Work in progress.

This commit is contained in:
castano 2011-10-04 01:33:31 +00:00
parent 78fa1e785d
commit 9e7651e2d5

View File

@ -361,6 +361,36 @@ static const Vector3 faceV[6] = {
};
static Vector2 toPolar(Vector3::Arg v) {
Vector2 p;
p.x = atan2(v.x, v.y); // theta
p.y = acosf(v.z); // phi
return p;
}
static Vector2 toPlane(float theta, float phi) {
float x = sin(phi) * cos(theta);
float y = sin(phi) * sin(theta);
float z = cos(phi);
Vector2 p;
p.x = x / fabs(z);
p.y = y / fabs(z);
//p.x = tan(phi) * cos(theta);
//p.y = tan(phi) * sin(theta);
return p;
}
static Vector2 toPlane(Vector3::Arg v) {
Vector2 p;
p.x = v.x / fabs(v.z);
p.y = v.y / fabs(v.z);
return p;
}
// Convolve filter against this cube.
Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir, float coneAngle, float cosinePower)
@ -378,10 +408,10 @@ Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir,
float cosineFaceAngle = dot(filterDir, faceNormals[f]);
float faceAngle = acosf(cosineFaceAngle);
/*if (faceAngle > coneAngle + atanf(sqrtf(2))) {
if (faceAngle > coneAngle + atanf(sqrtf(2))) {
// Skip face.
continue;
}*/
}
// @@ We could do a less conservative test and test the face frustum against the cone...
@ -432,6 +462,76 @@ Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir,
nvDebugCheck(y1 >= y0);
}
// This is elegant and all that, but the problem is that the projection is not always an ellipse, but often a parabola.
// A parabola has infinite bounds, so this approach is not very practical. Ugh.
if (false) {
nvCheck(cosineFaceAngle >= 0.0f);
// Focal point in cartessian coordinates:
Vector3 F = Vector3(dot(faceU[f], filterDir), dot(faceV[f], filterDir), cosineFaceAngle);
// Focal point in polar coordinates:
Vector2 Fp = toPolar(F);
nvCheck(Fp.y >= 0.0f);
// If this is an ellipse, then we can handle it.
if (Fp.y - coneAngle > 0 && Fp.y + coneAngle < PI) {
// Major axis endpoints:
Vector2 Fa1 = toPlane(Fp.x, Fp.y + coneAngle);
Vector2 Fa2 = toPlane(Fp.x, Fp.y - coneAngle);
// Ellipse center:
Vector2 Fc = (Fa1 + Fa2) * 0.5f;
// Major radius:
float a = 0.5f * length(Fa1 - Fa2);
// Focal point:
Vector2 F1 = toPlane(Fp.x, Fp.y);
// Focal point relative to center:
Vector2 F1c = F1 - Fc;
// Focal distance:
//float f = length(F1c); // @@ Overriding f!
// Minor radius:
//float b = sqrtf(a*a - f*f);
// Second order quadric coefficients:
float A = a*a - F1c.x * F1c.x;
float B = a*a - F1c.y * F1c.y;
// Floating point bounds:
float u0 = clamp(Fc.x - sqrtf(B), -1.0f, 1.0f);
float u1 = clamp(Fc.x + sqrtf(B), -1.0f, 1.0f);
float v0 = clamp(Fc.y - sqrtf(A), -1.0f, 1.0f);
float v1 = clamp(Fc.y + sqrtf(A), -1.0f, 1.0f);
// Expand uv coordinates from [-1,1] to [0, edgeLength)
u0 = (u0 + 1) * edgeLength * 0.5f - 0.5f;
v0 = (v0 + 1) * edgeLength * 0.5f - 0.5f;
u1 = (u1 + 1) * edgeLength * 0.5f - 0.5f;
v1 = (v1 + 1) * edgeLength * 0.5f - 0.5f;
//nvDebugCheck(u0 >= -0.5f && u0 <= edgeLength - 0.5f);
//nvDebugCheck(v0 >= -0.5f && v0 <= edgeLength - 0.5f);
//nvDebugCheck(u1 >= -0.5f && u1 <= edgeLength - 0.5f);
//nvDebugCheck(v1 >= -0.5f && v1 <= edgeLength - 0.5f);
x0 = clamp(ifloor(u0), 0, L);
y0 = clamp(ifloor(v0), 0, L);
x1 = clamp(iceil(u1), 0, L);
y1 = clamp(iceil(v1), 0, L);
nvDebugCheck(x1 >= x0);
nvDebugCheck(y1 >= y0);
}
// @@ What to do with parabolas?
}
if (x1 == x0 || y1 == y0) {
// Skip this face.
continue;
@ -475,25 +575,25 @@ Vector3 CubeSurface::Private::applyCosinePowerFilter(const Vector3 & filterDir,
}
#include "nvthread/ParallelFor.h"
struct ApplyCosinePowerFilterContext {
CubeSurface::Private * inputCube;
CubeSurface::Private * filteredCube;
float coneAngle;
float cosinePower;
};
void ApplyCosinePowerFilterTask(void * context, int id)
{
ApplyCosinePowerFilterContext * ctx = (ApplyCosinePowerFilterContext *)context;
int size = ctx->filteredCube->edgeLength;
struct ApplyCosinePowerFilterContext {
CubeSurface::Private * inputCube;
CubeSurface::Private * filteredCube;
float coneAngle;
float cosinePower;
};
void ApplyCosinePowerFilterTask(void * context, int id)
{
ApplyCosinePowerFilterContext * ctx = (ApplyCosinePowerFilterContext *)context;
int size = ctx->filteredCube->edgeLength;
int f = id / (size * size);
int idx = id % (size * size);
int y = idx / size;
int x = idx % size;
nvtt::Surface & filteredFace = ctx->filteredCube->face[f];
FloatImage * filteredImage = filteredFace.m->image;
@ -505,8 +605,8 @@ void ApplyCosinePowerFilterTask(void * context, int id)
filteredImage->pixel(0, idx) = color.x;
filteredImage->pixel(1, idx) = color.y;
filteredImage->pixel(2, idx) = color.z;
}
}
CubeSurface CubeSurface::cosinePowerFilter(int size, float cosinePower) const
{