & filter, uint w, uint h, WrapMode wm) const;
|
||||
|
||||
//NVIMAGE_API FloatImage * downSample(const Kernel1 & filter, WrapMode wm) const;
|
||||
//NVIMAGE_API FloatImage * downSample(const Kernel1 & filter, uint w, uint h, WrapMode wm) const;
|
||||
//@}
|
||||
|
||||
NVIMAGE_API float applyKernel(const Kernel2 * k, int x, int y, int c, WrapMode wm) const;
|
||||
NVIMAGE_API float applyKernelVertical(const Kernel1 * k, int x, int y, int c, WrapMode wm) const;
|
||||
NVIMAGE_API float applyKernelHorizontal(const Kernel1 * k, int x, int y, int c, WrapMode wm) const;
|
||||
NVIMAGE_API void applyKernelVertical(const PolyphaseKernel * k, float scale, int x, int c, WrapMode wm, float * output) const;
|
||||
NVIMAGE_API void applyKernelHorizontal(const PolyphaseKernel * k, float scale, int y, int c, WrapMode wm, float * output) const;
|
||||
NVIMAGE_API void applyKernelVertical(const PolyphaseKernel & k, int x, int c, WrapMode wm, float * output) const;
|
||||
NVIMAGE_API void applyKernelHorizontal(const PolyphaseKernel & k, int y, int c, WrapMode wm, float * output) const;
|
||||
|
||||
|
||||
uint width() const { return m_width; }
|
||||
@ -225,17 +226,16 @@ inline uint FloatImage::indexRepeat(int x, int y) const
|
||||
return repeat_remainder(y, m_height) * m_width + repeat_remainder(x, m_width);
|
||||
}
|
||||
|
||||
// @@ This could be way more efficient.
|
||||
inline uint FloatImage::indexMirror(int x, int y) const
|
||||
{
|
||||
while ((x < 0) || (x > (m_width - 1))) {
|
||||
if (x < 0) x = -x;
|
||||
if (x >= m_width) x = m_width + m_width - x - 1;
|
||||
x = abs(x);
|
||||
while (x >= m_width) {
|
||||
x = m_width + m_width - x - 2;
|
||||
}
|
||||
|
||||
while ((y < 0) || (y > (m_height - 1))) {
|
||||
if (y < 0) y = -y;
|
||||
if (y >= m_height) y = m_height + m_height - y - 1;
|
||||
y = abs(y);
|
||||
while (y >= m_height) {
|
||||
y = m_height + m_height - y - 2;
|
||||
}
|
||||
|
||||
return index(x, y);
|
||||
|
@ -325,15 +325,15 @@ static FloatImage * createMipmap(const FloatImage * floatImage, const InputOptio
|
||||
}
|
||||
else if (inputOptions.mipmapFilter == MipmapFilter_Triangle)
|
||||
{
|
||||
Kernel1 kernel(4);
|
||||
kernel.initFilter(Filter::Triangle);
|
||||
result = floatImage->downSample(kernel, (FloatImage::WrapMode)inputOptions.wrapMode);
|
||||
TriangleFilter filter;
|
||||
result = floatImage->downSample(filter, (FloatImage::WrapMode)inputOptions.wrapMode);
|
||||
}
|
||||
else /*if (inputOptions.mipmapFilter == MipmapFilter_Kaiser)*/
|
||||
{
|
||||
Kernel1 kernel(inputOptions.kaiserWidth);
|
||||
kernel.initKaiser(inputOptions.kaiserAlpha, inputOptions.kaiserStretch);
|
||||
result = floatImage->downSample(kernel, (FloatImage::WrapMode)inputOptions.wrapMode);
|
||||
nvDebugCheck(inputOptions.mipmapFilter == MipmapFilter_Kaiser);
|
||||
KaiserFilter filter(inputOptions.kaiserWidth);
|
||||
filter.setParameters(inputOptions.kaiserAlpha, inputOptions.kaiserStretch);
|
||||
result = floatImage->downSample(filter, (FloatImage::WrapMode)inputOptions.wrapMode);
|
||||
}
|
||||
|
||||
// Normalize mipmap.
|
||||
|
@ -68,7 +68,7 @@ static bool loadImage(nv::Image & image, const char * fileName)
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
MyAssertHandler assertHandler;
|
||||
//MyAssertHandler assertHandler;
|
||||
MyMessageHandler messageHandler;
|
||||
|
||||
float scale = 0.5f;
|
||||
@ -122,7 +122,8 @@ int main(int argc, char *argv[])
|
||||
// k.initKaiser(4, scale, 20);
|
||||
// nv::AutoPtr<nv::FloatImage> fresult(fimage.downSample(k, image.width() * scale, image.height() * scale, nv::FloatImage::WrapMode_Clamp));
|
||||
|
||||
nv::AutoPtr<nv::FloatImage> fresult(fimage.downSample(image.width() * scale, image.height() * scale, nv::FloatImage::WrapMode_Mirror));
|
||||
nv::BoxFilter filter;
|
||||
nv::AutoPtr<nv::FloatImage> fresult(fimage.downSample(filter, image.width() * scale, image.height() * scale, nv::FloatImage::WrapMode_Mirror));
|
||||
|
||||
|
||||
nv::AutoPtr<nv::Image> result(fresult->createImageGammaCorrect(1.0));
|
||||
|
Loading…
Reference in New Issue
Block a user