Do not fail when the process is already using CUDA.

Attempt to use the selected cuda device.
More strict device selection.
2.0
castano 15 years ago
parent 6e9feef6f4
commit 93625c7de8

@ -53,7 +53,7 @@ using namespace nvtt;
namespace
{
static int blockSize(Format format)
{
if (format == Format_DXT1 || format == Format_DXT1a) {
@ -121,7 +121,7 @@ namespace nvtt
m_fixedImage = NULL;
m_floatImage = image;
}
// Convert linear float image to fixed image ready for compression.
void toFixedImage(const InputOptions::Private & inputOptions)
@ -153,7 +153,7 @@ namespace nvtt
if (inputOptions.isNormalMap)
{
// Expand normals to [-1, 1] range.
// floatImage->expandNormals(0);
// floatImage->expandNormals(0);
}
else if (inputOptions.inputGamma != 1.0f)
{
@ -193,7 +193,7 @@ namespace nvtt
return m_fixedImage.ptr();
}
private:
const Image * m_inputImage;
AutoPtr<Image> m_fixedImage;
@ -207,28 +207,16 @@ Compressor::Compressor() : m(*new Compressor::Private())
{
// CUDA initialization.
m.cudaSupported = cuda::isHardwarePresent();
m.cudaEnabled = m.cudaSupported;
if (m.cudaEnabled)
{
// Select fastest CUDA device.
int device = cuda::getFastestDevice();
cuda::setDevice(device);
m.cuda = new CudaCompressor();
m.cudaEnabled = false;
m.cudaDevice = -1;
if (!m.cuda->isValid())
{
m.cudaEnabled = false;
m.cuda = NULL;
}
}
enableCudaAcceleration(m.cudaSupported);
}
Compressor::~Compressor()
{
enableCudaAcceleration(false);
delete &m;
cuda::exit();
}
@ -237,21 +225,33 @@ void Compressor::enableCudaAcceleration(bool enable)
{
if (m.cudaSupported)
{
m.cudaEnabled = enable;
}
if (m.cudaEnabled && m.cuda == NULL)
{
// Select fastest CUDA device.
int device = cuda::getFastestDevice();
cuda::setDevice(device);
m.cuda = new CudaCompressor();
if (!m.cuda->isValid())
if (m.cudaEnabled && !enable)
{
m.cudaEnabled = false;
m.cuda = NULL;
if (m.cudaDevice != -1)
{
// Exit device.
cuda::exitDevice();
}
}
else if (!m.cudaEnabled && enable)
{
// Init the CUDA device. This may return -1 if CUDA was already initialized by the app.
m.cudaEnabled = cuda::initDevice(&m.cudaDevice);
if (m.cudaEnabled)
{
// Create compressor if initialization succeeds.
m.cuda = new CudaCompressor();
// But cleanup if failed.
if (!m.cuda->isValid())
{
enableCudaAcceleration(false);
}
}
}
}
}
@ -292,9 +292,9 @@ bool Compressor::Private::compress(const InputOptions::Private & inputOptions, c
if (outputOptions.errorHandler) outputOptions.errorHandler->error(Error_FileOpen);
return false;
}
inputOptions.computeTargetExtents();
// Output DDS header.
if (!outputHeader(inputOptions, compressionOptions, outputOptions))
{
@ -310,7 +310,7 @@ bool Compressor::Private::compress(const InputOptions::Private & inputOptions, c
}
outputOptions.closeFile();
return true;
}
@ -325,15 +325,15 @@ bool Compressor::Private::outputHeader(const InputOptions::Private & inputOption
}
DDSHeader header;
header.setWidth(inputOptions.targetWidth);
header.setHeight(inputOptions.targetHeight);
int mipmapCount = inputOptions.realMipmapCount();
nvDebugCheck(mipmapCount > 0);
header.setMipmapCount(mipmapCount);
if (inputOptions.textureType == TextureType_2D) {
header.setTexture2D();
}
@ -341,10 +341,10 @@ bool Compressor::Private::outputHeader(const InputOptions::Private & inputOption
header.setTextureCube();
}
/*else if (inputOptions.textureType == TextureType_3D) {
header.setTexture3D();
header.setDepth(inputOptions.targetDepth);
header.setTexture3D();
header.setDepth(inputOptions.targetDepth);
}*/
if (compressionOptions.format == Format_RGBA)
{
header.setPitch(computePitch(inputOptions.targetWidth, compressionOptions.bitcount));
@ -353,7 +353,7 @@ bool Compressor::Private::outputHeader(const InputOptions::Private & inputOption
else
{
header.setLinearSize(computeImageSize(inputOptions.targetWidth, inputOptions.targetHeight, inputOptions.targetDepth, compressionOptions.bitcount, compressionOptions.format));
if (compressionOptions.format == Format_DXT1 || compressionOptions.format == Format_DXT1a) {
header.setFourCC('D', 'X', 'T', '1');
if (inputOptions.isNormalMap) header.setNormalFlag(true);
@ -376,10 +376,10 @@ bool Compressor::Private::outputHeader(const InputOptions::Private & inputOption
if (inputOptions.isNormalMap) header.setNormalFlag(true);
}
}
// Swap bytes if necessary.
header.swapBytes();
uint headerSize = 128;
if (header.hasDX10Header())
{
@ -392,7 +392,7 @@ bool Compressor::Private::outputHeader(const InputOptions::Private & inputOption
{
outputOptions.errorHandler->error(Error_FileWrite);
}
return writeSucceed;
}
@ -428,7 +428,7 @@ bool Compressor::Private::compressMipmaps(uint f, const InputOptions::Private &
return false;
}
}
quantizeMipmap(mipmap, compressionOptions);
compressMipmap(mipmap, inputOptions, compressionOptions, outputOptions);
@ -438,7 +438,7 @@ bool Compressor::Private::compressMipmaps(uint f, const InputOptions::Private &
h = max(1U, h / 2);
d = max(1U, d / 2);
}
return true;
}
@ -489,7 +489,7 @@ int Compressor::Private::findExactMipmap(const InputOptions::Private & inputOpti
{
int idx = f * inputOptions.mipmapCount + m;
const InputOptions::Private::InputImage & inputImage = inputOptions.images[idx];
if (inputImage.width == int(w) && inputImage.height == int(h) && inputImage.depth == int(d))
{
if (inputImage.data != NULL)
@ -544,7 +544,7 @@ void Compressor::Private::downsampleMipmap(Mipmap & mipmap, const InputOptions::
mipmap.toFloatImage(inputOptions);
const FloatImage * floatImage = mipmap.asFloatImage();
if (inputOptions.mipmapFilter == MipmapFilter_Box)
{
// Use fast downsample.
@ -562,7 +562,7 @@ void Compressor::Private::downsampleMipmap(Mipmap & mipmap, const InputOptions::
filter.setParameters(inputOptions.kaiserAlpha, inputOptions.kaiserStretch);
mipmap.setImage(floatImage->downSample(filter, (FloatImage::WrapMode)inputOptions.wrapMode));
}
// Normalize mipmap.
if ((inputOptions.isNormalMap || inputOptions.convertToNormalMap) && inputOptions.normalizeMipmaps)
{
@ -590,7 +590,7 @@ void Compressor::Private::processInputImage(Mipmap & mipmap, const InputOptions:
if (inputOptions.convertToNormalMap)
{
mipmap.toFixedImage(inputOptions);
Vector4 heightScale = inputOptions.heightFactors;
mipmap.setImage(createNormalMap(mipmap.asFixedImage(), (FloatImage::WrapMode)inputOptions.wrapMode, heightScale, inputOptions.bumpFrequencyScale));
}
@ -715,29 +715,29 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
#endif
#if defined(HAVE_ATITC)
if (compressionOptions.externalCompressor == "ati")
{
atiCompressDXT1(image, outputOptions);
}
else
#endif
if (compressionOptions.quality == Quality_Fastest)
{
fast.compressDXT1(outputOptions);
}
else
{
if (useCuda)
if (compressionOptions.externalCompressor == "ati")
{
nvDebugCheck(cudaSupported);
cuda->setImage(image, inputOptions.alphaMode);
cuda->compressDXT1(compressionOptions, outputOptions);
atiCompressDXT1(image, outputOptions);
}
else
{
slow.compressDXT1(compressionOptions, outputOptions);
}
}
#endif
if (compressionOptions.quality == Quality_Fastest)
{
fast.compressDXT1(outputOptions);
}
else
{
if (useCuda)
{
nvDebugCheck(cudaSupported);
cuda->setImage(image, inputOptions.alphaMode);
cuda->compressDXT1(compressionOptions, outputOptions);
}
else
{
slow.compressDXT1(compressionOptions, outputOptions);
}
}
}
else if (compressionOptions.format == Format_DXT1a)
{
@ -828,27 +828,27 @@ int Compressor::Private::estimateSize(const InputOptions::Private & inputOptions
const uint bitCount = compressionOptions.bitcount;
inputOptions.computeTargetExtents();
uint mipmapCount = inputOptions.realMipmapCount();
int size = 0;
for (uint f = 0; f < inputOptions.faceCount; f++)
{
uint w = inputOptions.targetWidth;
uint h = inputOptions.targetHeight;
uint d = inputOptions.targetDepth;
for (uint m = 0; m < mipmapCount; m++)
{
size += computeImageSize(w, h, d, bitCount, format);
// Compute extents of next mipmap:
w = max(1U, w / 2);
h = max(1U, h / 2);
d = max(1U, d / 2);
}
}
return size;
}

@ -63,10 +63,12 @@ namespace nvtt
bool compressMipmap(const Mipmap & mipmap, const InputOptions::Private & inputOptions, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const;
public:
bool cudaSupported;
bool cudaEnabled;
int cudaDevice;
nv::AutoPtr<nv::CudaCompressor> cuda;

@ -1,239 +1,300 @@
// Copyright NVIDIA Corporation 2007 -- Ignacio Castano <icastano@nvidia.com>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#include <nvcore/Debug.h>
#include <nvcore/Library.h>
#include "CudaUtils.h"
#if defined HAVE_CUDA
#include <cuda.h>
#include <cuda_runtime_api.h>
#endif
using namespace nv;
using namespace cuda;
/* @@ Move this to win32 utils or somewhere else.
#if NV_OS_WIN32
#define WINDOWS_LEAN_AND_MEAN
#include <windows.h>
static bool isWindowsVista()
{
OSVERSIONINFO osvi;
osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
::GetVersionEx(&osvi);
return osvi.dwMajorVersion >= 6;
}
typedef BOOL (WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
static bool isWow32()
{
LPFN_ISWOW64PROCESS fnIsWow64Process = (LPFN_ISWOW64PROCESS)GetProcAddress(GetModuleHandle("kernel32"), "IsWow64Process");
BOOL bIsWow64 = FALSE;
if (NULL != fnIsWow64Process)
{
if (!fnIsWow64Process(GetCurrentProcess(), &bIsWow64))
{
// Assume 32 bits.
return true;
}
}
return !bIsWow64;
}
#endif
*/
static bool isCudaDriverAvailable(int version)
{
#if defined HAVE_CUDA
#if NV_OS_WIN32
Library nvcuda("nvcuda.dll");
#else
Library nvcuda(NV_LIBRARY_NAME(cuda));
#endif
if (!nvcuda.isValid())
{
nvDebug("*** CUDA driver not found.\n");
return false;
}
if (version >= 2000)
{
void * address = nvcuda.bindSymbol("cuStreamCreate");
if (address == NULL) {
nvDebug("*** CUDA driver version < 2.0.\n");
return false;
}
}
if (version >= 2010)
{
void * address = nvcuda.bindSymbol("cuModuleLoadDataEx");
if (address == NULL) {
nvDebug("*** CUDA driver version < 2.1.\n");
return false;
}
}
if (version >= 2020)
{
typedef CUresult (CUDAAPI * PFCU_DRIVERGETVERSION)(int * version);
PFCU_DRIVERGETVERSION driverGetVersion = (PFCU_DRIVERGETVERSION)nvcuda.bindSymbol("cuDriverGetVersion");
if (driverGetVersion == NULL) {
nvDebug("*** CUDA driver version < 2.2.\n");
return false;
}
int driverVersion;
CUresult err = driverGetVersion(&driverVersion);
if (err != CUDA_SUCCESS) {
nvDebug("*** Error querying driver version: '%s'.\n", cudaGetErrorString((cudaError_t)err));
return false;
}
return driverVersion >= version;
}
#endif // HAVE_CUDA
return true;
}
/// Determine if CUDA is available.
bool nv::cuda::isHardwarePresent()
{
#if defined HAVE_CUDA
// Make sure that CUDA driver matches CUDA runtime.
if (!isCudaDriverAvailable(CUDART_VERSION))
{
nvDebug("CUDA driver not available for CUDA runtime %d\n", CUDART_VERSION);
return false;
}
int count = deviceCount();
if (count == 1)
{
// Make sure it's not an emulation device.
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, 0);
// deviceProp.name != Device Emulation (CPU)
if (deviceProp.major == -1 || deviceProp.minor == -1)
{
return false;
}
}
// @@ Make sure that warp size == 32
return count > 0;
#else
return false;
#endif
}
/// Get number of CUDA enabled devices.
int nv::cuda::deviceCount()
{
#if defined HAVE_CUDA
int gpuCount = 0;
cudaError_t result = cudaGetDeviceCount(&gpuCount);
if (result == cudaSuccess)
{
return gpuCount;
}
#endif
return 0;
}
int nv::cuda::getFastestDevice()
{
int max_gflops_device = 0;
#if defined HAVE_CUDA
int max_gflops = 0;
const int device_count = deviceCount();
int current_device = 0;
while (current_device < device_count)
{
cudaDeviceProp device_properties;
cudaGetDeviceProperties(&device_properties, current_device);
int gflops = device_properties.multiProcessorCount * device_properties.clockRate;
if (device_properties.major != -1 && device_properties.minor != -1)
{
if( gflops > max_gflops )
{
max_gflops = gflops;
max_gflops_device = current_device;
}
}
current_device++;
}
#endif
return max_gflops_device;
}
/// Activate the given devices.
bool nv::cuda::setDevice(int i)
{
nvCheck(i < deviceCount());
#if defined HAVE_CUDA
cudaError_t result = cudaSetDevice(i);
if (result != cudaSuccess) {
nvDebug("*** CUDA Error: %s\n", cudaGetErrorString(result));
}
return result == cudaSuccess;
#else
return false;
#endif
}
void nv::cuda::exit()
{
#if defined HAVE_CUDA
cudaError_t result = cudaThreadExit();
if (result != cudaSuccess) {
nvDebug("*** CUDA Error: %s\n", cudaGetErrorString(result));
}
#endif
}
// Copyright NVIDIA Corporation 2007 -- Ignacio Castano <icastano@nvidia.com>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#include <nvcore/Debug.h>
#include <nvcore/Library.h>
#include "CudaUtils.h"
#if defined HAVE_CUDA
#include <cuda.h>
#include <cuda_runtime_api.h>
#endif
using namespace nv;
using namespace cuda;
/* @@ Move this to win32 utils or somewhere else.
#if NV_OS_WIN32
#define WINDOWS_LEAN_AND_MEAN
#include <windows.h>
static bool isWindowsVista()
{
OSVERSIONINFO osvi;
osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
::GetVersionEx(&osvi);
return osvi.dwMajorVersion >= 6;
}
typedef BOOL (WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
static bool isWow32()
{
LPFN_ISWOW64PROCESS fnIsWow64Process = (LPFN_ISWOW64PROCESS)GetProcAddress(GetModuleHandle("kernel32"), "IsWow64Process");
BOOL bIsWow64 = FALSE;
if (NULL != fnIsWow64Process)
{
if (!fnIsWow64Process(GetCurrentProcess(), &bIsWow64))
{
// Assume 32 bits.
return true;
}
}
return !bIsWow64;
}
#endif
*/
static bool isCudaDriverAvailable(int version)
{
#if defined HAVE_CUDA
#if NV_OS_WIN32
Library nvcuda("nvcuda.dll");
#else
Library nvcuda(NV_LIBRARY_NAME(cuda));
#endif
if (!nvcuda.isValid())
{
nvDebug("*** CUDA driver not found.\n");
return false;
}
if (version >= 2000)
{
void * address = nvcuda.bindSymbol("cuStreamCreate");
if (address == NULL) {
nvDebug("*** CUDA driver version < 2.0.\n");
return false;
}
}
if (version >= 2010)
{
void * address = nvcuda.bindSymbol("cuModuleLoadDataEx");
if (address == NULL) {
nvDebug("*** CUDA driver version < 2.1.\n");
return false;
}
}
if (version >= 2020)
{
typedef CUresult (CUDAAPI * PFCU_DRIVERGETVERSION)(int * version);
PFCU_DRIVERGETVERSION driverGetVersion = (PFCU_DRIVERGETVERSION)nvcuda.bindSymbol("cuDriverGetVersion");
if (driverGetVersion == NULL) {
nvDebug("*** CUDA driver version < 2.2.\n");
return false;
}
int driverVersion;
CUresult err = driverGetVersion(&driverVersion);
if (err != CUDA_SUCCESS) {
nvDebug("*** Error querying driver version: '%s'.\n", cudaGetErrorString((cudaError_t)err));
return false;
}
return driverVersion >= version;
}
#endif // HAVE_CUDA
return true;
}
/// Determine if CUDA is available.
bool nv::cuda::isHardwarePresent()
{
#if defined HAVE_CUDA
// Make sure that CUDA driver matches CUDA runtime.
if (!isCudaDriverAvailable(CUDART_VERSION))
{
nvDebug("CUDA driver not available for CUDA runtime %d\n", CUDART_VERSION);
return false;
}
int count = deviceCount();
if (count == 1)
{
// Make sure it's not an emulation device.
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, 0);
// deviceProp.name != Device Emulation (CPU)
if (deviceProp.major == -1 || deviceProp.minor == -1)
{
return false;
}
}
// @@ Make sure that warp size == 32
// @@ Make sure available GPU is faster than the CPU.
return count > 0;
#else
return false;
#endif
}
/// Get number of CUDA enabled devices.
int nv::cuda::deviceCount()
{
#if defined HAVE_CUDA
int gpuCount = 0;
cudaError_t result = cudaGetDeviceCount(&gpuCount);
if (result == cudaSuccess)
{
return gpuCount;
}
#endif
return 0;
}
// Make sure device meets requirements:
// - Not an emulation device.
// - Not an integrated device?
// - Faster than CPU.
bool nv::cuda::isValidDevice(int i)
{
#if defined HAVE_CUDA
cudaDeviceProp device_properties;
cudaGetDeviceProperties(&device_properties, i);
int gflops = device_properties.multiProcessorCount * device_properties.clockRate;
if (device_properties.major == -1 || device_properties.minor == -1) {
// Emulation device.
return false;
}
#if CUDART_VERSION >= 2030 // 2.3
/*if (device_properties.integrated)
{
// Integrated devices.
return false;
}*/
#endif
return true;
#else
return false;
#endif
}
int nv::cuda::getFastestDevice()
{
int max_gflops_device = -1;
#if defined HAVE_CUDA
int max_gflops = 0;
const int device_count = deviceCount();
for (int i = 0; i < device_count; i++)
{
if (isValidDevice(i))
{
cudaDeviceProp device_properties;
cudaGetDeviceProperties(&device_properties, i);
int gflops = device_properties.multiProcessorCount * device_properties.clockRate;
if (gflops > max_gflops)
{
max_gflops = gflops;
max_gflops_device = i;
}
}
}
#endif
return max_gflops_device;
}
/// Activate the given devices.
bool nv::cuda::initDevice(int * device_ptr)
{
nvDebugCheck(device_ptr != NULL);
#if defined HAVE_CUDA
#if CUDART_VERSION >= 2030 // 2.3
// Set device flags to yield in order to play nice with other threads and to find out if CUDA was already active.
cudaError_t resul = cudaSetDeviceFlags(cudaDeviceScheduleYield);
#endif
int device = getFastestDevice();
if (device == -1)
{
// No device is fast enough.
*device_ptr = -1;
return false;
}
// Select CUDA device.
cudaError_t result = cudaSetDevice(device);
if (result == cudaErrorSetOnActiveProcess)
{
int device;
result = cudaGetDevice(&device);
*device_ptr = -1; // No device to cleanup.
return isValidDevice(device); // Return true if device is valid.
}
else if (result != cudaSuccess)
{
nvDebug("*** CUDA Error: %s\n", cudaGetErrorString(result));
*device_ptr = -1;
return false;
}
*device_ptr = device;
return true;
#else
return false;
#endif
}
void nv::cuda::exitDevice()
{
#if defined HAVE_CUDA
cudaError_t result = cudaThreadExit();
if (result != cudaSuccess) {
nvDebug("*** CUDA Error: %s\n", cudaGetErrorString(result));
}
#endif
}

@ -32,8 +32,10 @@ namespace nv
bool isHardwarePresent();
int deviceCount();
int getFastestDevice();
bool setDevice(int i);
void exit();
bool isValidDevice(int i);
bool initDevice(int * device_ptr);
void exitDevice();
};
} // nv namespace

@ -194,7 +194,7 @@ namespace nvtt
// Describe the format of the input.
NVTT_API void setFormat(InputFormat format);
// Set the way the input alpha channel is interpreted. @@ Not implemented!
// Set the way the input alpha channel is interpreted.
NVTT_API void setAlphaMode(AlphaMode alphaMode);
// Set gamma settings.

@ -33,6 +33,9 @@
#include <time.h> // clock
#include <c:\CUDA\include\cuda_runtime.h>
#pragma comment(lib, "c:\\CUDA\\lib\\cudart.lib")
//#define WINDOWS_LEAN_AND_MEAN
//#include <windows.h> // TIMER
@ -413,6 +416,8 @@ int main(int argc, char *argv[])
return EXIT_FAILURE;
}
cudaSetDevice(0);
nvtt::Compressor compressor;
compressor.enableCudaAcceleration(!nocuda);

Loading…
Cancel
Save