Fixes and optimizations.

pull/216/head
castano 13 years ago
parent 149a50a26f
commit 78fa1e785d

@ -93,6 +93,7 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "nvthread", "nvthread\nvthre
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "cubemaptest", "cubemaptest\cubemaptest.vcproj", "{CFB3FEAC-5720-4B16-9D7E-039DB180B641}"
ProjectSection(ProjectDependencies) = postProject
{F143D180-D4C4-4037-B3DE-BE89A21C8D1D} = {F143D180-D4C4-4037-B3DE-BE89A21C8D1D}
{1AEB7681-57D8-48EE-813D-5C41CC38B647} = {1AEB7681-57D8-48EE-813D-5C41CC38B647}
EndProjectSection
EndProject

@ -7,8 +7,6 @@
#include "nvcore.h"
#include "Debug.h" // nvDebugCheck
#include <stddef.h>
// Just in case. Grrr.
#undef min
#undef max

@ -221,7 +221,7 @@ namespace nv
}
/// Get scanline pointer.
inline float * FloatImage::scanline(uint z, uint y, uint c)
inline float * FloatImage::scanline(uint c, uint y, uint z)
{
nvDebugCheck(y < m_height);
return plane(c, z) + y * m_width;

@ -333,7 +333,7 @@ const Vector3 & VectorTable::lookup(uint f, uint x, uint y) const {
// - parallelize.
// - use ISPC?
static Vector3 faceNormals[6] = {
static const Vector3 faceNormals[6] = {
Vector3(1, 0, 0),
Vector3(-1, 0, 0),
Vector3(0, 1, 0),
@ -342,11 +342,31 @@ static Vector3 faceNormals[6] = {
Vector3(0, 0, -1),
};
static const Vector3 faceU[6] = {
Vector3(0, 0, -1),
Vector3(0, 0, 1),
Vector3(1, 0, 0),
Vector3(1, 0, 0),
Vector3(1, 0, 0),
Vector3(-1, 0, 0),
};
static const Vector3 faceV[6] = {
Vector3(0, -1, 0),
Vector3(0, -1, 0),
Vector3(0, 0, 1),
Vector3(0, 0, -1),
Vector3(0, -1, 0),
Vector3(0, -1, 0),
};
// Convolve filter against this cube.
Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir, float cosineConeAngle, float cosinePower)
Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir, float coneAngle, float cosinePower)
{
const float coneAngle = acos(cosineConeAngle);
const float cosineConeAngle = cos(coneAngle);
nvDebugCheck(cosineConeAngle >= 0);
Vector3 color(0);
float sum = 0;
@ -356,25 +376,74 @@ Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir,
// Test face cone agains filter cone.
float cosineFaceAngle = dot(filterDir, faceNormals[f]);
float faceAngle = acosf(cosineFaceAngle);
if (cosineFaceAngle > cos(coneAngle + atan(sqrt(2)))) { // @@ Simplify this with cos(a+b) = cos(a)cos(b) - sin(a)sin(b) formula?
/*if (faceAngle > coneAngle + atanf(sqrtf(2))) {
// Skip face.
continue;
}
}*/
// @@ We could do a less conservative test and test the face frustum against the cone...
// @@ Compute bounding box of cone intersection against face.
// Compute bounding box of cone intersection against face.
// The intersection of the cone with the face is an elipse, we want the extents of that elipse.
// Hmm... we could even rasterize an elipse! Sounds like FUN!
uint x0 = 0, x1 = edgeLength-1;
uint y0 = 0, y1 = edgeLength-1;
// @@ Hmm... we could even rasterize an elipse! Sounds like FUN!
const int L = toI32(edgeLength-1);
int x0 = 0, x1 = L;
int y0 = 0, y1 = L;
// @@ Ugh. This is wrong, or only right when filterDir is aligned to one axis.
if (false) {
// uv coordinates corresponding to filterDir.
//float u = dot(filterDir, faceU[f]) / cosineFaceAngle;
//float v = dot(filterDir, faceV[f]) / cosineFaceAngle;
// Angular coordinates corresponding to filterDir with respect to faceNormal.
float atu = atan2(dot(filterDir, faceU[f]), cosineFaceAngle);
float atv = atan2(dot(filterDir, faceV[f]), cosineFaceAngle);
// Expand angles and project back to the face plane.
float u0 = tan(clamp(atu - coneAngle, -PI/4, PI/4));
float v0 = tan(clamp(atv - coneAngle, -PI/4, PI/4));
float u1 = tan(clamp(atu + coneAngle, -PI/4, PI/4));
float v1 = tan(clamp(atv + coneAngle, -PI/4, PI/4));
nvDebugCheck(u0 >= -1 && u0 <= 1);
nvDebugCheck(v0 >= -1 && v0 <= 1);
nvDebugCheck(u1 >= -1 && u1 <= 1);
nvDebugCheck(v1 >= -1 && v1 <= 1);
// Expand uv coordinates from [-1,1] to [0, edgeLength)
u0 = (u0 + 1) * edgeLength * 0.5f - 0.5f;
v0 = (v0 + 1) * edgeLength * 0.5f - 0.5f;
u1 = (u1 + 1) * edgeLength * 0.5f - 0.5f;
v1 = (v1 + 1) * edgeLength * 0.5f - 0.5f;
nvDebugCheck(u0 >= -0.5f && u0 <= edgeLength - 0.5f);
nvDebugCheck(v0 >= -0.5f && v0 <= edgeLength - 0.5f);
nvDebugCheck(u1 >= -0.5f && u1 <= edgeLength - 0.5f);
nvDebugCheck(v1 >= -0.5f && v1 <= edgeLength - 0.5f);
x0 = clamp(ifloor(u0), 0, L);
y0 = clamp(ifloor(v0), 0, L);
x1 = clamp(iceil(u1), 0, L);
y1 = clamp(iceil(v1), 0, L);
nvDebugCheck(x1 >= x0);
nvDebugCheck(y1 >= y0);
}
if (x1 == x0 || y1 == y0) {
// Skip this face.
continue;
}
const Surface & inputFace = face[f];
const FloatImage * inputImage = inputFace.m->image;
for (uint y = y0; y <= y1; y++) {
for (uint x = x0; x <= x1; x++) {
for (int y = y0; y <= y1; y++) {
bool inside = false;
for (int x = x0; x <= x1; x++) {
Vector3 dir = vectorTable->lookup(f, x, y);
float cosineAngle = dot(dir, filterDir);
@ -388,6 +457,13 @@ Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir,
color.x += contribution * inputImage->pixel(0, x, y, 0);
color.y += contribution * inputImage->pixel(1, x, y, 0);
color.z += contribution * inputImage->pixel(2, x, y, 0);
inside = true;
}
else if (inside) {
// Filter scale is monotonic, if we have been inside once and we just exit, then we can skip the rest of the row.
// We could do the same thing for the columns and skip entire rows.
break;
}
}
}
@ -398,6 +474,39 @@ Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir,
return color;
}
#include "nvthread/ParallelFor.h"
struct ApplyCosinePowerFilterContext {
CubeSurface::Private * inputCube;
CubeSurface::Private * filteredCube;
float coneAngle;
float cosinePower;
};
void ApplyCosinePowerFilterTask(void * context, int id)
{
ApplyCosinePowerFilterContext * ctx = (ApplyCosinePowerFilterContext *)context;
int size = ctx->filteredCube->edgeLength;
int f = id / (size * size);
int idx = id % (size * size);
int y = idx / size;
int x = idx % size;
nvtt::Surface & filteredFace = ctx->filteredCube->face[f];
FloatImage * filteredImage = filteredFace.m->image;
const Vector3 filterDir = texelDirection(f, x, y, 1.0f / size);
// Convolve filter against cube.
Vector3 color = ctx->inputCube->applyCosinePowerFilter(filterDir, ctx->coneAngle, ctx->cosinePower);
filteredImage->pixel(0, idx) = color.x;
filteredImage->pixel(1, idx) = color.y;
filteredImage->pixel(2, idx) = color.z;
}
CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower) const
{
@ -415,12 +524,47 @@ CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower) const
m->vectorTable = new VectorTable(edgeLength);
}
const float threshold = 0.0001f;
const float cosineConeAngle = pow(threshold, 1/cosinePower);
//const float coneAngle = acos(cosineConeAngle);
const float threshold = 0.001f;
const float coneAngle = acosf(powf(threshold, 1.0f/cosinePower));
#if 1
// Gather approach. This should be easier to parallelize, because there's no contention in the filtered output.
// For each texel of the output cube.
// - Determine what texels of the input cube contribute to it.
// - Add weighted contributions. Normalize.
// For each texel of the output cube.
/*for (uint f = 0; f < 6; f++) {
nvtt::Surface filteredFace = filteredCube.m->face[f];
FloatImage * filteredImage = filteredFace.m->image;
for (uint y = 0; y < uint(size); y++) {
for (uint x = 0; x < uint(size); x++) {
const Vector3 filterDir = texelDirection(f, x, y, 1.0f / size);
// Convolve filter against cube.
Vector3 color = m->applyCosinePowerFilter(filterDir, coneAngle, cosinePower);
filteredImage->pixel(0, x, y, 0) = color.x;
filteredImage->pixel(1, x, y, 0) = color.y;
filteredImage->pixel(2, x, y, 0) = color.z;
}
}
}*/
ApplyCosinePowerFilterContext context;
context.inputCube = m;
context.filteredCube = filteredCube.m;
context.coneAngle = coneAngle;
context.cosinePower = cosinePower;
nv::ParallelFor parallelFor(ApplyCosinePowerFilterTask, &context);
parallelFor.run(6 * size * size);
#if 0
#else
// Scatter approach.
// For each texel of the input cube.
@ -480,54 +624,6 @@ CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower) const
}
}
#else
// Gather approach. This should be easier to parallelize, because there's no contention in the filtered output.
// For each texel of the output cube.
// - Determine what texels of the input cube contribute to it.
// - Add weighted contributions. Normalize.
// For each texel of the output cube. @@ Parallelize this loop.
for (uint f = 0; f < 6; f++) {
nvtt::Surface filteredFace = filteredCube.m->face[f];
FloatImage * filteredImage = filteredFace.m->image;
for (uint y = 0; y < uint(size); y++) {
for (uint x = 0; x < uint(size); x++) {
const Vector3 filterDir = texelDirection(f, x, y, 1.0f / size);
// Convolve filter against cube.
Vector3 color = m->applyCosinePowerFilter(filterDir, cosineConeAngle, cosinePower);
filteredImage->pixel(0, x, y, 0) = color.x;
filteredImage->pixel(1, x, y, 0) = color.y;
filteredImage->pixel(2, x, y, 0) = color.z;
}
}
}
/*int jobCount = 6 * size * size;
for (int i = 0; i < jobCount; i++) {
int f = i / (size * size);
int idx = i % (size * size);
int y = idx / size;
int x = idx % size;
nvtt::Surface filteredFace = filteredCube.m->face[f];
FloatImage * filteredImage = filteredFace.m->image;
const Vector3 filterDir = texelDirection(f, x, y, 1.0f / size);
// Convolve filter against cube.
Vector3 color = m->applyCosinePowerFilter(filterDir, coneAngle, cosinePower);
filteredImage->pixel(0, idx) = color.x;
filteredImage->pixel(1, idx) = color.y;
filteredImage->pixel(2, idx) = color.z;
}*/
#endif
return filteredCube;

@ -21,8 +21,12 @@
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#include <nvcore/StrLib.h>
//#include <nvcore/StrLib.h>
#include <nvcore/Timer.h>
#include <nvtt/nvtt.h>
#include <nvmath/nvmath.h>
#include "../tools/cmdline.h"
#include <stdlib.h> // EXIT_SUCCESS, EXIT_FAILURE
#include <stdio.h> // printf
@ -30,6 +34,9 @@
int main(int argc, char *argv[])
{
MyAssertHandler assertHandler;
MyMessageHandler messageHandler;
// Init context.
nvtt::Context context;
@ -52,26 +59,43 @@ int main(int argc, char *argv[])
// Setup output options.
nvtt::OutputOptions outputOptions;
outputOptions.setFileName("filtered_envmap.dds");
outputOptions.setSrgbFlag(true);
const int MAX_MIPMAP_COUNT = 7; // nv::log2(64) + 1;
//const int mipmapCount = MAX_MIPMAP_COUNT;
const int mipmapCount = 4;
//const int mipmapCount = 1;
// Output header.
context.outputHeader(nvtt::TextureType_Cube, 64, 64, 1, 4, false, compressionOptions, outputOptions);
context.outputHeader(nvtt::TextureType_Cube, 64, 64, 1, mipmapCount, false, compressionOptions, outputOptions);
// Output filtered mipmaps.
for (int m = 0; m < 4; m++) {
int size = 64 / (1 << m); // 64, 32, 16, 8
float cosine_power = float(64) / (1 << (2 * m)); // 64, 16, 4, 1
nv::Timer timer;
timer.start();
printf("filtering step: %d/4.\n", m+1);
nvtt::CubeSurface filteredEnvmap[mipmapCount];
nvtt::CubeSurface filteredEnvmap = envmap.cosinePowerFilter(size, cosine_power);
// Output filtered mipmaps.
for (int m = 0; m < mipmapCount; m++) {
int size = 64 / (1 << m); // 64, 32, 16, 8
float cosine_power = float(64) / (1 << (2 * m)); // 64, 16, 4, 1
cosine_power = nv::max(1.0f, cosine_power);
printf("filtering step: %d/%d\n", m+1, mipmapCount);
filteredEnvmap.toGamma(2.2f);
filteredEnvmap[m] = envmap.cosinePowerFilter(size, cosine_power);
filteredEnvmap[m].toGamma(2.2f);
}
context.compress(filteredEnvmap, m, compressionOptions, outputOptions);
for (int f = 0; f < 6; f++) {
for (int m = 0; m < mipmapCount; m++) {
context.compress(filteredEnvmap[m].face(f), f, m, compressionOptions, outputOptions);
}
}
printf("done.\n");
timer.stop();
printf("done in %f seconds\n", timer.elapsed());
return EXIT_SUCCESS;
}

Loading…
Cancel
Save