More progress with polyphase filters.
This commit is contained in:
parent
fef6466c1c
commit
c772a00b8f
@ -203,47 +203,62 @@ static Filter s_filter_array[] = {
|
||||
{filter_kaiser, 1.0f}, // Kaiser
|
||||
};
|
||||
|
||||
|
||||
inline static float sampleFilter(Filter::Function func, float x, float scale, int samples)
|
||||
{
|
||||
float sum = 0;
|
||||
|
||||
for(int s = 0; s < samples; s++)
|
||||
{
|
||||
sum += func((x + (float(s) + 0.5f) * (1.0f / float(samples))) * scale);
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
|
||||
/// Ctor.
|
||||
Kernel1::Kernel1(uint width) : w(width)
|
||||
Kernel1::Kernel1(uint ws) : m_windowSize(ws)
|
||||
{
|
||||
data = new float[w];
|
||||
m_data = new float[m_windowSize];
|
||||
}
|
||||
|
||||
/// Copy ctor.
|
||||
Kernel1::Kernel1(const Kernel1 & k) : w(k.w)
|
||||
Kernel1::Kernel1(const Kernel1 & k) : m_windowSize(k.m_windowSize)
|
||||
{
|
||||
data = new float[w];
|
||||
for(uint i = 0; i < w; i++) {
|
||||
data[i] = k.data[i];
|
||||
m_data = new float[m_windowSize];
|
||||
for(uint i = 0; i < m_windowSize; i++) {
|
||||
m_data[i] = k.m_data[i];
|
||||
}
|
||||
}
|
||||
|
||||
/// Dtor.
|
||||
Kernel1::~Kernel1()
|
||||
{
|
||||
delete data;
|
||||
delete m_data;
|
||||
}
|
||||
|
||||
/// Normalize the filter.
|
||||
void Kernel1::normalize()
|
||||
{
|
||||
float total = 0.0f;
|
||||
for(uint i = 0; i < w; i++) {
|
||||
total += data[i];
|
||||
for(uint i = 0; i < m_windowSize; i++) {
|
||||
total += m_data[i];
|
||||
}
|
||||
|
||||
float inv = 1.0f / total;
|
||||
for(uint i = 0; i < w; i++) {
|
||||
data[i] *= inv;
|
||||
for(uint i = 0; i < m_windowSize; i++) {
|
||||
m_data[i] *= inv;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// Init 1D Box filter.
|
||||
/// Init 1D filter.
|
||||
void Kernel1::initFilter(Filter::Enum f, int samples /*= 1*/)
|
||||
{
|
||||
nvDebugCheck(f < Filter::Num);
|
||||
@ -252,21 +267,12 @@ void Kernel1::initFilter(Filter::Enum f, int samples /*= 1*/)
|
||||
float (* filter_function)(float) = s_filter_array[f].function;
|
||||
const float support = s_filter_array[f].support;
|
||||
|
||||
const float half_width = float(w) / 2;
|
||||
const float offset = -half_width;
|
||||
const float halfWindowSize = float(m_windowSize) / 2.0f;
|
||||
const float scale = support / halfWindowSize;
|
||||
|
||||
const float s_scale = 1.0f / float(samples);
|
||||
const float x_scale = support / half_width;
|
||||
|
||||
for(uint i = 0; i < w; i++)
|
||||
for(uint i = 0; i < m_windowSize; i++)
|
||||
{
|
||||
float sum = 0;
|
||||
for(int s = 0; s < samples; s++)
|
||||
{
|
||||
float x = i + offset + (s + 0.5f) * s_scale;
|
||||
sum += filter_function(x * x_scale);
|
||||
}
|
||||
data[i] = sum;
|
||||
m_data[i] = sampleFilter(filter_function, i - halfWindowSize, scale, samples);
|
||||
}
|
||||
|
||||
normalize();
|
||||
@ -276,13 +282,12 @@ void Kernel1::initFilter(Filter::Enum f, int samples /*= 1*/)
|
||||
/// Init 1D sinc filter.
|
||||
void Kernel1::initSinc(float stretch /*= 1*/)
|
||||
{
|
||||
const float half_width = float(w) / 2;
|
||||
const float offset = -half_width;
|
||||
const float halfWindowSize = float(m_windowSize) / 2;
|
||||
const float nudge = 0.5f;
|
||||
|
||||
for(uint i = 0; i < w; i++) {
|
||||
const float x = (i + offset) + nudge;
|
||||
data[i] = sincf(PI * x * stretch);
|
||||
for(uint i = 0; i < m_windowSize; i++) {
|
||||
const float x = (i - halfWindowSize) + nudge;
|
||||
m_data[i] = sincf(PI * x * stretch);
|
||||
}
|
||||
|
||||
normalize();
|
||||
@ -292,25 +297,24 @@ void Kernel1::initSinc(float stretch /*= 1*/)
|
||||
/// Init 1D Kaiser-windowed sinc filter.
|
||||
void Kernel1::initKaiser(float alpha /*= 4*/, float stretch /*= 0.5*/, int samples/*= 1*/)
|
||||
{
|
||||
const float half_width = float(w) / 2;
|
||||
const float offset = -half_width;
|
||||
const float halfWindowSize = float(m_windowSize) / 2;
|
||||
|
||||
const float s_scale = 1.0f / float(samples);
|
||||
const float x_scale = 1.0f / half_width;
|
||||
const float x_scale = 1.0f / halfWindowSize;
|
||||
|
||||
for(uint i = 0; i < w; i++)
|
||||
for(uint i = 0; i < m_windowSize; i++)
|
||||
{
|
||||
float sum = 0;
|
||||
for(int s = 0; s < samples; s++)
|
||||
{
|
||||
float x = i + offset + (s + 0.5f) * s_scale;
|
||||
float x = i - halfWindowSize + (s + 0.5f) * s_scale;
|
||||
|
||||
const float sinc_value = sincf(PI * x * stretch);
|
||||
const float window_value = filter_kaiser(x * x_scale, alpha); // @@ should the window be streched? I don't think so.
|
||||
|
||||
sum += sinc_value * window_value;
|
||||
}
|
||||
data[i] = sum;
|
||||
m_data[i] = sum;
|
||||
}
|
||||
|
||||
normalize();
|
||||
@ -320,13 +324,12 @@ void Kernel1::initKaiser(float alpha /*= 4*/, float stretch /*= 0.5*/, int sampl
|
||||
/// Init 1D Mitchell filter.
|
||||
void Kernel1::initMitchell(float b, float c)
|
||||
{
|
||||
const float half_width = float(w) / 2;
|
||||
const float offset = -half_width;
|
||||
const float halfWindowSize = float(m_windowSize) / 2;
|
||||
const float nudge = 0.5f;
|
||||
|
||||
for(uint i = 0; i < w; i++) {
|
||||
const float x = (i + offset) + nudge;
|
||||
data[i] = filter_mitchell(x / half_width, b, c);
|
||||
for (uint i = 0; i < m_windowSize; i++) {
|
||||
const float x = (i - halfWindowSize) + nudge;
|
||||
m_data[i] = filter_mitchell(x / halfWindowSize, b, c);
|
||||
}
|
||||
|
||||
normalize();
|
||||
@ -336,25 +339,25 @@ void Kernel1::initMitchell(float b, float c)
|
||||
/// Print the kernel for debugging purposes.
|
||||
void Kernel1::debugPrint()
|
||||
{
|
||||
for(uint i = 0; i < w; i++) {
|
||||
nvDebug("%d: %f\n", i, data[i]);
|
||||
for (uint i = 0; i < m_windowSize; i++) {
|
||||
nvDebug("%d: %f\n", i, m_data[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/// Ctor.
|
||||
Kernel2::Kernel2(uint width) : w(width)
|
||||
Kernel2::Kernel2(uint ws) : m_windowSize(ws)
|
||||
{
|
||||
data = new float[w*w];
|
||||
m_data = new float[m_windowSize * m_windowSize];
|
||||
}
|
||||
|
||||
/// Copy ctor.
|
||||
Kernel2::Kernel2(const Kernel2 & k) : w(k.w)
|
||||
Kernel2::Kernel2(const Kernel2 & k) : m_windowSize(k.m_windowSize)
|
||||
{
|
||||
data = new float[w*w];
|
||||
for(uint i = 0; i < w*w; i++) {
|
||||
data[i] = k.data[i];
|
||||
m_data = new float[m_windowSize * m_windowSize];
|
||||
for (uint i = 0; i < m_windowSize * m_windowSize; i++) {
|
||||
m_data[i] = k.m_data[i];
|
||||
}
|
||||
}
|
||||
|
||||
@ -362,29 +365,29 @@ Kernel2::Kernel2(const Kernel2 & k) : w(k.w)
|
||||
/// Dtor.
|
||||
Kernel2::~Kernel2()
|
||||
{
|
||||
delete data;
|
||||
delete m_data;
|
||||
}
|
||||
|
||||
/// Normalize the filter.
|
||||
void Kernel2::normalize()
|
||||
{
|
||||
float total = 0.0f;
|
||||
for(uint i = 0; i < w*w; i++) {
|
||||
total += fabs(data[i]);
|
||||
for(uint i = 0; i < m_windowSize*m_windowSize; i++) {
|
||||
total += fabs(m_data[i]);
|
||||
}
|
||||
|
||||
float inv = 1.0f / total;
|
||||
for(uint i = 0; i < w*w; i++) {
|
||||
data[i] *= inv;
|
||||
for(uint i = 0; i < m_windowSize*m_windowSize; i++) {
|
||||
m_data[i] *= inv;
|
||||
}
|
||||
}
|
||||
|
||||
/// Transpose the kernel.
|
||||
void Kernel2::transpose()
|
||||
{
|
||||
for(uint i = 0; i < w; i++) {
|
||||
for(uint j = i+1; j < w; j++) {
|
||||
swap(data[i*w + j], data[j*w + i]);
|
||||
for(uint i = 0; i < m_windowSize; i++) {
|
||||
for(uint j = i+1; j < m_windowSize; j++) {
|
||||
swap(m_data[i*m_windowSize + j], m_data[j*m_windowSize + i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -392,40 +395,40 @@ void Kernel2::transpose()
|
||||
/// Init laplacian filter, usually used for sharpening.
|
||||
void Kernel2::initLaplacian()
|
||||
{
|
||||
nvDebugCheck(w == 3);
|
||||
// data[0] = -1; data[1] = -1; data[2] = -1;
|
||||
// data[3] = -1; data[4] = +8; data[5] = -1;
|
||||
// data[6] = -1; data[7] = -1; data[8] = -1;
|
||||
nvDebugCheck(m_windowSize == 3);
|
||||
// m_data[0] = -1; m_data[1] = -1; m_data[2] = -1;
|
||||
// m_data[3] = -1; m_data[4] = +8; m_data[5] = -1;
|
||||
// m_data[6] = -1; m_data[7] = -1; m_data[8] = -1;
|
||||
|
||||
data[0] = +0; data[1] = -1; data[2] = +0;
|
||||
data[3] = -1; data[4] = +4; data[5] = -1;
|
||||
data[6] = +0; data[7] = -1; data[8] = +0;
|
||||
m_data[0] = +0; m_data[1] = -1; m_data[2] = +0;
|
||||
m_data[3] = -1; m_data[4] = +4; m_data[5] = -1;
|
||||
m_data[6] = +0; m_data[7] = -1; m_data[8] = +0;
|
||||
|
||||
// data[0] = +1; data[1] = -2; data[2] = +1;
|
||||
// data[3] = -2; data[4] = +4; data[5] = -2;
|
||||
// data[6] = +1; data[7] = -2; data[8] = +1;
|
||||
// m_data[0] = +1; m_data[1] = -2; m_data[2] = +1;
|
||||
// m_data[3] = -2; m_data[4] = +4; m_data[5] = -2;
|
||||
// m_data[6] = +1; m_data[7] = -2; m_data[8] = +1;
|
||||
}
|
||||
|
||||
|
||||
/// Init simple edge detection filter.
|
||||
void Kernel2::initEdgeDetection()
|
||||
{
|
||||
nvCheck(w == 3);
|
||||
data[0] = 0; data[1] = 0; data[2] = 0;
|
||||
data[3] = -1; data[4] = 0; data[5] = 1;
|
||||
data[6] = 0; data[7] = 0; data[8] = 0;
|
||||
nvCheck(m_windowSize == 3);
|
||||
m_data[0] = 0; m_data[1] = 0; m_data[2] = 0;
|
||||
m_data[3] =-1; m_data[4] = 0; m_data[5] = 1;
|
||||
m_data[6] = 0; m_data[7] = 0; m_data[8] = 0;
|
||||
}
|
||||
|
||||
/// Init sobel filter.
|
||||
void Kernel2::initSobel()
|
||||
{
|
||||
if (w == 3)
|
||||
if (m_windowSize == 3)
|
||||
{
|
||||
data[0] = -1; data[1] = 0; data[2] = 1;
|
||||
data[3] = -2; data[4] = 0; data[5] = 2;
|
||||
data[6] = -1; data[7] = 0; data[8] = 1;
|
||||
m_data[0] = -1; m_data[1] = 0; m_data[2] = 1;
|
||||
m_data[3] = -2; m_data[4] = 0; m_data[5] = 2;
|
||||
m_data[6] = -1; m_data[7] = 0; m_data[8] = 1;
|
||||
}
|
||||
else if (w == 5)
|
||||
else if (m_windowSize == 5)
|
||||
{
|
||||
float elements[] = {
|
||||
-1, -2, 0, 2, 1,
|
||||
@ -436,10 +439,10 @@ void Kernel2::initSobel()
|
||||
};
|
||||
|
||||
for (int i = 0; i < 5*5; i++) {
|
||||
data[i] = elements[i];
|
||||
m_data[i] = elements[i];
|
||||
}
|
||||
}
|
||||
else if (w == 7)
|
||||
else if (m_windowSize == 7)
|
||||
{
|
||||
float elements[] = {
|
||||
-1, -2, -3, 0, 3, 2, 1,
|
||||
@ -452,10 +455,10 @@ void Kernel2::initSobel()
|
||||
};
|
||||
|
||||
for (int i = 0; i < 7*7; i++) {
|
||||
data[i] = elements[i];
|
||||
m_data[i] = elements[i];
|
||||
}
|
||||
}
|
||||
else if (w == 9)
|
||||
else if (m_windowSize == 9)
|
||||
{
|
||||
float elements[] = {
|
||||
-1, -2, -3, -4, 0, 4, 3, 2, 1,
|
||||
@ -470,7 +473,7 @@ void Kernel2::initSobel()
|
||||
};
|
||||
|
||||
for (int i = 0; i < 9*9; i++) {
|
||||
data[i] = elements[i];
|
||||
m_data[i] = elements[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -478,13 +481,13 @@ void Kernel2::initSobel()
|
||||
/// Init prewitt filter.
|
||||
void Kernel2::initPrewitt()
|
||||
{
|
||||
if (w == 3)
|
||||
if (m_windowSize == 3)
|
||||
{
|
||||
data[0] = -1; data[1] = 0; data[2] = -1;
|
||||
data[3] = -1; data[4] = 0; data[5] = -1;
|
||||
data[6] = -1; data[7] = 0; data[8] = -1;
|
||||
m_data[0] = -1; m_data[1] = 0; m_data[2] = -1;
|
||||
m_data[3] = -1; m_data[4] = 0; m_data[5] = -1;
|
||||
m_data[6] = -1; m_data[7] = 0; m_data[8] = -1;
|
||||
}
|
||||
else if (w == 5)
|
||||
else if (m_windowSize == 5)
|
||||
{
|
||||
// @@ Is this correct?
|
||||
float elements[] = {
|
||||
@ -496,7 +499,7 @@ void Kernel2::initPrewitt()
|
||||
};
|
||||
|
||||
for (int i = 0; i < 5*5; i++) {
|
||||
data[i] = elements[i];
|
||||
m_data[i] = elements[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -504,7 +507,7 @@ void Kernel2::initPrewitt()
|
||||
/// Init blended sobel filter.
|
||||
void Kernel2::initBlendedSobel(const Vector4 & scale)
|
||||
{
|
||||
nvCheck(w == 9);
|
||||
nvCheck(m_windowSize == 9);
|
||||
|
||||
{
|
||||
const float elements[] = {
|
||||
@ -520,7 +523,7 @@ void Kernel2::initBlendedSobel(const Vector4 & scale)
|
||||
};
|
||||
|
||||
for (int i = 0; i < 9*9; i++) {
|
||||
data[i] = elements[i] * scale.w();
|
||||
m_data[i] = elements[i] * scale.w();
|
||||
}
|
||||
}
|
||||
{
|
||||
@ -536,7 +539,7 @@ void Kernel2::initBlendedSobel(const Vector4 & scale)
|
||||
|
||||
for (int i = 0; i < 7; i++) {
|
||||
for (int e = 0; e < 7; e++) {
|
||||
data[i * 9 + e + 1] += elements[i * 7 + e] * scale.z();
|
||||
m_data[i * 9 + e + 1] += elements[i * 7 + e] * scale.z();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -551,7 +554,7 @@ void Kernel2::initBlendedSobel(const Vector4 & scale)
|
||||
|
||||
for (int i = 0; i < 5; i++) {
|
||||
for (int e = 0; e < 5; e++) {
|
||||
data[i * 9 + e + 2] += elements[i * 5 + e] * scale.y();
|
||||
m_data[i * 9 + e + 2] += elements[i * 5 + e] * scale.y();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -564,7 +567,7 @@ void Kernel2::initBlendedSobel(const Vector4 & scale)
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
for (int e = 0; e < 3; e++) {
|
||||
data[i * 9 + e + 3] += elements[i * 3 + e] * scale.x();
|
||||
m_data[i * 9 + e + 3] += elements[i * 3 + e] * scale.x();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -582,6 +585,7 @@ static bool isMonoPhase(float w)
|
||||
}
|
||||
|
||||
|
||||
|
||||
PolyphaseKernel::PolyphaseKernel(float w, uint l) :
|
||||
m_width(w),
|
||||
m_size(ceilf(w) + 1),
|
||||
@ -605,42 +609,70 @@ PolyphaseKernel::~PolyphaseKernel()
|
||||
delete [] m_data;
|
||||
}
|
||||
|
||||
|
||||
/* @@ Should we precompute left & right?
|
||||
|
||||
// scale factor
|
||||
double dScale = double(uDstSize) / double(uSrcSize);
|
||||
|
||||
if(dScale < 1.0) {
|
||||
// minification
|
||||
dWidth = dFilterWidth / dScale;
|
||||
dFScale = dScale;
|
||||
} else {
|
||||
// magnification
|
||||
dWidth= dFilterWidth;
|
||||
}
|
||||
|
||||
// window size is the number of sampled pixels
|
||||
m_WindowSize = 2 * (int)ceil(dWidth) + 1;
|
||||
m_LineLength = uDstSize;
|
||||
|
||||
// offset for discrete to continuous coordinate conversion
|
||||
double dOffset = (0.5 / dScale) - 0.5;
|
||||
|
||||
for(u = 0; u < m_LineLength; u++) {
|
||||
// scan through line of contributions
|
||||
double dCenter = (double)u / dScale + dOffset; // reverse mapping
|
||||
// find the significant edge points that affect the pixel
|
||||
int iLeft = MAX (0, (int)floor (dCenter - dWidth));
|
||||
int iRight = MIN ((int)ceil (dCenter + dWidth), int(uSrcSize) - 1);
|
||||
|
||||
...
|
||||
}
|
||||
*/
|
||||
|
||||
void PolyphaseKernel::initFilter(Filter::Enum f, int samples/*= 1*/)
|
||||
{
|
||||
nvCheck(f < Filter::Num);
|
||||
|
||||
nvDebug("Init Filter:\n");
|
||||
nvDebug(" width = %f\n", m_width);
|
||||
|
||||
float (* filter_function)(float) = s_filter_array[f].function;
|
||||
const float support = s_filter_array[f].support;
|
||||
|
||||
const float half_width = m_width / 2;
|
||||
const float offset = -half_width;
|
||||
|
||||
const float s_scale = 1.0f / float(samples);
|
||||
const float x_scale = support / half_width;
|
||||
const float scale = support / half_width;
|
||||
|
||||
for (uint j = 0; j < m_length; j++)
|
||||
{
|
||||
const float phase = frac(m_width * j);
|
||||
const float offset = half_width + phase;
|
||||
|
||||
nvDebug("%d: ", j);
|
||||
|
||||
float total = 0.0f;
|
||||
for (uint i = 0; i < m_size; i++)
|
||||
{
|
||||
const float x = i + offset - phase;
|
||||
float sample = sampleFilter(filter_function, i - offset, scale, samples);
|
||||
|
||||
float sum = 0;
|
||||
for(int s = 0; s < samples; s++)
|
||||
{
|
||||
const float xx = x + (s + 0.5f) * s_scale;
|
||||
sum += filter_function(xx * x_scale);
|
||||
}
|
||||
m_data[j * m_size + i] = sum;
|
||||
nvDebug("(%5.3f | %d) ", sample, j + i - m_size/2);
|
||||
|
||||
total += sum;
|
||||
m_data[j * m_size + i] = sample;
|
||||
total += sample;
|
||||
}
|
||||
|
||||
nvDebug("\n");
|
||||
|
||||
// normalize weights.
|
||||
for (uint i = 0; i < m_size; i++)
|
||||
{
|
||||
m_data[j * m_size + i] /= total;
|
||||
|
@ -26,7 +26,9 @@ namespace nv
|
||||
Num
|
||||
};
|
||||
|
||||
float (*function)(float x);
|
||||
typedef float (* Function)(float);
|
||||
|
||||
Function function;
|
||||
float support;
|
||||
};
|
||||
|
||||
@ -35,18 +37,18 @@ namespace nv
|
||||
class Kernel1
|
||||
{
|
||||
public:
|
||||
NVIMAGE_API Kernel1(uint width);
|
||||
NVIMAGE_API Kernel1(uint windowSize);
|
||||
NVIMAGE_API Kernel1(const Kernel1 & k);
|
||||
NVIMAGE_API ~Kernel1();
|
||||
|
||||
NVIMAGE_API void normalize();
|
||||
|
||||
float valueAt(uint x) const {
|
||||
return data[x];
|
||||
return m_data[x];
|
||||
}
|
||||
|
||||
uint width() const {
|
||||
return w;
|
||||
uint windowSize() const {
|
||||
return m_windowSize;
|
||||
}
|
||||
|
||||
NVIMAGE_API void initFilter(Filter::Enum filter, int samples = 1);
|
||||
@ -57,8 +59,8 @@ namespace nv
|
||||
NVIMAGE_API void debugPrint();
|
||||
|
||||
private:
|
||||
const uint w;
|
||||
float * data;
|
||||
const uint m_windowSize;
|
||||
float * m_data;
|
||||
};
|
||||
|
||||
|
||||
@ -74,11 +76,11 @@ namespace nv
|
||||
NVIMAGE_API void transpose();
|
||||
|
||||
float valueAt(uint x, uint y) const {
|
||||
return data[y * w + x];
|
||||
return m_data[y * m_windowSize + x];
|
||||
}
|
||||
|
||||
uint width() const {
|
||||
return w;
|
||||
uint windowSize() const {
|
||||
return m_windowSize;
|
||||
}
|
||||
|
||||
NVIMAGE_API void initLaplacian();
|
||||
@ -89,8 +91,8 @@ namespace nv
|
||||
NVIMAGE_API void initBlendedSobel(const Vector4 & scale);
|
||||
|
||||
private:
|
||||
const uint w;
|
||||
float * data;
|
||||
const uint m_windowSize;
|
||||
float * m_data;
|
||||
};
|
||||
|
||||
/// A 1D polyphase kernel
|
||||
@ -109,7 +111,7 @@ namespace nv
|
||||
return m_width;
|
||||
}
|
||||
|
||||
uint size() const {
|
||||
uint windowSize() const {
|
||||
return m_size;
|
||||
}
|
||||
|
||||
|
@ -549,7 +549,7 @@ FloatImage * FloatImage::downSample(const Kernel1 & kernel, WrapMode wm) const
|
||||
/// Downsample applying a 1D kernel separately in each dimension.
|
||||
FloatImage * FloatImage::downSample(const Kernel1 & kernel, uint w, uint h, WrapMode wm) const
|
||||
{
|
||||
nvCheck(!(kernel.width() & 1)); // Make sure that kernel m_width is even.
|
||||
nvCheck(!(kernel.windowSize() & 1)); // Make sure that kernel m_width is even.
|
||||
|
||||
AutoPtr<FloatImage> tmp_image( new FloatImage() );
|
||||
tmp_image->allocate(m_componentNum, w, m_height);
|
||||
@ -611,6 +611,9 @@ FloatImage * FloatImage::downSample(uint w, uint h, WrapMode wm) const
|
||||
|
||||
xkernel.debugPrint();
|
||||
|
||||
// @@ Select fastest filtering order:
|
||||
// w * m_height <= h * m_width -> XY, else -> YX
|
||||
|
||||
AutoPtr<FloatImage> tmp_image( new FloatImage() );
|
||||
tmp_image->allocate(m_componentNum, w, m_height);
|
||||
|
||||
@ -620,7 +623,7 @@ FloatImage * FloatImage::downSample(uint w, uint h, WrapMode wm) const
|
||||
Array<float> tmp_column(h);
|
||||
tmp_column.resize(h);
|
||||
|
||||
for(uint c = 0; c < m_componentNum; c++)
|
||||
for (uint c = 0; c < m_componentNum; c++)
|
||||
{
|
||||
float * tmp_channel = tmp_image->channel(c);
|
||||
|
||||
@ -630,7 +633,7 @@ FloatImage * FloatImage::downSample(uint w, uint h, WrapMode wm) const
|
||||
|
||||
float * dst_channel = dst_image->channel(c);
|
||||
|
||||
for(uint x = 0; x < w; x++) {
|
||||
for (uint x = 0; x < w; x++) {
|
||||
tmp_image->applyKernelVertical(&ykernel, yscale, x, c, wm, tmp_column.unsecureBuffer());
|
||||
|
||||
for(uint y = 0; y < h; y++) {
|
||||
@ -639,7 +642,6 @@ FloatImage * FloatImage::downSample(uint w, uint h, WrapMode wm) const
|
||||
}
|
||||
}
|
||||
|
||||
//return tmp_image.release();
|
||||
return dst_image.release();
|
||||
}
|
||||
|
||||
@ -650,17 +652,17 @@ float FloatImage::applyKernel(const Kernel2 * k, int x, int y, int c, WrapMode w
|
||||
{
|
||||
nvDebugCheck(k != NULL);
|
||||
|
||||
const uint kernelWidth = k->width();
|
||||
const int kernelOffset = int(kernelWidth / 2) - 1;
|
||||
const uint kernelWindow = k->windowSize();
|
||||
const int kernelOffset = int(kernelWindow / 2) - 1;
|
||||
|
||||
const float * channel = this->channel(c);
|
||||
|
||||
float sum = 0.0f;
|
||||
for(uint i = 0; i < kernelWidth; i++)
|
||||
for (uint i = 0; i < kernelWindow; i++)
|
||||
{
|
||||
const int src_y = int(y + i) - kernelOffset;
|
||||
|
||||
for(uint e = 0; e < kernelWidth; e++)
|
||||
for (uint e = 0; e < kernelWindow; e++)
|
||||
{
|
||||
const int src_x = int(x + e) - kernelOffset;
|
||||
|
||||
@ -679,13 +681,13 @@ float FloatImage::applyKernelVertical(const Kernel1 * k, int x, int y, int c, Wr
|
||||
{
|
||||
nvDebugCheck(k != NULL);
|
||||
|
||||
const uint kernelWidth = k->width();
|
||||
const int kernelOffset = int(kernelWidth / 2) - 1;
|
||||
const uint kernelWindow = k->windowSize();
|
||||
const int kernelOffset = int(kernelWindow / 2) - 1;
|
||||
|
||||
const float * channel = this->channel(c);
|
||||
|
||||
float sum = 0.0f;
|
||||
for(uint i = 0; i < kernelWidth; i++)
|
||||
for (uint i = 0; i < kernelWindow; i++)
|
||||
{
|
||||
const int src_y = int(y + i) - kernelOffset;
|
||||
const int idx = this->index(x, src_y, wm);
|
||||
@ -701,13 +703,13 @@ float FloatImage::applyKernelHorizontal(const Kernel1 * k, int x, int y, int c,
|
||||
{
|
||||
nvDebugCheck(k != NULL);
|
||||
|
||||
const uint kernelWidth = k->width();
|
||||
const int kernelOffset = int(kernelWidth / 2) - 1;
|
||||
const uint kernelWindow = k->windowSize();
|
||||
const int kernelOffset = int(kernelWindow / 2) - 1;
|
||||
|
||||
const float * channel = this->channel(c);
|
||||
|
||||
float sum = 0.0f;
|
||||
for(uint e = 0; e < kernelWidth; e++)
|
||||
for (uint e = 0; e < kernelWindow; e++)
|
||||
{
|
||||
const int src_x = int(x + e) - kernelOffset;
|
||||
const int idx = this->index(src_x, y, wm);
|
||||
@ -725,9 +727,9 @@ void FloatImage::applyKernelVertical(const PolyphaseKernel * k, float scale, int
|
||||
nvDebugCheck(k != NULL);
|
||||
|
||||
const float kernelWidth = k->width();
|
||||
const float kernelOffset = scale * 0.5f;
|
||||
const float kernelOffset = kernelWidth * 0.5f;
|
||||
const int kernelLength = k->length();
|
||||
const int kernelWindow = k->size();
|
||||
const int kernelWindow = k->windowSize();
|
||||
|
||||
const float * channel = this->channel(c);
|
||||
|
||||
@ -752,9 +754,9 @@ void FloatImage::applyKernelHorizontal(const PolyphaseKernel * k, float scale, i
|
||||
nvDebugCheck(k != NULL);
|
||||
|
||||
const float kernelWidth = k->width();
|
||||
const float kernelOffset = scale * 0.5f;
|
||||
const float kernelOffset = kernelWidth * 0.5f;
|
||||
const int kernelLength = k->length();
|
||||
const int kernelWindow = k->size();
|
||||
const int kernelWindow = k->windowSize();
|
||||
|
||||
const float * channel = this->channel(c);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user