Large refactoring of compressor codes:

- Define compressor interface.
- Implement compressor interface for different compressors.
- Add parallel compressor using OpenMP. Experimental.
- Add generic GPU compressor, so far only DXT1 enabled.
This commit is contained in:
castano 2009-10-21 07:48:27 +00:00
parent 18a3abf794
commit 8820c43175
8 changed files with 1559 additions and 1325 deletions

View File

@ -71,204 +71,165 @@ typedef ULONG_PTR DWORD_PTR;
#include "stb/stb_dxt.h"
#endif
#pragma message(NV_FILE_LINE "FIXME: Define HAVE_OPENMP from cmake.")
#define HAVE_OPENMP
#include <omp.h>
using namespace nv;
using namespace nvtt;
nv::FastCompressor::FastCompressor() : m_image(NULL), m_alphaMode(AlphaMode_None)
void FixedBlockCompressor::compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
{
}
const uint bs = blockSize();
const uint bw = (w + 3) / 4;
const uint bh = (h + 3) / 4;
const uint size = bs * bw * bh;
nv::FastCompressor::~FastCompressor()
{
}
#if defined(HAVE_OPENMP)
bool singleThreaded = false;
#else
bool singleThreaded = true;
#endif
void nv::FastCompressor::setImage(const Image * image, nvtt::AlphaMode alphaMode)
{
m_image = image;
m_alphaMode = alphaMode;
}
// Use a single thread to compress small textures.
if (bw * bh < 16) singleThreaded = true;
void nv::FastCompressor::compressDXT1(const OutputOptions::Private & outputOptions)
if (singleThreaded)
{
const uint w = m_image->width();
const uint h = m_image->height();
nvDebugCheck(bs <= 16);
uint8 mem[16];
for (int y = 0; y < int(h); y += 4) {
for (uint x = 0; x < w; x += 4) {
ColorBlock rgba;
BlockDXT1 block;
if (inputFormat == nvtt::InputFormat_BGRA_8UB) {
rgba.init(w, h, (uint *)data, x, y);
}
else {
nvDebugCheck(inputFormat == nvtt::InputFormat_RGBA_32F);
rgba.init(w, h, (float *)data, x, y);
}
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
QuickCompress::compressDXT1(rgba, &block);
compressBlock(rgba, alphaMode, compressionOptions, mem);
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
outputOptions.outputHandler->writeData(mem, bs);
}
}
}
}
void nv::FastCompressor::compressDXT1a(const OutputOptions::Private & outputOptions)
#if defined(HAVE_OPENMP)
else
{
const uint w = m_image->width();
const uint h = m_image->height();
uint8 * mem = new uint8[size];
#pragma omp parallel
{
#pragma omp for
for (int i = 0; i < int(bw*bh); i++)
{
const uint x = i % bw;
const uint y = i / bw;
ColorBlock rgba;
BlockDXT1 block;
if (inputFormat == nvtt::InputFormat_BGRA_8UB) {
rgba.init(w, h, (uint *)data, 4*x, 4*y);
}
else {
nvDebugCheck(inputFormat == nvtt::InputFormat_RGBA_32F);
rgba.init(w, h, (float *)data, 4*x, 4*y);
}
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
QuickCompress::compressDXT1a(rgba, &block);
uint8 * ptr = mem + (y * bw + x) * bs;
compressBlock(rgba, alphaMode, compressionOptions, ptr);
} // omp for
} // omp parallel
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
}
outputOptions.outputHandler->writeData(mem, size);
}
delete [] mem;
}
#endif
}
void nv::FastCompressor::compressDXT3(const nvtt::OutputOptions::Private & outputOptions)
void FastCompressorDXT1::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT3 block;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
QuickCompress::compressDXT3(rgba, &block);
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
}
}
}
BlockDXT1 * block = new(output) BlockDXT1;
QuickCompress::compressDXT1(rgba, block);
}
void nv::FastCompressor::compressDXT5(const nvtt::OutputOptions::Private & outputOptions)
void FastCompressorDXT1a::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT5 block;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
QuickCompress::compressDXT5(rgba, &block, 0);
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
}
}
}
BlockDXT1 * block = new(output) BlockDXT1;
QuickCompress::compressDXT1a(rgba, block);
}
void nv::FastCompressor::compressDXT5n(const nvtt::OutputOptions::Private & outputOptions)
void FastCompressorDXT3::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT5 block;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
rgba.swizzleDXT5n();
QuickCompress::compressDXT5(rgba, &block, 0);
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
}
}
}
BlockDXT3 * block = new(output) BlockDXT3;
QuickCompress::compressDXT3(rgba, block);
}
nv::SlowCompressor::SlowCompressor() : m_image(NULL), m_alphaMode(AlphaMode_None)
void FastCompressorDXT5::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
BlockDXT5 * block = new(output) BlockDXT5;
QuickCompress::compressDXT5(rgba, block);
}
nv::SlowCompressor::~SlowCompressor()
void FastCompressorDXT5n::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
rgba.swizzle(4, 1, 5, 0); // 0xFF, G, 0, R
BlockDXT5 * block = new(output) BlockDXT5;
QuickCompress::compressDXT5(rgba, block);
}
void nv::SlowCompressor::setImage(const Image * image, nvtt::AlphaMode alphaMode)
void FastCompressorBC4::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
m_image = image;
m_alphaMode = alphaMode;
BlockATI1 * block = new(output) BlockATI1;
rgba.swizzle(0, 1, 2, 0); // Copy red to alpha
QuickCompress::compressDXT5A(rgba, &block->alpha);
}
void nv::SlowCompressor::compressDXT1(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
void FastCompressorBC5::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
const uint w = m_image->width();
const uint h = m_image->height();
BlockATI2 * block = new(output) BlockATI2;
ColorBlock rgba;
BlockDXT1 block;
rgba.swizzle(0, 1, 2, 0); // Copy red to alpha
QuickCompress::compressDXT5A(rgba, &block->x);
rgba.swizzle(0, 1, 2, 1); // Copy green to alpha
QuickCompress::compressDXT5A(rgba, &block->y);
}
void NormalCompressorDXT1::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
nvsquish::WeightedClusterFit fit;
//nvsquish::ClusterFit fit;
//nvsquish::FastClusterFit fit;
fit.SetMetric(compressionOptions.colorWeight.x(), compressionOptions.colorWeight.y(), compressionOptions.colorWeight.z());
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
if (rgba.isSingleColor())
{
OptimalCompress::compressDXT1(rgba.color(0), &block);
BlockDXT1 * block = new(output) BlockDXT1;
OptimalCompress::compressDXT1(rgba.color(0), block);
}
else
{
nvsquish::ColourSet colours((uint8 *)rgba.colors(), 0, true);
nvsquish::ColourSet colours((uint8 *)rgba.colors(), 0);
fit.SetColourSet(&colours, nvsquish::kDxt1);
fit.Compress(&block);
}
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
}
}
fit.Compress(output);
}
}
void nv::SlowCompressor::compressDXT1a(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
void NormalCompressorDXT1a::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT1 block;
nvsquish::WeightedClusterFit fit;
fit.SetMetric(compressionOptions.colorWeight.x(), compressionOptions.colorWeight.y(), compressionOptions.colorWeight.z());
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
bool anyAlpha = false;
bool allAlpha = true;
@ -278,246 +239,158 @@ void nv::SlowCompressor::compressDXT1a(const CompressionOptions::Private & compr
else allAlpha = false;
}
if ((!anyAlpha && rgba.isSingleColor() || allAlpha))
const bool isSingleColor = rgba.isSingleColor();
if ((!anyAlpha && isSingleColor || allAlpha))
{
OptimalCompress::compressDXT1a(rgba.color(0), &block);
BlockDXT1 * block = new(output) BlockDXT1;
OptimalCompress::compressDXT1a(rgba.color(0), block);
}
else
{
nvsquish::ColourSet colours((uint8 *)rgba.colors(), nvsquish::kDxt1|nvsquish::kWeightColourByAlpha);
fit.SetColourSet(&colours, nvsquish::kDxt1);
fit.Compress(&block);
}
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
}
}
}
}
void nv::SlowCompressor::compressDXT3(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT3 block;
nvsquish::WeightedClusterFit fit;
fit.SetMetric(compressionOptions.colorWeight.x(), compressionOptions.colorWeight.y(), compressionOptions.colorWeight.z());
int flags = 0;
if (m_alphaMode == AlphaMode_Transparency)
{
flags = nvsquish::kWeightColourByAlpha;
int flags = nvsquish::kDxt1;
if (alphaMode == nvtt::AlphaMode_Transparency) flags |= nvsquish::kWeightColourByAlpha;
nvsquish::ColourSet colours((uint8 *)rgba.colors(), flags);
fit.SetColourSet(&colours, nvsquish::kDxt1);
fit.Compress(output);
}
}
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
void NormalCompressorDXT3::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
BlockDXT3 * block = new(output) BlockDXT3;
// Compress explicit alpha.
OptimalCompress::compressDXT3A(rgba, &block.alpha);
OptimalCompress::compressDXT3A(rgba, &block->alpha);
// Compress color.
if (rgba.isSingleColor())
{
OptimalCompress::compressDXT1(rgba.color(0), &block.color);
OptimalCompress::compressDXT1(rgba.color(0), &block->color);
}
else
{
nvsquish::ColourSet colours((uint8 *)rgba.colors(), flags);
fit.SetColourSet(&colours, 0);
fit.Compress(&block.color);
}
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
}
}
}
}
void nv::SlowCompressor::compressDXT5(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT5 block;
nvsquish::WeightedClusterFit fit;
fit.SetMetric(compressionOptions.colorWeight.x(), compressionOptions.colorWeight.y(), compressionOptions.colorWeight.z());
int flags = 0;
if (m_alphaMode == AlphaMode_Transparency)
{
flags = nvsquish::kWeightColourByAlpha;
if (alphaMode == nvtt::AlphaMode_Transparency) flags |= nvsquish::kWeightColourByAlpha;
nvsquish::ColourSet colours((uint8 *)rgba.colors(), flags);
fit.SetColourSet(&colours, 0);
fit.Compress(&block->color);
}
}
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
void NormalCompressorDXT5::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
BlockDXT5 * block = new(output) BlockDXT5;
// Compress alpha.
if (compressionOptions.quality == Quality_Highest)
{
OptimalCompress::compressDXT5A(rgba, &block.alpha);
OptimalCompress::compressDXT5A(rgba, &block->alpha);
}
else
{
QuickCompress::compressDXT5A(rgba, &block.alpha);
QuickCompress::compressDXT5A(rgba, &block->alpha);
}
// Compress color.
if (rgba.isSingleColor())
{
OptimalCompress::compressDXT1(rgba.color(0), &block.color);
OptimalCompress::compressDXT1(rgba.color(0), &block->color);
}
else
{
nvsquish::WeightedClusterFit fit;
fit.SetMetric(compressionOptions.colorWeight.x(), compressionOptions.colorWeight.y(), compressionOptions.colorWeight.z());
int flags = 0;
if (alphaMode == nvtt::AlphaMode_Transparency) flags |= nvsquish::kWeightColourByAlpha;
nvsquish::ColourSet colours((uint8 *)rgba.colors(), flags);
fit.SetColourSet(&colours, 0);
fit.Compress(&block.color);
}
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
}
}
fit.Compress(&block->color);
}
}
void nv::SlowCompressor::compressDXT5n(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
void NormalCompressorDXT5n::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
const uint w = m_image->width();
const uint h = m_image->height();
rgba.swizzle(4, 1, 5, 0); // 0xFF, G, 0, R
ColorBlock rgba;
BlockDXT5 block;
nvsquish::WeightedClusterFit fit;
fit.SetMetric(0, 1, 0);
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
rgba.swizzleDXT5n();
BlockDXT5 * block = new(output) BlockDXT5;
// Compress X.
if (compressionOptions.quality == Quality_Highest)
{
OptimalCompress::compressDXT5A(rgba, &block.alpha);
OptimalCompress::compressDXT5A(rgba, &block->alpha);
}
else
{
QuickCompress::compressDXT5A(rgba, &block.alpha);
QuickCompress::compressDXT5A(rgba, &block->alpha);
}
// Compress Y.
//OptimalCompress::compressDXT1G(rgba, &block.color);
/*if (rgba.isSingleColor())
if (compressionOptions.quality == Quality_Highest)
{
OptimalCompress::compressDXT1G(rgba.color(0), &block.color);
OptimalCompress::compressDXT1G(rgba, &block->color);
}
else*/
else
{
nvsquish::ColourSet colours((uint8 *)rgba.colors(), 0);
if (rgba.isSingleColor())
{
OptimalCompress::compressDXT1G(rgba.color(0), &block->color);
}
else
{
nvsquish::WeightedClusterFit fit;
fit.SetMetric(0, 1, 0);
int flags = 0;
if (alphaMode == nvtt::AlphaMode_Transparency) flags |= nvsquish::kWeightColourByAlpha;
nvsquish::ColourSet colours((uint8 *)rgba.colors(), flags);
fit.SetColourSet(&colours, 0);
fit.Compress(&block.color);
}
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
}
fit.Compress(&block->color);
}
}
}
void nv::SlowCompressor::compressBC4(const CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
void ProductionCompressorBC4::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
const uint w = m_image->width();
const uint h = m_image->height();
BlockATI1 * block = new(output) BlockATI1;
ColorBlock rgba;
AlphaBlockDXT5 block;
rgba.swizzle(0, 1, 2, 0); // Copy red to alpha
OptimalCompress::compressDXT5A(rgba, &block->alpha);
}
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
if (compressionOptions.quality == Quality_Highest)
void ProductionCompressorBC5::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
OptimalCompress::compressDXT5A(rgba, &block);
}
else
{
QuickCompress::compressDXT5A(rgba, &block);
BlockATI2 * block = new(output) BlockATI2;
rgba.swizzle(0, 1, 2, 0); // Copy red to alpha
OptimalCompress::compressDXT5A(rgba, &block->x);
rgba.swizzle(0, 1, 2, 1); // Copy green to alpha
OptimalCompress::compressDXT5A(rgba, &block->y);
}
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
}
}
}
}
void nv::SlowCompressor::compressBC5(const CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock xcolor;
ColorBlock ycolor;
BlockATI2 block;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
xcolor.init(m_image, x, y);
xcolor.splatX();
ycolor.init(m_image, x, y);
ycolor.splatY();
if (compressionOptions.quality == Quality_Highest)
{
OptimalCompress::compressDXT5A(xcolor, &block.x);
OptimalCompress::compressDXT5A(ycolor, &block.y);
}
else
{
QuickCompress::compressDXT5A(xcolor, &block.x);
QuickCompress::compressDXT5A(ycolor, &block.y);
}
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
}
}
}
}
#if defined(HAVE_S3QUANT)
void nv::s3CompressDXT1(const Image * image, const OutputOptions::Private & outputOptions)
void S3CompressorDXT1::compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
{
const uint w = image->width();
const uint h = image->height();
float error = 0.0f;
BlockDXT1 dxtBlock3;
@ -526,7 +399,7 @@ void nv::s3CompressDXT1(const Image * image, const OutputOptions::Private & outp
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
block.init(image, x, y);
block.init(inputFormat, w, h, data, x, y);
// Init rgb block.
RGBBlock rgbBlock;
@ -606,30 +479,47 @@ void nv::s3CompressDXT1(const Image * image, const OutputOptions::Private & outp
#if defined(HAVE_ATITC)
void nv::atiCompressDXT1(const Image * image, const OutputOptions::Private & outputOptions)
void AtiCompressorDXT1::compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
{
// Init source texture
ATI_TC_Texture srcTexture;
srcTexture.dwSize = sizeof(srcTexture);
srcTexture.dwWidth = image->width();
srcTexture.dwHeight = image->height();
srcTexture.dwPitch = image->width() * 4;
srcTexture.dwWidth = w;
srcTexture.dwHeight = h;
if (inputFormat == nvtt::InputFormat_BGRA_8UB)
{
srcTexture.dwPitch = w * 4;
srcTexture.format = ATI_TC_FORMAT_ARGB_8888;
}
else
{
srcTexture.dwPitch = w * 16;
srcTexture.format = ATI_TC_FORMAT_ARGB_32F;
}
srcTexture.dwDataSize = ATI_TC_CalculateBufferSize(&srcTexture);
srcTexture.pData = (ATI_TC_BYTE*) image->pixels();
srcTexture.pData = (ATI_TC_BYTE*) data;
// Init dest texture
ATI_TC_Texture destTexture;
destTexture.dwSize = sizeof(destTexture);
destTexture.dwWidth = image->width();
destTexture.dwHeight = image->height();
destTexture.dwWidth = w;
destTexture.dwHeight = h;
destTexture.dwPitch = 0;
destTexture.format = ATI_TC_FORMAT_DXT1;
destTexture.dwDataSize = ATI_TC_CalculateBufferSize(&destTexture);
destTexture.pData = (ATI_TC_BYTE*) mem::malloc(destTexture.dwDataSize);
ATI_TC_CompressOptions options;
options.dwSize = sizeof(options);
options.bUseChannelWeighting = false;
options.bUseAdaptiveWeighting = false;
options.bDXT1UseAlpha = false;
options.nCompressionSpeed = ATI_TC_Speed_Normal;
options.bDisableMultiThreading = false;
//options.bDisableMultiThreading = true;
// Compress
ATI_TC_ConvertTexture(&srcTexture, &destTexture, NULL, NULL, NULL, NULL);
ATI_TC_ConvertTexture(&srcTexture, &destTexture, &options, NULL, NULL, NULL);
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(destTexture.pData, destTexture.dwDataSize);
@ -638,23 +528,31 @@ void nv::atiCompressDXT1(const Image * image, const OutputOptions::Private & out
mem::free(destTexture.pData);
}
void nv::atiCompressDXT5(const Image * image, const OutputOptions::Private & outputOptions)
void AtiCompressorDXT5::compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
{
// Init source texture
ATI_TC_Texture srcTexture;
srcTexture.dwSize = sizeof(srcTexture);
srcTexture.dwWidth = image->width();
srcTexture.dwHeight = image->height();
srcTexture.dwPitch = image->width() * 4;
srcTexture.dwWidth = w;
srcTexture.dwHeight = h;
if (inputFormat == nvtt::InputFormat_BGRA_8UB)
{
srcTexture.dwPitch = w * 4;
srcTexture.format = ATI_TC_FORMAT_ARGB_8888;
}
else
{
srcTexture.dwPitch = w * 16;
srcTexture.format = ATI_TC_FORMAT_ARGB_32F;
}
srcTexture.dwDataSize = ATI_TC_CalculateBufferSize(&srcTexture);
srcTexture.pData = (ATI_TC_BYTE*) image->pixels();
srcTexture.pData = (ATI_TC_BYTE*) data;
// Init dest texture
ATI_TC_Texture destTexture;
destTexture.dwSize = sizeof(destTexture);
destTexture.dwWidth = image->width();
destTexture.dwHeight = image->height();
destTexture.dwWidth = w;
destTexture.dwHeight = h;
destTexture.dwPitch = 0;
destTexture.format = ATI_TC_FORMAT_DXT5;
destTexture.dwDataSize = ATI_TC_CalculateBufferSize(&destTexture);
@ -674,8 +572,10 @@ void nv::atiCompressDXT5(const Image * image, const OutputOptions::Private & out
#if defined(HAVE_SQUISH)
void nv::squishCompressDXT1(const Image * image, const OutputOptions::Private & outputOptions)
void SquishCompressorDXT1::compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
{
#pragma message(NV_FILE_LINE "TODO: Convert input to fixed point ABGR format instead of ARGB")
/*
Image img(*image);
int count = img.width() * img.height();
for (int i = 0; i < count; i++)
@ -694,6 +594,7 @@ void nv::squishCompressDXT1(const Image * image, const OutputOptions::Private &
}
mem::free(blocks);
*/
}
#endif // defined(HAVE_SQUISH)
@ -701,7 +602,7 @@ void nv::squishCompressDXT1(const Image * image, const OutputOptions::Private &
#if defined(HAVE_D3DX)
void nv::d3dxCompressDXT1(const Image * image, const OutputOptions::Private & outputOptions)
void D3DXCompressorDXT1::compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
{
IDirect3D9 * d3d = Direct3DCreate9(D3D_SDK_VERSION);
@ -719,7 +620,7 @@ void nv::d3dxCompressDXT1(const Image * image, const OutputOptions::Private & ou
err = d3d->CreateDevice(D3DADAPTER_DEFAULT, D3DDEVTYPE_REF, GetDesktopWindow(), D3DCREATE_SOFTWARE_VERTEXPROCESSING, &presentParams, &device);
IDirect3DTexture9 * texture = NULL;
err = D3DXCreateTexture(device, image->width(), image->height(), 1, 0, D3DFMT_DXT1, D3DPOOL_SYSTEMMEM, &texture);
err = D3DXCreateTexture(device, w, h, 1, 0, D3DFMT_DXT1, D3DPOOL_SYSTEMMEM, &texture);
IDirect3DSurface9 * surface = NULL;
err = texture->GetSurfaceLevel(0, &surface);
@ -727,10 +628,17 @@ void nv::d3dxCompressDXT1(const Image * image, const OutputOptions::Private & ou
RECT rect;
rect.left = 0;
rect.top = 0;
rect.bottom = image->height();
rect.right = image->width();
rect.bottom = h;
rect.right = w;
err = D3DXLoadSurfaceFromMemory(surface, NULL, NULL, image->pixels(), D3DFMT_A8R8G8B8, image->width() * sizeof(Color32), NULL, &rect, D3DX_DEFAULT, 0);
if (inputFormat == nvtt::InputFormat_BGRA_8UB)
{
err = D3DXLoadSurfaceFromMemory(surface, NULL, NULL, data, D3DFMT_A8R8G8B8, w * 4, NULL, &rect, D3DX_DEFAULT, 0);
}
else
{
err = D3DXLoadSurfaceFromMemory(surface, NULL, NULL, data, D3DFMT_A32B32G32R32F, w * 16, NULL, &rect, D3DX_DEFAULT, 0);
}
if (err != D3DERR_INVALIDCALL && err != D3DXERR_INVALIDDATA)
{
@ -740,7 +648,7 @@ void nv::d3dxCompressDXT1(const Image * image, const OutputOptions::Private & ou
err = surface->LockRect(&rect, NULL, D3DLOCK_READONLY);
if (outputOptions.outputHandler != NULL) {
int size = rect.Pitch * ((image->height() + 3) / 4);
int size = rect.Pitch * ((h + 3) / 4);
outputOptions.outputHandler->writeData(rect.pBits, size);
}
@ -757,28 +665,11 @@ void nv::d3dxCompressDXT1(const Image * image, const OutputOptions::Private & ou
#if defined(HAVE_STB)
void nv::stbCompressDXT1(const Image * image, const OutputOptions::Private & outputOptions)
void StbCompressorDXT1::compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
const uint w = image->width();
const uint h = image->height();
float error = 0.0f;
BlockDXT1 dxtBlock;
ColorBlock block;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
block.init(image, x, y);
block.swizzleSTB();
stb_compress_dxt_block((unsigned char *)&dxtBlock, (unsigned char *)block.colors(), 0, 0);
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&dxtBlock, sizeof(dxtBlock));
}
}
}
rgba.swizzle(2, 1, 0, 3); // Swap R and B
stb_compress_dxt_block((unsigned char *)output, (unsigned char *)rgba.colors(), 0, 0);
}
#endif // defined(HAVE_STB)

View File

@ -30,68 +30,153 @@
namespace nv
{
class Image;
class FloatImage;
struct ColorBlock;
class FastCompressor
struct CompressorInterface
{
public:
FastCompressor();
~FastCompressor();
void setImage(const Image * image, nvtt::AlphaMode alphaMode);
void compressDXT1(const nvtt::OutputOptions::Private & outputOptions);
void compressDXT1a(const nvtt::OutputOptions::Private & outputOptions);
void compressDXT3(const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5(const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5n(const nvtt::OutputOptions::Private & outputOptions);
private:
const Image * m_image;
nvtt::AlphaMode m_alphaMode;
virtual ~CompressorInterface() {}
virtual void compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions) = 0;
};
class SlowCompressor
struct FixedBlockCompressor : public CompressorInterface
{
public:
SlowCompressor();
~SlowCompressor();
virtual void compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void setImage(const Image * image, nvtt::AlphaMode alphaMode);
void compressDXT1(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT1a(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT3(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5n(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressBC4(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressBC5(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
private:
const Image * m_image;
nvtt::AlphaMode m_alphaMode;
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output) = 0;
virtual uint blockSize() const = 0;
};
// Fast CPU compressors.
struct FastCompressorDXT1 : public FixedBlockCompressor
{
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 8; }
};
struct FastCompressorDXT1a : public FixedBlockCompressor
{
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 8; }
};
struct FastCompressorDXT3 : public FixedBlockCompressor
{
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 16; }
};
struct FastCompressorDXT5 : public FixedBlockCompressor
{
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 16; }
};
struct FastCompressorDXT5n : public FixedBlockCompressor
{
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 16; }
};
struct FastCompressorBC4 : public FixedBlockCompressor
{
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 8; }
};
struct FastCompressorBC5 : public FixedBlockCompressor
{
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 16; }
};
// Normal CPU compressors.
struct NormalCompressorDXT1 : public FixedBlockCompressor
{
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 8; }
};
struct NormalCompressorDXT1a : public FixedBlockCompressor
{
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 8; }
};
struct NormalCompressorDXT3 : public FixedBlockCompressor
{
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 16; }
};
struct NormalCompressorDXT5 : public FixedBlockCompressor
{
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 16; }
};
struct NormalCompressorDXT5n : public FixedBlockCompressor
{
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 16; }
};
// Production CPU compressors.
struct ProductionCompressorBC4 : public FixedBlockCompressor
{
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 8; }
};
struct ProductionCompressorBC5 : public FixedBlockCompressor
{
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 16; }
};
// External compressors.
#if defined(HAVE_S3QUANT)
void s3CompressDXT1(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
struct S3CompressorDXT1 : public CompressorInterface
{
virtual void compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
};
#endif
#if defined(HAVE_ATITC)
void atiCompressDXT1(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
void atiCompressDXT5(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
struct AtiCompressorDXT1 : public CompressorInterface
{
virtual void compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
};
struct AtiCompressorDXT5 : public CompressorInterface
{
virtual void compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
};
#endif
#if defined(HAVE_SQUISH)
void squishCompressDXT1(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
struct SquishCompressorDXT1 : public CompressorInterface
{
virtual void compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
};
#endif
#if defined(HAVE_D3DX)
void d3dxCompressDXT1(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
struct D3DXCompressorDXT1 : public CompressorInterface
{
virtual void compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
};
#endif
#if defined(HAVE_D3DX)
void stbCompressDXT1(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
#if defined(HAVE_STB)
struct StbCompressorDXT1 : public FixedBlockCompressor
{
virtual void compressBlock(ColorBlock & rgba, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 8; }
};
#endif
} // nv namespace

View File

@ -222,6 +222,7 @@ Compressor::Compressor() : m(*new Compressor::Private())
if (m.cudaEnabled)
{
#pragma message(NV_FILE_LINE "FIXME: This code is duplicated below.")
// Select fastest CUDA device.
int device = cuda::getFastestDevice();
if (!cuda::setDevice(device))
@ -231,7 +232,7 @@ Compressor::Compressor() : m(*new Compressor::Private())
}
else
{
m.cuda = new CudaCompressor();
m.cuda = new CudaContext();
if (!m.cuda->isValid())
{
@ -268,7 +269,7 @@ void Compressor::enableCudaAcceleration(bool enable)
}
else
{
m.cuda = new CudaCompressor();
m.cuda = new CudaContext();
if (!m.cuda->isValid())
{
@ -292,17 +293,18 @@ bool Compressor::process(const InputOptions & inputOptions, const CompressionOpt
return m.compress(inputOptions.m, compressionOptions.m, outputOptions.m);
}
/// Estimate the size of compressing the input with the given options.
int Compressor::estimateSize(const InputOptions & inputOptions, const CompressionOptions & compressionOptions) const
{
return m.estimateSize(inputOptions.m, compressionOptions.m);
}
// RAW api.
bool Compressor::compress2D(InputFormat format, int w, int h, void * data, const CompressionOptions & compressionOptions, const OutputOptions & outputOptions) const
{
// @@ Make sure type of input format matches compression format.
#pragma message(NV_FILE_LINE "TODO: Implement raw compress api")
return false;
}
int Compressor::estimateSize(int w, int h, int d, const CompressionOptions & compressionOptions) const
@ -324,16 +326,21 @@ TexImage Compressor::createTexImage() const
return *new TexImage();
}
bool Compressor::outputHeader(const TexImage & tex, int mipmapCount, const CompressionOptions & compressionOptions, const OutputOptions & outputOptions) const
{
m.outputHeader(tex, mipmapCount, compressionOptions.m, outputOptions.m);
return m.outputHeader(tex, mipmapCount, compressionOptions.m, outputOptions.m);
}
bool Compressor::compress(const TexImage & tex, const CompressionOptions & compressionOptions, const OutputOptions & outputOptions) const
{
#pragma message(NV_FILE_LINE "TODO: Implement TexImage compress api")
// @@ Convert to fixed point and call compress2D for each face.
return false;
}
/// Estimate the size of compressing the given texture.
int Compressor::estimateSize(const TexImage & tex, const CompressionOptions & compressionOptions) const
{
const uint w = tex.width();
@ -345,6 +352,8 @@ int Compressor::estimateSize(const TexImage & tex, const CompressionOptions & co
}
bool Compressor::Private::compress(const InputOptions::Private & inputOptions, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const
{
// Make sure enums match.
@ -359,8 +368,6 @@ bool Compressor::Private::compress(const InputOptions::Private & inputOptions, c
return false;
}
#pragma message(NV_FILE_LINE "TODO: If DefaultOutputHandler, then seek begining of the file.")
inputOptions.computeTargetExtents();
// Output DDS header.
@ -625,7 +632,10 @@ bool Compressor::Private::outputHeader(const TexImage & tex, int mipmapCount, co
{
if (tex.width() <= 0 || tex.height() <= 0 || tex.depth() <= 0 || mipmapCount <= 0)
{
#pragma message(NV_FILE_LINE "TODO: Set invalid argument error.")
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_InvalidInput);
}
return false;
}
@ -1252,6 +1262,182 @@ void Compressor::Private::quantizeMipmap(Mipmap & mipmap, const CompressionOptio
}
CompressorInterface * Compressor::Private::chooseCpuCompressor(const CompressionOptions::Private & compressionOptions) const
{
if (compressionOptions.format == Format_DXT1)
{
#if defined(HAVE_S3QUANT)
if (compressionOptions.externalCompressor == "s3") return new S3CompressorDXT1;
else
#endif
#if defined(HAVE_ATITC)
if (compressionOptions.externalCompressor == "ati") return new AtiCompressorDXT1;
else
#endif
#if defined(HAVE_SQUISH)
if (compressionOptions.externalCompressor == "squish") return new SquishCompressorDXT1;
else
#endif
#if defined(HAVE_D3DX)
if (compressionOptions.externalCompressor == "d3dx") return new D3DXCompressorDXT1;
else
#endif
#if defined(HAVE_D3DX)
if (compressionOptions.externalCompressor == "stb") return new StbCompressorDXT1;
else
#endif
if (compressionOptions.quality == Quality_Fastest)
{
return new FastCompressorDXT1;
}
return new NormalCompressorDXT1;
}
else if (compressionOptions.format == Format_DXT1a)
{
if (compressionOptions.quality == Quality_Fastest)
{
return new FastCompressorDXT1a;
}
return new NormalCompressorDXT1a;
}
else if (compressionOptions.format == Format_DXT1n)
{
// Not supported.
}
else if (compressionOptions.format == Format_DXT3)
{
if (compressionOptions.quality == Quality_Fastest)
{
return new FastCompressorDXT3;
}
return new NormalCompressorDXT3;
}
else if (compressionOptions.format == Format_DXT5)
{
#if defined(HAVE_ATITC)
if (compressionOptions.externalCompressor == "ati") return new AtiCompressorDXT5;
else
#endif
if (compressionOptions.quality == Quality_Fastest)
{
return new FastCompressorDXT5;
}
return new NormalCompressorDXT5;
}
else if (compressionOptions.format == Format_DXT5n)
{
if (compressionOptions.quality == Quality_Fastest)
{
return new FastCompressorDXT5n;
}
return new NormalCompressorDXT5n;
}
else if (compressionOptions.format == Format_BC4)
{
if (compressionOptions.quality == Quality_Fastest || compressionOptions.quality == Quality_Normal)
{
return new FastCompressorBC4;
}
return new ProductionCompressorBC4;
}
else if (compressionOptions.format == Format_BC5)
{
if (compressionOptions.quality == Quality_Fastest || compressionOptions.quality == Quality_Normal)
{
return new FastCompressorBC5;
}
return new ProductionCompressorBC5;
}
else if (compressionOptions.format == Format_CTX1)
{
// Not supported.
}
else if (compressionOptions.format == Format_BC6)
{
// Not supported.
}
else if (compressionOptions.format == Format_BC7)
{
// Not supported.
}
return NULL;
}
CompressorInterface * Compressor::Private::chooseGpuCompressor(const CompressionOptions::Private & compressionOptions) const
{
nvDebugCheck(cudaSupported);
if (compressionOptions.quality == Quality_Fastest)
{
// Do not use CUDA compressors in fastest quality mode.
return NULL;
}
if (compressionOptions.format == Format_DXT1)
{
return new CudaCompressorDXT1(*cuda);
}
else if (compressionOptions.format == Format_DXT1a)
{
#pragma message(NV_FILE_LINE "TODO: Implement CUDA DXT1a compressor.")
}
else if (compressionOptions.format == Format_DXT1n)
{
// Not supported.
}
else if (compressionOptions.format == Format_DXT3)
{
return new CudaCompressorDXT3(*cuda);
}
else if (compressionOptions.format == Format_DXT5)
{
return new CudaCompressorDXT5(*cuda);
}
else if (compressionOptions.format == Format_DXT5n)
{
// @@ Return CUDA compressor.
}
else if (compressionOptions.format == Format_BC4)
{
// Not supported.
}
else if (compressionOptions.format == Format_BC5)
{
// Not supported.
}
else if (compressionOptions.format == Format_CTX1)
{
// @@ Return CUDA compressor.
}
else if (compressionOptions.format == Format_BC6)
{
// Not supported.
}
else if (compressionOptions.format == Format_BC7)
{
// Not supported.
}
return NULL;
}
// Compress the given mipmap.
bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptions::Private & inputOptions, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const
{
@ -1272,196 +1458,26 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
const Image * image = mipmap.asFixedImage();
nvDebugCheck(image != NULL);
// @@ Use FastCompressor::isSupported(compressionOptions.format) to chose compressor.
// Decide what compressor to use.
CompressorInterface * compressor = NULL;
if (cudaEnabled && image->width() * image->height() >= 512)
{
compressor = chooseGpuCompressor(compressionOptions);
}
if (compressor == NULL)
{
compressor = chooseCpuCompressor(compressionOptions);
}
FastCompressor fast;
fast.setImage(image, inputOptions.alphaMode);
SlowCompressor slow;
slow.setImage(image, inputOptions.alphaMode);
const bool useCuda = cudaEnabled && image->width() * image->height() >= 512;
if (compressionOptions.format == Format_DXT1)
{
#if defined(HAVE_S3QUANT)
if (compressionOptions.externalCompressor == "s3")
{
s3CompressDXT1(image, outputOptions);
}
else
#endif
#if defined(HAVE_ATITC)
if (compressionOptions.externalCompressor == "ati")
{
atiCompressDXT1(image, outputOptions);
}
else
#endif
#if defined(HAVE_SQUISH)
if (compressionOptions.externalCompressor == "squish")
{
squishCompressDXT1(image, outputOptions);
}
else
#endif
#if defined(HAVE_D3DX)
if (compressionOptions.externalCompressor == "d3dx")
{
d3dxCompressDXT1(image, outputOptions);
}
else
#endif
#if defined(HAVE_D3DX)
if (compressionOptions.externalCompressor == "stb")
{
stbCompressDXT1(image, outputOptions);
}
else
#endif
if (compressionOptions.quality == Quality_Fastest)
{
fast.compressDXT1(outputOptions);
}
else
{
if (useCuda)
{
nvDebugCheck(cudaSupported);
cuda->setImage(image, inputOptions.alphaMode);
//cuda->compressDXT1(compressionOptions, outputOptions);
cuda->compressDXT1(compressionOptions, outputOptions);
}
else
{
slow.compressDXT1(compressionOptions, outputOptions);
}
}
}
else if (compressionOptions.format == Format_DXT1a)
{
if (compressionOptions.quality == Quality_Fastest)
{
fast.compressDXT1a(outputOptions);
}
else
{
if (useCuda)
{
nvDebugCheck(cudaSupported);
/*cuda*/slow.compressDXT1a(compressionOptions, outputOptions);
}
else
{
slow.compressDXT1a(compressionOptions, outputOptions);
}
}
}
else if (compressionOptions.format == Format_DXT1n)
{
if (useCuda)
{
nvDebugCheck(cudaSupported);
cuda->setImage(image, inputOptions.alphaMode);
cuda->compressDXT1n(compressionOptions, outputOptions);
}
else
if (compressor == NULL)
{
if (outputOptions.errorHandler) outputOptions.errorHandler->error(Error_UnsupportedFeature);
}
}
else if (compressionOptions.format == Format_DXT3)
{
if (compressionOptions.quality == Quality_Fastest)
{
fast.compressDXT3(outputOptions);
}
else
{
if (useCuda)
{
nvDebugCheck(cudaSupported);
cuda->setImage(image, inputOptions.alphaMode);
cuda->compressDXT3(compressionOptions, outputOptions);
}
else
{
slow.compressDXT3(compressionOptions, outputOptions);
}
}
}
else if (compressionOptions.format == Format_DXT5)
{
#if defined(HAVE_ATITC)
if (compressionOptions.externalCompressor == "ati")
{
atiCompressDXT5(image, outputOptions);
}
else
#endif
if (compressionOptions.quality == Quality_Fastest)
{
fast.compressDXT5(outputOptions);
}
else
{
if (useCuda)
{
nvDebugCheck(cudaSupported);
cuda->setImage(image, inputOptions.alphaMode);
cuda->compressDXT5(compressionOptions, outputOptions);
}
else
{
slow.compressDXT5(compressionOptions, outputOptions);
}
}
}
else if (compressionOptions.format == Format_DXT5n)
{
if (compressionOptions.quality == Quality_Fastest)
{
fast.compressDXT5n(outputOptions);
}
else
{
/*if (useCuda)
{
nvDebugCheck(cudaSupported);
cuda->setImage(image, inputOptions.alphaMode);
cuda->compressDXT5n(compressionOptions, outputOptions);
}
else*/
{
slow.compressDXT5n(compressionOptions, outputOptions);
}
}
}
else if (compressionOptions.format == Format_BC4)
{
slow.compressBC4(compressionOptions, outputOptions);
}
else if (compressionOptions.format == Format_BC5)
{
slow.compressBC5(compressionOptions, outputOptions);
}
else if (compressionOptions.format == Format_CTX1)
{
if (useCuda)
{
nvDebugCheck(cudaSupported);
cuda->setImage(image, inputOptions.alphaMode);
cuda->compressCTX1(compressionOptions, outputOptions);
}
else
{
if (outputOptions.errorHandler) outputOptions.errorHandler->error(Error_UnsupportedFeature);
}
compressor->compress(InputFormat_BGRA_8UB, inputOptions.alphaMode, image->width(), image->height(), (void *)image->pixels(), compressionOptions, outputOptions);
delete compressor;
}
}

View File

@ -27,6 +27,7 @@
#include <nvcore/Ptr.h>
#include <nvtt/cuda/CudaCompressDXT.h>
#include <nvtt/CompressDXT.h>
#include "nvtt.h"
@ -44,6 +45,9 @@ namespace nvtt
Private() {}
bool compress(const InputOptions::Private & inputOptions, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const;
bool compress(const void * data, int width, int height, const CompressionOptions & compressionOptions, const OutputOptions & outputOptions) const;
int estimateSize(const InputOptions::Private & inputOptions, const CompressionOptions::Private & compressionOptions) const;
bool outputHeader(const TexImage & tex, int mipmapCount, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions);
@ -51,6 +55,10 @@ namespace nvtt
private:
bool outputHeader(const InputOptions::Private & inputOptions, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const;
nv::CompressorInterface * chooseCpuCompressor(const CompressionOptions::Private & compressionOptions) const;
nv::CompressorInterface * chooseGpuCompressor(const CompressionOptions::Private & compressionOptions) const;
bool compressMipmaps(uint f, const InputOptions::Private & inputOptions, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const;
bool initMipmap(Mipmap & mipmap, const InputOptions::Private & inputOptions, uint w, uint h, uint d, uint f, uint m) const;
@ -71,7 +79,7 @@ namespace nvtt
bool cudaSupported;
bool cudaEnabled;
nv::AutoPtr<nv::CudaCompressor> cuda;
nv::AutoPtr<nv::CudaContext> cuda;
};

View File

@ -296,6 +296,51 @@ __device__ float3 blockError3(const float3 * colors, uint permutation, float3 a,
// Sort colors
////////////////////////////////////////////////////////////////////////////////
// @@ Experimental code to avoid duplicate colors for faster compression.
// We could first sort along the best fit line and only compare colors that have the same projection.
// The hardest part is to maintain the indices to map packed/sorted colors to the input colors.
// We also need to update several functions that assume the number of colors is fixed to 16.
// And compute different bit maps for the different color counts.
// This is a fairly high amount of work.
__device__ int packColors(float3 * values, float * weights, int * ranks)
{
const int tid = threadIdx.x;
__shared__ int count;
count = 0;
bool alive = true;
// Append this
for (int i = 0; i < 16; i++)
{
// One thread leads on each iteration.
if (tid == i) {
// If thread alive, then append element.
if (alive) {
values[count] = values[i];
weights[count] = weights[i];
count++;
}
// Otherwise update weight.
else {
weights[ranks[i]] += weights[i];
}
}
// Kill all threads that have the same element and record rank.
if (values[i] == values[tid]) {
alive = false;
ranks[tid] = count - 1;
}
}
return count;
}
__device__ void sortColors(const float * values, int * ranks)
{
#if __DEVICE_EMULATION__
@ -343,12 +388,60 @@ __device__ void sortColors(const float * values, int * ranks)
#endif
}
__device__ void sortColors(const float * values, int * ranks, int count)
{
#if __DEVICE_EMULATION__
if (threadIdx.x == 0)
{
for (int tid = 0; tid < count; tid++)
{
int rank = 0;
for (int i = 0; i < count; i++)
{
rank += (values[i] < values[tid]);
}
ranks[tid] = rank;
}
// Resolve elements with the same index.
for (int i = 0; i < count-1; i++)
{
for (int tid = 0; tid < count; tid++)
{
if (tid > i && ranks[tid] == ranks[i]) ++ranks[tid];
}
}
}
#else
const int tid = threadIdx.x;
int rank = 0;
#pragma unroll
for (int i = 0; i < count; i++)
{
rank += (values[i] < values[tid]);
}
ranks[tid] = rank;
// Resolve elements with the same index.
#pragma unroll
for (int i = 0; i < count-1; i++)
{
if ((tid > i) & (ranks[tid] == ranks[i])) ++ranks[tid];
}
#endif
}
////////////////////////////////////////////////////////////////////////////////
// Load color block to shared mem
////////////////////////////////////////////////////////////////////////////////
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], int xrefs[16], int * sameColor)
/*__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], int xrefs[16], int * sameColor)
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
@ -389,9 +482,9 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
__debugsync();
}
#endif
}
}*/
__device__ void loadColorBlockTex(uint bn, uint w, float3 colors[16], float3 sums[16], int xrefs[16], int * sameColor)
__device__ void loadColorBlockTex(uint firstBlock, uint width, float3 colors[16], float3 sums[16], int xrefs[16], int * sameColor)
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
@ -400,8 +493,8 @@ __device__ void loadColorBlockTex(uint bn, uint w, float3 colors[16], float3 sum
if (idx < 16)
{
float x = 4 * ((bn + bid) % w) + idx % 4; // @@ Avoid mod and div by using 2D grid?
float y = 4 * ((bn + bid) / w) + idx / 4;
float x = 4 * ((firstBlock + bid) % width) + idx % 4; // @@ Avoid mod and div by using 2D grid?
float y = 4 * ((firstBlock + bid) / width) + idx / 4;
// Read color and copy to shared mem.
float4 c = tex2D(tex, x, y);
@ -437,10 +530,107 @@ __device__ void loadColorBlockTex(uint bn, uint w, float3 colors[16], float3 sum
__debugsync();
}
#endif
}
/*
__device__ void loadColorBlockTex(uint firstBlock, uint w, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16], int * sameColor)
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
__shared__ float dps[16];
if (idx < 16)
{
float x = 4 * ((firstBlock + bid) % w) + idx % 4; // @@ Avoid mod and div by using 2D grid?
float y = 4 * ((firstBlock + bid) / w) + idx / 4;
// Read color and copy to shared mem.
float4 c = tex2D(tex, x, y);
colors[idx].x = c.z;
colors[idx].y = c.y;
colors[idx].z = c.x;
weights[idx] = 1;
int count = packColors(colors, weights);
if (idx < count)
{
// Sort colors along the best fit line.
colorSums(colors, sums);
float3 axis = bestFitLine(colors, sums[0], kColorMetric);
*sameColor = (axis == make_float3(0, 0, 0));
dps[idx] = dot(colors[idx], axis);
sortColors(dps, xrefs);
float3 tmp = colors[idx];
colors[xrefs[idx]] = tmp;
}
}
}
*/
__device__ void loadColorBlockTex(uint firstBlock, uint width, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16], int * sameColor)
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
__shared__ float3 rawColors[16];
__shared__ float dps[16];
if (idx < 16)
{
float x = 4 * ((firstBlock + bid) % width) + idx % 4; // @@ Avoid mod and div by using 2D grid?
float y = 4 * ((firstBlock + bid) / width) + idx / 4;
// Read color and copy to shared mem.
float4 c = tex2D(tex, x, y);
rawColors[idx].x = c.z;
rawColors[idx].y = c.y;
rawColors[idx].z = c.x;
weights[idx] = c.w;
colors[idx] = rawColors[idx] * weights[idx];
// No need to synchronize, 16 < warp size.
__debugsync();
// Sort colors along the best fit line.
colorSums(colors, sums);
float3 axis = bestFitLine(colors, sums[0], kColorMetric);
*sameColor = (axis == make_float3(0, 0, 0));
// Single color compressor needs unweighted colors.
if (*sameColor) colors[idx] = rawColors[idx];
dps[idx] = dot(colors[idx], axis);
__debugsync();
sortColors(dps, xrefs);
float3 tmp = colors[idx];
float w = weights[idx];
__debugsync();
colors[xrefs[idx]] = tmp;
weights[xrefs[idx]] = w;
}
#if __DEVICE_EMULATION__
else
{
__debugsync();
__debugsync();
__debugsync();
}
#endif
}
/*
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16], int * sameColor)
{
const int bid = blockIdx.x;
@ -494,6 +684,7 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
}
#endif
}
*/
__device__ void loadColorBlock(const uint * image, float2 colors[16], float2 sums[16], int xrefs[16], int * sameColor)
{
@ -1457,48 +1648,15 @@ __device__ void saveSingleColorBlockCTX1(float2 color, uint2 * result)
////////////////////////////////////////////////////////////////////////////////
// Compress color block
////////////////////////////////////////////////////////////////////////////////
__global__ void compressDXT1(const uint * permutations, const uint * image, uint2 * result)
__global__ void compressDXT1(uint firstBlock, uint w, const uint * permutations, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlock(image, colors, sums, xrefs, &sameColor);
__syncthreads();
if (sameColor)
{
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
return;
}
ushort bestStart, bestEnd;
uint bestPermutation;
__shared__ float errors[NUM_THREADS];
evalAllPermutations(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
// Use a parallel reduction to find minimum error.
const int minIdx = findMinError(errors);
// Only write the result of the winner thread.
if (threadIdx.x == minIdx)
{
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result);
}
}
__global__ void compressDXT1_Tex(uint bn, uint w, const uint * permutations, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlockTex(bn, w, colors, sums, xrefs, &sameColor);
loadColorBlockTex(firstBlock, w, colors, sums, xrefs, &sameColor);
__syncthreads();
@ -1534,14 +1692,14 @@ __global__ void compressDXT1_Tex(uint bn, uint w, const uint * permutations, uin
}
__global__ void compressLevel4DXT1(const uint * permutations, const uint * image, uint2 * result)
__global__ void compressLevel4DXT1(uint firstBlock, uint w, const uint * permutations, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlock(image, colors, sums, xrefs, &sameColor);
loadColorBlockTex(firstBlock, w, colors, sums, xrefs, &sameColor);
__syncthreads();
@ -1568,7 +1726,7 @@ __global__ void compressLevel4DXT1(const uint * permutations, const uint * image
}
}
__global__ void compressWeightedDXT1(const uint * permutations, const uint * image, uint2 * result)
__global__ void compressWeightedDXT1(uint firstBlock, uint w, const uint * permutations, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
@ -1576,7 +1734,7 @@ __global__ void compressWeightedDXT1(const uint * permutations, const uint * ima
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlock(image, colors, sums, weights, xrefs, &sameColor);
loadColorBlockTex(firstBlock, w, colors, sums, weights, xrefs, &sameColor);
__syncthreads();
@ -1987,17 +2145,7 @@ extern "C" void setupCompressKernel(const float weights[3])
cudaMemcpyToSymbol(kColorMetricSqr, weightsSqr, sizeof(float) * 3, 0);
}
////////////////////////////////////////////////////////////////////////////////
// Launch kernel
////////////////////////////////////////////////////////////////////////////////
extern "C" void compressKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
{
compressDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}
extern "C" void compressKernelDXT1_Tex(uint bn, uint blockNum, uint w, cudaArray * d_data, uint * d_result, uint * d_bitmaps)
extern "C" void bindTextureToArray(cudaArray * d_data)
{
// Setup texture
tex.normalized = false;
@ -2006,21 +2154,61 @@ extern "C" void compressKernelDXT1_Tex(uint bn, uint blockNum, uint w, cudaArray
tex.addressMode[1] = cudaAddressModeClamp;
cudaBindTextureToArray(tex, d_data);
compressDXT1_Tex<<<blockNum, NUM_THREADS>>>(bn, w, d_bitmaps, (uint2 *)d_result);
}
extern "C" void compressKernelDXT1_Level4(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
////////////////////////////////////////////////////////////////////////////////
// Launch kernel
////////////////////////////////////////////////////////////////////////////////
// DXT1 compressors:
extern "C" void compressKernelDXT1(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
{
compressLevel4DXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
compressDXT1<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
}
extern "C" void compressWeightedKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
extern "C" void compressKernelDXT1_Level4(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
{
compressWeightedDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
compressLevel4DXT1<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
}
extern "C" void compressWeightedKernelDXT1(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
{
compressWeightedDXT1<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
}
// @@ DXT1a compressors.
// @@ DXT3 compressors:
extern "C" void compressKernelDXT3(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
{
//compressDXT3<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
}
extern "C" void compressWeightedKernelDXT3(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
{
//compressWeightedDXT3<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
}
// @@ DXT5 compressors.
extern "C" void compressKernelDXT5(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
{
//compressDXT5<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
}
extern "C" void compressWeightedKernelDXT5(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps)
{
//compressWeightedDXT5<<<blockNum, NUM_THREADS>>>(firstBlock, w, d_bitmaps, (uint2 *)d_result);
}
/*
extern "C" void compressNormalKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
{
compressNormalDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
@ -2030,16 +2218,10 @@ extern "C" void compressKernelCTX1(uint blockNum, uint * d_data, uint * d_result
{
compressCTX1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}
*/
/*
extern "C" void compressKernelDXT5n(uint blockNum, cudaArray * d_data, uint * d_result)
{
// Setup texture
tex.normalized = false;
tex.filterMode = cudaFilterModePoint;
tex.addressMode[0] = cudaAddressModeClamp;
tex.addressMode[1] = cudaAddressModeClamp;
cudaBindTextureToArray(tex, d_data);
// compressDXT5n<<<blockNum/128, 128>>>(blockNum, (uint2 *)d_result);
}
*/

View File

@ -52,16 +52,20 @@ using namespace nvtt;
extern "C" void setupCompressKernel(const float weights[3]);
extern "C" void compressKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressKernelDXT1_Tex(uint bn, uint blockNum, uint w, cudaArray * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void bindTextureToArray(cudaArray * d_data);
extern "C" void compressKernelDXT1(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps);
extern "C" void compressKernelDXT1_Level4(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressWeightedKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressNormalKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressKernelCTX1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressKernelDXT3(uint firstBlock, uint blockNum, uint w, uint * d_result, uint * d_bitmaps);
//extern "C" void compressNormalKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
//extern "C" void compressKernelCTX1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
#include "Bitmaps.h" // @@ Rename to BitmapTable.h
#pragma message(NV_FILE_LINE "TODO: Rename Bitmaps.h to BitmapTable.h")
#include "Bitmaps.h"
/*
// Convert linear image to block linear.
static void convertToBlockLinear(const Image * image, uint * blockLinearImage)
{
@ -81,45 +85,49 @@ static void convertToBlockLinear(const Image * image, uint * blockLinearImage)
}
}
}
*/
#endif
CudaCompressor::CudaCompressor() : m_bitmapTable(NULL), m_bitmapTableCTX(NULL), m_data(NULL), m_result(NULL)
CudaContext::CudaContext() :
bitmapTable(NULL),
bitmapTableCTX(NULL),
data(NULL),
result(NULL)
{
#if defined HAVE_CUDA
// Allocate and upload bitmaps.
cudaMalloc((void**) &m_bitmapTable, 992 * sizeof(uint));
if (m_bitmapTable != NULL)
cudaMalloc((void**) &bitmapTable, 992 * sizeof(uint));
if (bitmapTable != NULL)
{
cudaMemcpy(m_bitmapTable, s_bitmapTable, 992 * sizeof(uint), cudaMemcpyHostToDevice);
cudaMemcpy(bitmapTable, s_bitmapTable, 992 * sizeof(uint), cudaMemcpyHostToDevice);
}
cudaMalloc((void**) &m_bitmapTableCTX, 704 * sizeof(uint));
if (m_bitmapTableCTX != NULL)
cudaMalloc((void**) &bitmapTableCTX, 704 * sizeof(uint));
if (bitmapTableCTX != NULL)
{
cudaMemcpy(m_bitmapTableCTX, s_bitmapTableCTX, 704 * sizeof(uint), cudaMemcpyHostToDevice);
cudaMemcpy(bitmapTableCTX, s_bitmapTableCTX, 704 * sizeof(uint), cudaMemcpyHostToDevice);
}
// Allocate scratch buffers.
cudaMalloc((void**) &m_data, MAX_BLOCKS * 64U);
cudaMalloc((void**) &m_result, MAX_BLOCKS * 8U);
cudaMalloc((void**) &data, MAX_BLOCKS * 64U);
cudaMalloc((void**) &result, MAX_BLOCKS * 8U);
#endif
}
CudaCompressor::~CudaCompressor()
CudaContext::~CudaContext()
{
#if defined HAVE_CUDA
// Free device mem allocations.
cudaFree(m_data);
cudaFree(m_result);
cudaFree(m_bitmapTable);
cudaFree(m_bitmapTableCTX);
cudaFree(bitmapTableCTX);
cudaFree(bitmapTable);
cudaFree(data);
cudaFree(result);
#endif
}
bool CudaCompressor::isValid() const
bool CudaContext::isValid() const
{
#if defined HAVE_CUDA
cudaError_t err = cudaGetLastError();
@ -129,185 +137,178 @@ bool CudaCompressor::isValid() const
return false;
}
#endif
return m_data != NULL && m_result != NULL && m_bitmapTable != NULL;
return bitmapTable != NULL && bitmapTableCTX != NULL && data != NULL && result != NULL;
}
CudaCompressor::CudaCompressor(CudaContext & ctx) : m_ctx(ctx)
{
}
void CudaCompressor::compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
// Allocate image as a cuda array.
cudaArray * d_image;
if (inputFormat == nvtt::InputFormat_BGRA_8UB)
{
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(8, 8, 8, 8, cudaChannelFormatKindUnsigned);
cudaMallocArray(&d_image, &channelDesc, w, h);
const int imageSize = w * h * sizeof(uint);
cudaMemcpyToArray(d_image, 0, 0, data, imageSize, cudaMemcpyHostToDevice);
}
else
{
#pragma message(NV_FILE_LINE "FIXME: Floating point textures not really supported by CUDA compressors.")
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(32, 32, 32, 32, cudaChannelFormatKindFloat);
cudaMallocArray(&d_image, &channelDesc, w, h);
const int imageSize = w * h * sizeof(uint);
cudaMemcpyToArray(d_image, 0, 0, data, imageSize, cudaMemcpyHostToDevice);
}
// Image size in blocks.
const uint bw = (w + 3) / 4;
const uint bh = (h + 3) / 4;
const uint bs = blockSize();
const uint blockNum = bw * bh;
const uint compressedSize = blockNum * bs;
void * h_result = malloc(min(blockNum, MAX_BLOCKS) * bs);
setup(d_image, compressionOptions);
// Timer timer;
// timer.start();
uint bn = 0;
while(bn != blockNum)
{
uint count = min(blockNum - bn, MAX_BLOCKS);
compressBlocks(bn, count, w, h, alphaMode, compressionOptions, h_result);
// Check for errors.
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
//nvDebug("CUDA Error: %s\n", cudaGetErrorString(err));
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
}
// Output result.
if (outputOptions.outputHandler != NULL)
{
outputOptions.outputHandler->writeData(h_result, count * bs);
}
bn += count;
}
//timer.stop();
//printf("\rCUDA time taken: %.3f seconds\n", timer.elapsed() / CLOCKS_PER_SEC);
free(h_result);
cudaFreeArray(d_image);
#else
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
#endif
}
void CudaCompressorDXT1::setup(cudaArray * image, const nvtt::CompressionOptions::Private & compressionOptions)
{
setupCompressKernel(compressionOptions.colorWeight.ptr());
bindTextureToArray(image);
}
void CudaCompressorDXT1::compressBlocks(uint first, uint count, uint w, uint h, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
// Launch kernel.
compressKernelDXT1(first, count, w, m_ctx.result, m_ctx.bitmapTable);
// Copy result to host.
cudaMemcpy(output, m_ctx.result, count * 8, cudaMemcpyDeviceToHost);
}
void CudaCompressorDXT3::setup(cudaArray * image, const nvtt::CompressionOptions::Private & compressionOptions)
{
setupCompressKernel(compressionOptions.colorWeight.ptr());
bindTextureToArray(image);
}
void CudaCompressorDXT3::compressBlocks(uint first, uint count, uint w, uint h, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
// Launch kernel.
compressKernelDXT3(first, count, w, m_ctx.result, m_ctx.bitmapTable);
// Copy result to host.
cudaMemcpy(output, m_ctx.result, count * 16, cudaMemcpyDeviceToHost);
}
void CudaCompressorDXT5::setup(cudaArray * image, const nvtt::CompressionOptions::Private & compressionOptions)
{
setupCompressKernel(compressionOptions.colorWeight.ptr());
bindTextureToArray(image);
}
void CudaCompressorDXT5::compressBlocks(uint first, uint count, uint w, uint h, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output)
{
/*// Launch kernel.
compressKernelDXT5(first, count, w, m_ctx.result, m_ctx.bitmapTable);
// Copy result to host.
cudaMemcpy(output, m_ctx.result, count * 16, cudaMemcpyDeviceToHost);*/
// Launch kernel.
if (alphaMode == AlphaMode_Transparency)
{
// compressWeightedKernelDXT1(first, count, w, m_ctx.result, m_ctx.bitmapTable);
}
else
{
// compressKernelDXT1_Level4(first, count, w, m_ctx.result, m_ctx.bitmapTable);
}
// Compress alpha in parallel with the GPU.
for (uint i = 0; i < count; i++)
{
//ColorBlock rgba(blockLinearImage + (first + i) * 16);
//OptimalCompress::compressDXT3A(rgba, alphaBlocks + i);
}
// Copy result to host.
cudaMemcpy(output, m_ctx.result, count * 8, cudaMemcpyDeviceToHost);
// @@ Interleave color and alpha blocks.
}
// @@ This code is very repetitive and needs to be cleaned up.
#if 0
struct CudaCompressionKernel
{
virtual void setup(const CompressionOptions::Private & compressionOptions)
{
setupCompressKernel(compressionOptions.colorWeight.ptr());
}
virtual void setBitmapTable();
virtual void runDeviceCode(int count);
virtual void runHostCode(int count);
};
void CudaCompressor::compressKernel(CudaCompressionKernel * kernel)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
// Image size in blocks.
const uint w = (image->width() + 3) / 4;
const uint h = (image->height() + 3) / 4;
uint imageSize = w * h * 16 * sizeof(Color32);
uint * blockLinearImage = (uint *) malloc(imageSize);
convertToBlockLinear(image, blockLinearImage); // @@ Do this in parallel with the GPU, or in the GPU!
const uint blockNum = w * h;
const uint compressedSize = blockNum * 8;
clock_t start = clock();
kernel->setup(compressionOptions);
kernel->setBitmapTable(m_bitmapTable);
// TODO: Add support for multiple GPUs.
uint bn = 0;
while(bn != blockNum)
{
uint count = min(blockNum - bn, MAX_BLOCKS);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
kernel->runDeviceCode(count, m_data, m_result);
kernel->runHostCode(count);
// Check for errors.
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
nvDebug("CUDA Error: %s\n", cudaGetErrorString(err));
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
kernel->outputResult(outputOptions.outputHandler);
if (outputOptions.outputHandler != NULL)
{
outputOptions.outputHandler->writeData(blockLinearImage, count * 8);
}
bn += count;
}
clock_t end = clock();
//printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
free(blockLinearImage);
#else
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
#endif
}
#endif // 0
void CudaCompressor::setImage(const Image * image, nvtt::AlphaMode alphaMode)
{
m_image = image;
m_alphaMode = alphaMode;
}
/// Compress image using CUDA.
void CudaCompressor::compressDXT1(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
// Allocate image as a cuda array.
cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc(8, 8, 8, 8, cudaChannelFormatKindUnsigned);
cudaArray * d_image;
const int imageSize = m_image->width() * m_image->height() * sizeof(uint);
cudaMallocArray(&d_image, &channelDesc, m_image->width(), m_image->height());
cudaMemcpyToArray(d_image, 0, 0, m_image->pixels(), imageSize, cudaMemcpyHostToDevice);
// Image size in blocks.
const uint w = (m_image->width() + 3) / 4;
const uint h = (m_image->height() + 3) / 4;
const uint blockNum = w * h;
const uint compressedSize = blockNum * 8;
void * h_result = malloc(min(blockNum, MAX_BLOCKS) * 8);
//clock_t start = clock();
setupCompressKernel(compressionOptions.colorWeight.ptr());
uint bn = 0;
while(bn != blockNum)
{
uint count = min(blockNum - bn, MAX_BLOCKS);
// Launch kernel.
compressKernelDXT1_Tex(bn, count, w, d_image, m_result, m_bitmapTable);
// Check for errors.
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
nvDebug("CUDA Error: %s\n", cudaGetErrorString(err));
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(h_result, m_result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
{
outputOptions.outputHandler->writeData(h_result, count * 8);
}
bn += count;
}
//clock_t end = clock();
//printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
free(h_result);
#else
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
#endif
}
/// Compress image using CUDA.
void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
{
@ -337,16 +338,16 @@ void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressio
{
uint count = min(blockNum - bn, MAX_BLOCKS);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
cudaMemcpy(m_ctx.data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
if (m_alphaMode == AlphaMode_Transparency)
{
compressWeightedKernelDXT1(count, m_data, m_result, m_bitmapTable);
compressWeightedKernelDXT1(count, m_ctx.data, m_ctx.result, m_ctx.bitmapTable);
}
else
{
compressKernelDXT1_Level4(count, m_data, m_result, m_bitmapTable);
compressKernelDXT1_Level4(count, m_ctx.data, m_ctx.result, m_ctx.bitmapTable);
}
// Compress alpha in parallel with the GPU.
@ -369,7 +370,7 @@ void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressio
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
cudaMemcpy(blockLinearImage, m_ctx.result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
@ -428,16 +429,16 @@ void CudaCompressor::compressDXT5(const CompressionOptions::Private & compressio
{
uint count = min(blockNum - bn, MAX_BLOCKS);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
cudaMemcpy(m_ctx.data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
if (m_alphaMode == AlphaMode_Transparency)
{
compressWeightedKernelDXT1(count, m_data, m_result, m_bitmapTable);
compressWeightedKernelDXT1(count, m_ctx.data, m_ctx.result, m_ctx.bitmapTable);
}
else
{
compressKernelDXT1_Level4(count, m_data, m_result, m_bitmapTable);
compressKernelDXT1_Level4(count, m_ctx.data, m_ctx.result, m_ctx.bitmapTable);
}
// Compress alpha in parallel with the GPU.
@ -460,7 +461,7 @@ void CudaCompressor::compressDXT5(const CompressionOptions::Private & compressio
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
cudaMemcpy(blockLinearImage, m_ctx.result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
@ -516,10 +517,10 @@ void CudaCompressor::compressDXT1n(const nvtt::CompressionOptions::Private & com
{
uint count = min(blockNum - bn, MAX_BLOCKS);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
cudaMemcpy(m_ctx.data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
compressNormalKernelDXT1(count, m_data, m_result, m_bitmapTable);
compressNormalKernelDXT1(count, m_ctx.data, m_ctx.result, m_ctx.bitmapTable);
// Check for errors.
cudaError_t err = cudaGetLastError();
@ -534,7 +535,7 @@ void CudaCompressor::compressDXT1n(const nvtt::CompressionOptions::Private & com
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
cudaMemcpy(blockLinearImage, m_ctx.result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
@ -585,10 +586,10 @@ void CudaCompressor::compressCTX1(const nvtt::CompressionOptions::Private & comp
{
uint count = min(blockNum - bn, MAX_BLOCKS);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
cudaMemcpy(m_ctx.data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
compressKernelCTX1(count, m_data, m_result, m_bitmapTableCTX);
compressKernelCTX1(count, m_ctx.data, m_ctx.result, m_ctx.bitmapTableCTX);
// Check for errors.
cudaError_t err = cudaGetLastError();
@ -603,7 +604,7 @@ void CudaCompressor::compressCTX1(const nvtt::CompressionOptions::Private & comp
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
cudaMemcpy(blockLinearImage, m_ctx.result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
@ -643,4 +644,4 @@ void CudaCompressor::compressDXT5n(const nvtt::CompressionOptions::Private & com
#endif
}
#endif // 0

View File

@ -27,38 +27,86 @@
#include <nvimage/nvimage.h>
#include <nvtt/nvtt.h>
#include "nvtt/CompressDXT.h"
struct cudaArray;
namespace nv
{
class Image;
class CudaCompressor
class CudaContext
{
public:
CudaCompressor();
~CudaCompressor();
CudaContext();
~CudaContext();
bool isValid() const;
void setImage(const Image * image, nvtt::AlphaMode alphaMode);
void compressDXT1(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT3(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT1n(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressCTX1(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5n(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
private:
uint * m_bitmapTable;
uint * m_bitmapTableCTX;
uint * m_data;
uint * m_result;
const Image * m_image;
nvtt::AlphaMode m_alphaMode;
public:
// Device pointers.
uint * bitmapTable;
uint * bitmapTableCTX;
uint * data;
uint * result;
};
struct CudaCompressor : public CompressorInterface
{
CudaCompressor(CudaContext & ctx);
virtual void compress(nvtt::InputFormat inputFormat, nvtt::AlphaMode alphaMode, uint w, uint h, void * data, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
virtual void setup(cudaArray * image, const nvtt::CompressionOptions::Private & compressionOptions) = 0;
virtual void compressBlocks(uint first, uint count, uint w, uint h, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output) = 0;
virtual uint blockSize() const = 0;
protected:
CudaContext & m_ctx;
};
struct CudaCompressorDXT1 : public CudaCompressor
{
CudaCompressorDXT1(CudaContext & ctx) : CudaCompressor(ctx) {}
virtual void setup(cudaArray * image, const nvtt::CompressionOptions::Private & compressionOptions);
virtual void compressBlocks(uint first, uint count, uint w, uint h, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 8; };
};
/*struct CudaCompressorDXT1n : public CudaCompressor
{
virtual void setup(const CompressionOptions::Private & compressionOptions);
virtual void compressBlocks(uint blockCount, const void * input, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output) = 0;
virtual uint blockSize() const { return 8; };
};*/
struct CudaCompressorDXT3 : public CudaCompressor
{
CudaCompressorDXT3(CudaContext & ctx) : CudaCompressor(ctx) {}
virtual void setup(cudaArray * image, const nvtt::CompressionOptions::Private & compressionOptions);
virtual void compressBlocks(uint first, uint count, uint w, uint h, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 16; };
};
struct CudaCompressorDXT5 : public CudaCompressor
{
CudaCompressorDXT5(CudaContext & ctx) : CudaCompressor(ctx) {}
virtual void setup(cudaArray * image, const nvtt::CompressionOptions::Private & compressionOptions);
virtual void compressBlocks(uint first, uint count, uint w, uint h, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output);
virtual uint blockSize() const { return 16; };
};
/*struct CudaCompressorCXT1 : public CudaCompressor
{
virtual void setup(const CompressionOptions::Private & compressionOptions);
virtual void compressBlocks(uint blockCount, const void * input, nvtt::AlphaMode alphaMode, const nvtt::CompressionOptions::Private & compressionOptions, void * output) = 0;
virtual uint blockSize() const { return 8; };
};*/
} // nv namespace

View File

@ -93,6 +93,9 @@ namespace nvtt
Format_DXT1n,
Format_CTX1,
Format_YCoCg_DXT5,
Format_BC6,
Format_BC7,
};
/// Pixel types.