Work in progress.
This commit is contained in:
parent
78fa1e785d
commit
9e7651e2d5
@ -361,6 +361,36 @@ static const Vector3 faceV[6] = {
|
||||
};
|
||||
|
||||
|
||||
static Vector2 toPolar(Vector3::Arg v) {
|
||||
Vector2 p;
|
||||
p.x = atan2(v.x, v.y); // theta
|
||||
p.y = acosf(v.z); // phi
|
||||
return p;
|
||||
}
|
||||
|
||||
static Vector2 toPlane(float theta, float phi) {
|
||||
float x = sin(phi) * cos(theta);
|
||||
float y = sin(phi) * sin(theta);
|
||||
float z = cos(phi);
|
||||
|
||||
Vector2 p;
|
||||
p.x = x / fabs(z);
|
||||
p.y = y / fabs(z);
|
||||
//p.x = tan(phi) * cos(theta);
|
||||
//p.y = tan(phi) * sin(theta);
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
static Vector2 toPlane(Vector3::Arg v) {
|
||||
Vector2 p;
|
||||
p.x = v.x / fabs(v.z);
|
||||
p.y = v.y / fabs(v.z);
|
||||
return p;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// Convolve filter against this cube.
|
||||
Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir, float coneAngle, float cosinePower)
|
||||
@ -378,10 +408,10 @@ Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir,
|
||||
float cosineFaceAngle = dot(filterDir, faceNormals[f]);
|
||||
float faceAngle = acosf(cosineFaceAngle);
|
||||
|
||||
/*if (faceAngle > coneAngle + atanf(sqrtf(2))) {
|
||||
if (faceAngle > coneAngle + atanf(sqrtf(2))) {
|
||||
// Skip face.
|
||||
continue;
|
||||
}*/
|
||||
}
|
||||
|
||||
// @@ We could do a less conservative test and test the face frustum against the cone...
|
||||
|
||||
@ -432,6 +462,76 @@ Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir,
|
||||
nvDebugCheck(y1 >= y0);
|
||||
}
|
||||
|
||||
// This is elegant and all that, but the problem is that the projection is not always an ellipse, but often a parabola.
|
||||
// A parabola has infinite bounds, so this approach is not very practical. Ugh.
|
||||
if (false) {
|
||||
nvCheck(cosineFaceAngle >= 0.0f);
|
||||
|
||||
// Focal point in cartessian coordinates:
|
||||
Vector3 F = Vector3(dot(faceU[f], filterDir), dot(faceV[f], filterDir), cosineFaceAngle);
|
||||
|
||||
// Focal point in polar coordinates:
|
||||
Vector2 Fp = toPolar(F);
|
||||
nvCheck(Fp.y >= 0.0f);
|
||||
|
||||
// If this is an ellipse, then we can handle it.
|
||||
if (Fp.y - coneAngle > 0 && Fp.y + coneAngle < PI) {
|
||||
|
||||
// Major axis endpoints:
|
||||
Vector2 Fa1 = toPlane(Fp.x, Fp.y + coneAngle);
|
||||
Vector2 Fa2 = toPlane(Fp.x, Fp.y - coneAngle);
|
||||
|
||||
// Ellipse center:
|
||||
Vector2 Fc = (Fa1 + Fa2) * 0.5f;
|
||||
|
||||
// Major radius:
|
||||
float a = 0.5f * length(Fa1 - Fa2);
|
||||
|
||||
// Focal point:
|
||||
Vector2 F1 = toPlane(Fp.x, Fp.y);
|
||||
|
||||
// Focal point relative to center:
|
||||
Vector2 F1c = F1 - Fc;
|
||||
|
||||
// Focal distance:
|
||||
//float f = length(F1c); // @@ Overriding f!
|
||||
|
||||
// Minor radius:
|
||||
//float b = sqrtf(a*a - f*f);
|
||||
|
||||
// Second order quadric coefficients:
|
||||
float A = a*a - F1c.x * F1c.x;
|
||||
float B = a*a - F1c.y * F1c.y;
|
||||
|
||||
// Floating point bounds:
|
||||
float u0 = clamp(Fc.x - sqrtf(B), -1.0f, 1.0f);
|
||||
float u1 = clamp(Fc.x + sqrtf(B), -1.0f, 1.0f);
|
||||
float v0 = clamp(Fc.y - sqrtf(A), -1.0f, 1.0f);
|
||||
float v1 = clamp(Fc.y + sqrtf(A), -1.0f, 1.0f);
|
||||
|
||||
// Expand uv coordinates from [-1,1] to [0, edgeLength)
|
||||
u0 = (u0 + 1) * edgeLength * 0.5f - 0.5f;
|
||||
v0 = (v0 + 1) * edgeLength * 0.5f - 0.5f;
|
||||
u1 = (u1 + 1) * edgeLength * 0.5f - 0.5f;
|
||||
v1 = (v1 + 1) * edgeLength * 0.5f - 0.5f;
|
||||
//nvDebugCheck(u0 >= -0.5f && u0 <= edgeLength - 0.5f);
|
||||
//nvDebugCheck(v0 >= -0.5f && v0 <= edgeLength - 0.5f);
|
||||
//nvDebugCheck(u1 >= -0.5f && u1 <= edgeLength - 0.5f);
|
||||
//nvDebugCheck(v1 >= -0.5f && v1 <= edgeLength - 0.5f);
|
||||
|
||||
x0 = clamp(ifloor(u0), 0, L);
|
||||
y0 = clamp(ifloor(v0), 0, L);
|
||||
x1 = clamp(iceil(u1), 0, L);
|
||||
y1 = clamp(iceil(v1), 0, L);
|
||||
|
||||
nvDebugCheck(x1 >= x0);
|
||||
nvDebugCheck(y1 >= y0);
|
||||
}
|
||||
|
||||
// @@ What to do with parabolas?
|
||||
}
|
||||
|
||||
|
||||
if (x1 == x0 || y1 == y0) {
|
||||
// Skip this face.
|
||||
continue;
|
||||
|
Loading…
Reference in New Issue
Block a user