Use metric to measure distance to clusters.
This commit is contained in:
parent
c05c4e155b
commit
379605d30a
@ -127,7 +127,7 @@ int nv::Compute4Means(int n, const Vector3 * points, const float * weights, Vect
|
||||
float mindist = FLT_MAX;
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
float dist = length_squared(cluster[j] - points[i]);
|
||||
float dist = length_squared((cluster[j] - points[i]) * metric);
|
||||
if (dist < mindist)
|
||||
{
|
||||
mindist = dist;
|
||||
@ -169,94 +169,3 @@ int nv::Compute4Means(int n, const Vector3 * points, const float * weights, Vect
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
int nv::Compute2Means(int n, const Vector3 * points, const float * weights, Vector3::Arg metric, Vector3 * cluster)
|
||||
{
|
||||
Vector3 centroid = ComputeCentroid(n, points, weights, metric);
|
||||
|
||||
// Compute principal component.
|
||||
Vector3 principal = ComputePrincipalComponent(n, points, weights, metric);
|
||||
|
||||
// Pick initial solution.
|
||||
int mini, maxi;
|
||||
mini = maxi = 0;
|
||||
|
||||
float mindps, maxdps;
|
||||
mindps = maxdps = dot(points[0] - centroid, principal);
|
||||
|
||||
for (int i = 1; i < n; ++i)
|
||||
{
|
||||
float dps = dot(points[i] - centroid, principal);
|
||||
|
||||
if (dps < mindps) {
|
||||
mindps = dps;
|
||||
mini = i;
|
||||
}
|
||||
else {
|
||||
maxdps = dps;
|
||||
maxi = i;
|
||||
}
|
||||
}
|
||||
|
||||
cluster[0] = points[mini];
|
||||
cluster[3] = points[maxi];
|
||||
//cluster[0] = centroid + mindps * principal;
|
||||
//cluster[1] = centroid + maxdps * principal;
|
||||
cluster[2] = (2 * cluster[0] + cluster[1]) / 3;
|
||||
cluster[3] = (2 * cluster[1] + cluster[0]) / 3;
|
||||
|
||||
// Now we have to iteratively refine the clusters.
|
||||
while (true)
|
||||
{
|
||||
Vector3 newCluster[4] = { Vector3(zero), Vector3(zero), Vector3(zero), Vector3(zero) };
|
||||
float total[4] = {0, 0, 0, 0};
|
||||
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
// Find nearest cluster.
|
||||
int nearest = 0;
|
||||
float mindist = FLT_MAX;
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
float dist = length_squared(cluster[j] - points[i]);
|
||||
if (dist < mindist)
|
||||
{
|
||||
mindist = dist;
|
||||
nearest = j;
|
||||
}
|
||||
}
|
||||
|
||||
newCluster[nearest] += weights[i] * points[i];
|
||||
total[nearest] += weights[i];
|
||||
}
|
||||
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
newCluster[j] /= total[j];
|
||||
}
|
||||
|
||||
if ((equal(cluster[0], newCluster[0]) || total[0] == 0) &&
|
||||
(equal(cluster[1], newCluster[1]) || total[1] == 0) &&
|
||||
(equal(cluster[2], newCluster[2]) || total[2] == 0) &&
|
||||
(equal(cluster[3], newCluster[3]) || total[3] == 0))
|
||||
{
|
||||
return (total[0] != 0) + (total[1] != 0) + (total[2] != 0) + (total[3] != 0);
|
||||
}
|
||||
|
||||
cluster[0] = newCluster[0];
|
||||
cluster[1] = newCluster[1];
|
||||
cluster[2] = newCluster[2];
|
||||
cluster[3] = newCluster[3];
|
||||
|
||||
// Sort clusters by weight.
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
for (int j = i; j > 0 && total[j] > total[j - 1]; j--)
|
||||
{
|
||||
swap( total[j], total[j - 1] );
|
||||
swap( cluster[j], cluster[j - 1] );
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
Loading…
Reference in New Issue
Block a user