Add cluster fit implementation based on squish.
This commit is contained in:
parent
af5595c845
commit
0bb3011f7f
614
src/nvtt/ClusterFit.cpp
Normal file
614
src/nvtt/ClusterFit.cpp
Normal file
@ -0,0 +1,614 @@
|
||||
/* -----------------------------------------------------------------------------
|
||||
|
||||
Copyright (c) 2006 Simon Brown si@sjbrown.co.uk
|
||||
Copyright (c) 2006 Ignacio Castano icastano@nvidia.com
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining
|
||||
a copy of this software and associated documentation files (the
|
||||
"Software"), to deal in the Software without restriction, including
|
||||
without limitation the rights to use, copy, modify, merge, publish,
|
||||
distribute, sublicense, and/or sell copies of the Software, and to
|
||||
permit persons to whom the Software is furnished to do so, subject to
|
||||
the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included
|
||||
in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
-------------------------------------------------------------------------- */
|
||||
|
||||
#include "ClusterFit.h"
|
||||
#include "nvmath/Fitting.h"
|
||||
#include "nvimage/ColorBlock.h"
|
||||
|
||||
using namespace nv;
|
||||
|
||||
ClusterFit::ClusterFit()
|
||||
{
|
||||
}
|
||||
|
||||
void ClusterFit::setColourSet(const ColorSet * set)
|
||||
{
|
||||
// initialise the best error
|
||||
#if NVTT_USE_SIMD
|
||||
m_besterror = SimdVector( FLT_MAX );
|
||||
Vector3 metric = m_metric.toVector3();
|
||||
#else
|
||||
m_besterror = FLT_MAX;
|
||||
Vector3 metric = m_metric;
|
||||
#endif
|
||||
|
||||
// cache some values
|
||||
count = set->count;
|
||||
|
||||
Vector3 values[16];
|
||||
for (uint i = 0; i < count; i++)
|
||||
{
|
||||
values[i] = set->colors[i].xyz();
|
||||
}
|
||||
|
||||
Vector3 principle = Fit::computePrincipalComponent(count, values, set->weights, metric);
|
||||
|
||||
|
||||
// build the list of values
|
||||
float dps[16];
|
||||
for (uint i = 0; i < count; ++i)
|
||||
{
|
||||
dps[i] = dot(values[i], principle);
|
||||
m_order[i] = i;
|
||||
}
|
||||
|
||||
// stable sort
|
||||
for (uint i = 0; i < count; ++i)
|
||||
{
|
||||
for (uint j = i; j > 0 && dps[j] < dps[j - 1]; --j)
|
||||
{
|
||||
swap( dps[j], dps[j - 1] );
|
||||
swap( m_order[j], m_order[j - 1] );
|
||||
}
|
||||
}
|
||||
|
||||
// weight all the points
|
||||
#if NVTT_USE_SIMD
|
||||
SimdVector const* unweighted = set->GetPointsSimd();
|
||||
SimdVector const* weights = set->GetWeightsSimd();
|
||||
m_xxsum = SimdVector( 0.0f );
|
||||
m_xsum = SimdVector( 0.0f );
|
||||
#else
|
||||
Vector3 const* unweighted = values;
|
||||
float const* weights = set->weights;
|
||||
m_xxsum = Vector3(0.0f);
|
||||
m_xsum = Vector3(0.0f);
|
||||
m_wsum = 0.0f;
|
||||
#endif
|
||||
|
||||
for (uint i = 0; i < count; ++i)
|
||||
{
|
||||
int p = m_order[i];
|
||||
m_weighted[i] = weights[p] * unweighted[p];
|
||||
m_xxsum += m_weighted[i] * m_weighted[i];
|
||||
m_xsum += m_weighted[i];
|
||||
#if !NVTT_USE_SIMD
|
||||
m_weights[i] = weights[p];
|
||||
m_wsum += m_weights[i];
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ClusterFit::setMetric(Vector4::Arg w)
|
||||
{
|
||||
#if NVTT_USE_SIMD
|
||||
m_metric = SimdVector(w);
|
||||
#else
|
||||
m_metric = w.xyz();
|
||||
#endif
|
||||
m_metricSqr = m_metric * m_metric;
|
||||
}
|
||||
|
||||
float ClusterFit::bestError() const
|
||||
{
|
||||
#if NVTT_USE_SIMD
|
||||
SimdVector x = m_xxsum * m_metricSqr;
|
||||
SimdVector error = m_besterror + x.splatX() + x.splatY() + x.splatZ();
|
||||
return error.toFloat();
|
||||
#else
|
||||
return m_besterror + dot(m_xxsum, m_metricSqr);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
#if NVTT_USE_SIMD
|
||||
|
||||
bool ClusterFit::compress3( Vector3 * start, Vector3 * end )
|
||||
{
|
||||
int const count = m_colours->count;
|
||||
SimdVector const one = SimdVector(1.0f);
|
||||
SimdVector const zero = SimdVector(0.0f);
|
||||
SimdVector const half(0.5f, 0.5f, 0.5f, 0.25f);
|
||||
SimdVector const two = SimdVector(2.0);
|
||||
SimdVector const grid( 31.0f, 63.0f, 31.0f, 0.0f );
|
||||
SimdVector const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f );
|
||||
|
||||
// declare variables
|
||||
SimdVector beststart = SimdVector( 0.0f );
|
||||
SimdVector bestend = SimdVector( 0.0f );
|
||||
SimdVector besterror = SimdVector( FLT_MAX );
|
||||
|
||||
SimdVector x0 = zero;
|
||||
|
||||
int b0 = 0, b1 = 0;
|
||||
|
||||
// check all possible clusters for this total order
|
||||
for( int c0 = 0; c0 <= count; c0++)
|
||||
{
|
||||
SimdVector x1 = zero;
|
||||
|
||||
for( int c1 = 0; c1 <= count-c0; c1++)
|
||||
{
|
||||
SimdVector const x2 = m_xsum - x1 - x0;
|
||||
|
||||
//Vector3 const alphax_sum = x0 + x1 * 0.5f;
|
||||
//float const alpha2_sum = w0 + w1 * 0.25f;
|
||||
SimdVector const alphax_sum = multiplyAdd(x1, half, x0); // alphax_sum, alpha2_sum
|
||||
SimdVector const alpha2_sum = alphax_sum.splatW();
|
||||
|
||||
//Vector3 const betax_sum = x2 + x1 * 0.5f;
|
||||
//float const beta2_sum = w2 + w1 * 0.25f;
|
||||
SimdVector const betax_sum = multiplyAdd(x1, half, x2); // betax_sum, beta2_sum
|
||||
SimdVector const beta2_sum = betax_sum.splatW();
|
||||
|
||||
//float const alphabeta_sum = w1 * 0.25f;
|
||||
SimdVector const alphabeta_sum = (x1 * half).splatW(); // alphabeta_sum
|
||||
|
||||
// float const factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
|
||||
SimdVector const factor = reciprocal( negativeMultiplySubtract(alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum) );
|
||||
|
||||
SimdVector a = negativeMultiplySubtract(betax_sum, alphabeta_sum, alphax_sum*beta2_sum) * factor;
|
||||
SimdVector b = negativeMultiplySubtract(alphax_sum, alphabeta_sum, betax_sum*alpha2_sum) * factor;
|
||||
|
||||
// clamp to the grid
|
||||
a = min( one, max( zero, a ) );
|
||||
b = min( one, max( zero, b ) );
|
||||
a = truncate( multiplyAdd( grid, a, half ) ) * gridrcp;
|
||||
b = truncate( multiplyAdd( grid, b, half ) ) * gridrcp;
|
||||
|
||||
// compute the error (we skip the constant xxsum)
|
||||
SimdVector e1 = multiplyAdd( a*a, alpha2_sum, b*b*beta2_sum );
|
||||
SimdVector e2 = negativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum );
|
||||
SimdVector e3 = negativeMultiplySubtract( b, betax_sum, e2 );
|
||||
SimdVector e4 = multiplyAdd( two, e3, e1 );
|
||||
|
||||
// apply the metric to the error term
|
||||
SimdVector e5 = e4 * m_metricSqr;
|
||||
SimdVector error = e5.splatX() + e5.splatY() + e5.splatZ();
|
||||
|
||||
// keep the solution if it wins
|
||||
if( compareAnyLessThan( error, besterror ) )
|
||||
{
|
||||
besterror = error;
|
||||
beststart = a;
|
||||
bestend = b;
|
||||
b0 = c0;
|
||||
b1 = c1;
|
||||
}
|
||||
|
||||
x1 += m_weighted[c0+c1];
|
||||
}
|
||||
|
||||
x0 += m_weighted[c0];
|
||||
}
|
||||
|
||||
// save the block if necessary
|
||||
if( compareAnyLessThan( besterror, m_besterror ) )
|
||||
{
|
||||
// compute indices from cluster sizes.
|
||||
/*u8 bestindices[16];
|
||||
{
|
||||
int i = 0;
|
||||
for(; i < b0; i++) {
|
||||
bestindices[i] = 0;
|
||||
}
|
||||
for(; i < b0+b1; i++) {
|
||||
bestindices[i] = 2;
|
||||
}
|
||||
for(; i < count; i++) {
|
||||
bestindices[i] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
// remap the indices
|
||||
u8 ordered[16];
|
||||
for( int i = 0; i < count; ++i )
|
||||
ordered[m_order[i]] = bestindices[i];
|
||||
|
||||
m_colours->RemapIndices( ordered, bestindices );
|
||||
|
||||
// save the block
|
||||
WriteColourBlock3( beststart.toVector3(), bestend.toVector3(), bestindices, block );*/
|
||||
|
||||
*start = beststart.toVector3();
|
||||
*end = bestend.toVector3();
|
||||
|
||||
// save the error
|
||||
m_besterror = besterror;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool ClusterFit::compress4( Vector3 * start, Vector3 * end )
|
||||
{
|
||||
int const count = m_colours->count;
|
||||
SimdVector const one = SimdVector(1.0f);
|
||||
SimdVector const zero = SimdVector(0.0f);
|
||||
SimdVector const half = SimdVector(0.5f);
|
||||
SimdVector const two = SimdVector(2.0);
|
||||
SimdVector const onethird( 1.0f/3.0f, 1.0f/3.0f, 1.0f/3.0f, 1.0f/9.0f );
|
||||
SimdVector const twothirds( 2.0f/3.0f, 2.0f/3.0f, 2.0f/3.0f, 4.0f/9.0f );
|
||||
SimdVector const twonineths = SimdVector( 2.0f/9.0f );
|
||||
SimdVector const grid( 31.0f, 63.0f, 31.0f, 0.0f );
|
||||
SimdVector const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f, 0.0f );
|
||||
|
||||
// declare variables
|
||||
SimdVector beststart = SimdVector( 0.0f );
|
||||
SimdVector bestend = SimdVector( 0.0f );
|
||||
SimdVector besterror = SimdVector( FLT_MAX );
|
||||
|
||||
SimdVector x0 = zero;
|
||||
int b0 = 0, b1 = 0, b2 = 0;
|
||||
|
||||
// check all possible clusters for this total order
|
||||
for( int c0 = 0; c0 <= count; c0++)
|
||||
{
|
||||
SimdVector x1 = zero;
|
||||
|
||||
for( int c1 = 0; c1 <= count-c0; c1++)
|
||||
{
|
||||
SimdVector x2 = zero;
|
||||
|
||||
for( int c2 = 0; c2 <= count-c0-c1; c2++)
|
||||
{
|
||||
SimdVector const x3 = m_xsum - x2 - x1 - x0;
|
||||
|
||||
//Vector3 const alphax_sum = x0 + x1 * (2.0f / 3.0f) + x2 * (1.0f / 3.0f);
|
||||
//float const alpha2_sum = w0 + w1 * (4.0f/9.0f) + w2 * (1.0f/9.0f);
|
||||
SimdVector const alphax_sum = multiplyAdd(x2, onethird, multiplyAdd(x1, twothirds, x0)); // alphax_sum, alpha2_sum
|
||||
SimdVector const alpha2_sum = alphax_sum.splatW();
|
||||
|
||||
//Vector3 const betax_sum = x3 + x2 * (2.0f / 3.0f) + x1 * (1.0f / 3.0f);
|
||||
//float const beta2_sum = w3 + w2 * (4.0f/9.0f) + w1 * (1.0f/9.0f);
|
||||
SimdVector const betax_sum = multiplyAdd(x2, twothirds, multiplyAdd(x1, onethird, x3)); // betax_sum, beta2_sum
|
||||
SimdVector const beta2_sum = betax_sum.splatW();
|
||||
|
||||
//float const alphabeta_sum = (w1 + w2) * (2.0f/9.0f);
|
||||
SimdVector const alphabeta_sum = twonineths*( x1 + x2 ).splatW(); // alphabeta_sum
|
||||
|
||||
// float const factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
|
||||
SimdVector const factor = reciprocal( negativeMultiplySubtract(alphabeta_sum, alphabeta_sum, alpha2_sum*beta2_sum) );
|
||||
|
||||
SimdVector a = negativeMultiplySubtract(betax_sum, alphabeta_sum, alphax_sum*beta2_sum) * factor;
|
||||
SimdVector b = negativeMultiplySubtract(alphax_sum, alphabeta_sum, betax_sum*alpha2_sum) * factor;
|
||||
|
||||
// clamp to the grid
|
||||
a = min( one, max( zero, a ) );
|
||||
b = min( one, max( zero, b ) );
|
||||
a = truncate( multiplyAdd( grid, a, half ) ) * gridrcp;
|
||||
b = truncate( multiplyAdd( grid, b, half ) ) * gridrcp;
|
||||
|
||||
// compute the error (we skip the constant xxsum)
|
||||
SimdVector e1 = multiplyAdd( a*a, alpha2_sum, b*b*beta2_sum );
|
||||
SimdVector e2 = negativeMultiplySubtract( a, alphax_sum, a*b*alphabeta_sum );
|
||||
SimdVector e3 = negativeMultiplySubtract( b, betax_sum, e2 );
|
||||
SimdVector e4 = multiplyAdd( two, e3, e1 );
|
||||
|
||||
// apply the metric to the error term
|
||||
SimdVector e5 = e4 * m_metricSqr;
|
||||
SimdVector error = e5.splatX() + e5.splatY() + e5.splatZ();
|
||||
|
||||
// keep the solution if it wins
|
||||
if( compareAnyLessThan( error, besterror ) )
|
||||
{
|
||||
besterror = error;
|
||||
beststart = a;
|
||||
bestend = b;
|
||||
b0 = c0;
|
||||
b1 = c1;
|
||||
b2 = c2;
|
||||
}
|
||||
|
||||
x2 += m_weighted[c0+c1+c2];
|
||||
}
|
||||
|
||||
x1 += m_weighted[c0+c1];
|
||||
}
|
||||
|
||||
x0 += m_weighted[c0];
|
||||
}
|
||||
|
||||
// save the block if necessary
|
||||
if( compareAnyLessThan( besterror, m_besterror ) )
|
||||
{
|
||||
/*// compute indices from cluster sizes.
|
||||
u8 bestindices[16];
|
||||
{
|
||||
int i = 0;
|
||||
for(; i < b0; i++) {
|
||||
bestindices[i] = 0;
|
||||
}
|
||||
for(; i < b0+b1; i++) {
|
||||
bestindices[i] = 2;
|
||||
}
|
||||
for(; i < b0+b1+b2; i++) {
|
||||
bestindices[i] = 3;
|
||||
}
|
||||
for(; i < count; i++) {
|
||||
bestindices[i] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
// remap the indices
|
||||
u8 ordered[16];
|
||||
for( int i = 0; i < count; ++i )
|
||||
ordered[m_order[i]] = bestindices[i];
|
||||
|
||||
m_colours->RemapIndices( ordered, bestindices );
|
||||
|
||||
// save the block
|
||||
WriteColourBlock4( beststart.toVector3(), bestend.toVector3(), bestindices, block );*/
|
||||
|
||||
*start = beststart.toVector3();
|
||||
*end = bestend.toVector3();
|
||||
|
||||
// save the error
|
||||
m_besterror = besterror;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
bool ClusterFit::compress3(Vector3 * start, Vector3 * end)
|
||||
{
|
||||
const Vector3 one( 1.0f );
|
||||
const Vector3 zero( 0.0f );
|
||||
const Vector3 half( 0.5f );
|
||||
const Vector3 grid( 31.0f, 63.0f, 31.0f );
|
||||
const Vector3 gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f );
|
||||
|
||||
// declare variables
|
||||
Vector3 beststart( 0.0f );
|
||||
Vector3 bestend( 0.0f );
|
||||
float besterror = FLT_MAX;
|
||||
|
||||
Vector3 x0(0.0f);
|
||||
float w0 = 0.0f;
|
||||
|
||||
int b0 = 0, b1 = 0;
|
||||
|
||||
// check all possible clusters for this total order
|
||||
for (uint c0 = 0; c0 <= count; c0++)
|
||||
{
|
||||
Vector3 x1(0.0f);
|
||||
float w1 = 0.0f;
|
||||
|
||||
for (uint c1 = 0; c1 <= count-c0; c1++)
|
||||
{
|
||||
float w2 = m_wsum - w0 - w1;
|
||||
|
||||
// These factors could be entirely precomputed.
|
||||
float const alpha2_sum = w0 + w1 * 0.25f;
|
||||
float const beta2_sum = w2 + w1 * 0.25f;
|
||||
float const alphabeta_sum = w1 * 0.25f;
|
||||
float const factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
|
||||
|
||||
Vector3 const alphax_sum = x0 + x1 * 0.5f;
|
||||
Vector3 const betax_sum = m_xsum - alphax_sum;
|
||||
|
||||
Vector3 a = (alphax_sum*beta2_sum - betax_sum*alphabeta_sum) * factor;
|
||||
Vector3 b = (betax_sum*alpha2_sum - alphax_sum*alphabeta_sum) * factor;
|
||||
|
||||
// clamp to the grid
|
||||
a = min(one, max(zero, a));
|
||||
b = min(one, max(zero, b));
|
||||
a = floor(grid * a + half) * gridrcp;
|
||||
b = floor(grid * b + half) * gridrcp;
|
||||
|
||||
// compute the error
|
||||
Vector3 e1 = a*a*alpha2_sum + b*b*beta2_sum + 2.0f*( a*b*alphabeta_sum - a*alphax_sum - b*betax_sum );
|
||||
|
||||
// apply the metric to the error term
|
||||
float error = dot(e1, m_metricSqr);
|
||||
|
||||
// keep the solution if it wins
|
||||
if (error < besterror)
|
||||
{
|
||||
besterror = error;
|
||||
beststart = a;
|
||||
bestend = b;
|
||||
b0 = c0;
|
||||
b1 = c1;
|
||||
}
|
||||
|
||||
x1 += m_weighted[c0+c1];
|
||||
w1 += m_weights[c0+c1];
|
||||
}
|
||||
|
||||
x0 += m_weighted[c0];
|
||||
w0 += m_weights[c0];
|
||||
}
|
||||
|
||||
// save the block if necessary
|
||||
if( besterror < m_besterror )
|
||||
{
|
||||
/*// compute indices from cluster sizes.
|
||||
u8 bestindices[16];
|
||||
{
|
||||
int i = 0;
|
||||
for(; i < b0; i++) {
|
||||
bestindices[i] = 0;
|
||||
}
|
||||
for(; i < b0+b1; i++) {
|
||||
bestindices[i] = 2;
|
||||
}
|
||||
for(; i < count; i++) {
|
||||
bestindices[i] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
// remap the indices
|
||||
u8 ordered[16];
|
||||
for( int i = 0; i < count; ++i )
|
||||
ordered[m_order[i]] = bestindices[i];
|
||||
|
||||
m_colours->RemapIndices( ordered, bestindices );
|
||||
|
||||
// save the block
|
||||
WriteColourBlock3( beststart, bestend, bestindices, block );*/
|
||||
|
||||
*start = beststart;
|
||||
*end = bestend;
|
||||
|
||||
// save the error
|
||||
m_besterror = besterror;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
bool ClusterFit::compress4(Vector3 * start, Vector3 * end)
|
||||
{
|
||||
Vector3 const one( 1.0f );
|
||||
Vector3 const zero( 0.0f );
|
||||
Vector3 const half( 0.5f );
|
||||
Vector3 const grid( 31.0f, 63.0f, 31.0f );
|
||||
Vector3 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f );
|
||||
|
||||
// declare variables
|
||||
Vector3 beststart( 0.0f );
|
||||
Vector3 bestend( 0.0f );
|
||||
float besterror = FLT_MAX;
|
||||
|
||||
Vector3 x0(0.0f);
|
||||
float w0 = 0.0f;
|
||||
int b0 = 0, b1 = 0, b2 = 0;
|
||||
|
||||
// check all possible clusters for this total order
|
||||
for (uint c0 = 0; c0 <= count; c0++)
|
||||
{
|
||||
Vector3 x1(0.0f);
|
||||
float w1 = 0.0f;
|
||||
|
||||
for (uint c1 = 0; c1 <= count-c0; c1++)
|
||||
{
|
||||
Vector3 x2(0.0f);
|
||||
float w2 = 0.0f;
|
||||
|
||||
for (uint c2 = 0; c2 <= count-c0-c1; c2++)
|
||||
{
|
||||
float w3 = m_wsum - w0 - w1 - w2;
|
||||
|
||||
float const alpha2_sum = w0 + w1 * (4.0f/9.0f) + w2 * (1.0f/9.0f);
|
||||
float const beta2_sum = w3 + w2 * (4.0f/9.0f) + w1 * (1.0f/9.0f);
|
||||
float const alphabeta_sum = (w1 + w2) * (2.0f/9.0f);
|
||||
float const factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
|
||||
|
||||
Vector3 const alphax_sum = x0 + x1 * (2.0f / 3.0f) + x2 * (1.0f / 3.0f);
|
||||
Vector3 const betax_sum = m_xsum - alphax_sum;
|
||||
|
||||
Vector3 a = ( alphax_sum*beta2_sum - betax_sum*alphabeta_sum )*factor;
|
||||
Vector3 b = ( betax_sum*alpha2_sum - alphax_sum*alphabeta_sum )*factor;
|
||||
|
||||
// clamp to the grid
|
||||
a = min( one, max( zero, a ) );
|
||||
b = min( one, max( zero, b ) );
|
||||
a = floor( grid*a + half )*gridrcp;
|
||||
b = floor( grid*b + half )*gridrcp;
|
||||
|
||||
// compute the error
|
||||
Vector3 e1 = a*a*alpha2_sum + b*b*beta2_sum + 2.0f*( a*b*alphabeta_sum - a*alphax_sum - b*betax_sum );
|
||||
|
||||
// apply the metric to the error term
|
||||
float error = dot( e1, m_metricSqr );
|
||||
|
||||
// keep the solution if it wins
|
||||
if( error < besterror )
|
||||
{
|
||||
besterror = error;
|
||||
beststart = a;
|
||||
bestend = b;
|
||||
b0 = c0;
|
||||
b1 = c1;
|
||||
b2 = c2;
|
||||
}
|
||||
|
||||
x2 += m_weighted[c0+c1+c2];
|
||||
w2 += m_weights[c0+c1+c2];
|
||||
}
|
||||
|
||||
x1 += m_weighted[c0+c1];
|
||||
w1 += m_weights[c0+c1];
|
||||
}
|
||||
|
||||
x0 += m_weighted[c0];
|
||||
w0 += m_weights[c0];
|
||||
}
|
||||
|
||||
// save the block if necessary
|
||||
if( besterror < m_besterror )
|
||||
{
|
||||
/*// compute indices from cluster sizes.
|
||||
u8 bestindices[16];
|
||||
{
|
||||
int i = 0;
|
||||
for(; i < b0; i++) {
|
||||
bestindices[i] = 0;
|
||||
}
|
||||
for(; i < b0+b1; i++) {
|
||||
bestindices[i] = 2;
|
||||
}
|
||||
for(; i < b0+b1+b2; i++) {
|
||||
bestindices[i] = 3;
|
||||
}
|
||||
for(; i < count; i++) {
|
||||
bestindices[i] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
// remap the indices
|
||||
u8 ordered[16];
|
||||
for( int i = 0; i < count; ++i )
|
||||
ordered[m_order[i]] = bestindices[i];
|
||||
|
||||
m_colours->RemapIndices( ordered, bestindices );
|
||||
|
||||
// save the block
|
||||
WriteColourBlock4( beststart, bestend, bestindices, block );*/
|
||||
|
||||
*start = beststart;
|
||||
*end = bestend;
|
||||
|
||||
// save the error
|
||||
m_besterror = besterror;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
#endif // NVTT_USE_SIMD
|
82
src/nvtt/ClusterFit.h
Normal file
82
src/nvtt/ClusterFit.h
Normal file
@ -0,0 +1,82 @@
|
||||
/* -----------------------------------------------------------------------------
|
||||
|
||||
Copyright (c) 2006 Simon Brown si@sjbrown.co.uk
|
||||
Copyright (c) 2006 Ignacio Castano icastano@nvidia.com
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining
|
||||
a copy of this software and associated documentation files (the
|
||||
"Software"), to deal in the Software without restriction, including
|
||||
without limitation the rights to use, copy, modify, merge, publish,
|
||||
distribute, sublicense, and/or sell copies of the Software, and to
|
||||
permit persons to whom the Software is furnished to do so, subject to
|
||||
the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included
|
||||
in all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||||
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||||
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||||
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||||
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||||
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||||
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
-------------------------------------------------------------------------- */
|
||||
|
||||
#ifndef NVTT_CLUSTERFIT_H
|
||||
#define NVTT_CLUSTERFIT_H
|
||||
|
||||
#define NVTT_USE_SIMD 0
|
||||
|
||||
#include "nvmath/SimdVector.h"
|
||||
#include "nvmath/Vector.h"
|
||||
|
||||
namespace nv {
|
||||
|
||||
struct ColorSet;
|
||||
|
||||
class ClusterFit
|
||||
{
|
||||
public:
|
||||
ClusterFit();
|
||||
|
||||
void setColourSet(const ColorSet * set);
|
||||
|
||||
void setMetric(Vector4::Arg w);
|
||||
float bestError() const;
|
||||
|
||||
bool compress3(Vector3 * start, Vector3 * end);
|
||||
bool compress4(Vector3 * start, Vector3 * end);
|
||||
|
||||
private:
|
||||
|
||||
uint count;
|
||||
//ColorSet const* m_colours;
|
||||
|
||||
Vector3 m_principle;
|
||||
|
||||
#if NVTT_USE_SIMD
|
||||
SimdVector m_weighted[16];
|
||||
SimdVector m_metric;
|
||||
SimdVector m_metricSqr;
|
||||
SimdVector m_xxsum;
|
||||
SimdVector m_xsum;
|
||||
SimdVector m_besterror;
|
||||
#else
|
||||
Vector3 m_weighted[16];
|
||||
float m_weights[16];
|
||||
Vector3 m_metric;
|
||||
Vector3 m_metricSqr;
|
||||
Vector3 m_xxsum;
|
||||
Vector3 m_xsum;
|
||||
float m_wsum;
|
||||
float m_besterror;
|
||||
#endif
|
||||
|
||||
int m_order[16];
|
||||
};
|
||||
|
||||
} // nv namespace
|
||||
|
||||
#endif // NVTT_CLUSTERFIT_H
|
Loading…
Reference in New Issue
Block a user