Cleanup and replace Matrix.h with Vec.h

Mysteriously this also (perhaps temporarily) fixed a CPU usage issue in Clion? I guess I'll take it
This commit is contained in:
Andrew Cassidy 2022-06-12 20:01:56 -07:00
parent f767525aa1
commit 2c59419bf0
5 changed files with 398 additions and 464 deletions

View File

@ -18,7 +18,7 @@
*/
#pragma once
#include "Vec.h"
#include "Matrix.h"
#include "util/bitbash.h"
namespace quicktex {

View File

@ -19,52 +19,414 @@
#pragma once
#include <array>
#include <type_traits>
#include <algorithm>
#include <cstdint>
#include <numeric>
#include <xsimd/xsimd.hpp>
#include "Vec.h"
#include "util/math.h"
#include "util/ranges.h"
namespace quicktex {
template <typename T, size_t M, size_t N> class Matrix : Vec<Vec<T, N>, M> {
// N: width, M:height
// when using as a buffer for batches, vectors are actually *columns*
public:
Vec<T, N> &row(unsigned m) { return this->at(m); }
const Vec<T, N> &row(size_t m) const { return this->at(m); }
Vec<T, M> get_column(unsigned n) {
Vec<T, M> res;
for (unsigned m = 0; m < M; m++) { res[m] = row(m)[n]; }
return res;
}
template <typename T, size_t N, size_t M> class Matrix;
void set_column(unsigned n, const Vec<T, M> &col) {
for (unsigned m = 0; m < M; m++) { row(m)[n] = col[m]; }
}
template <typename T, size_t M> using Vec = Matrix<T, 1, M>;
std::array<T *, M> get_column_ptrs(size_t n) const {
std::array<T *, M> ptrs;
for (unsigned m = 0; m < M; m++) { ptrs[m] = &(row(m)[n]); }
return ptrs;
}
// region helper concepts
template <typename L, typename R, typename Op>
concept operable = requires(L &l, R &r, Op &op) {
{ op(l, r) } -> std::same_as<L>;
};
Matrix<T, N, M> transpose() {
Matrix<T, N, M> res;
for (unsigned m = 0; m < M; m++) { res.set_column(m, row(m)); }
return res;
}
template <typename V>
concept is_matrix = requires(V &v) {
V::width();
V::height();
V::value_type;
} && std::same_as < Matrix<typename V::value_type, V::width(), V::height()>,
std::remove_cvref_t < V >> ;
template <typename V> struct vector_stats {
static constexpr size_t width = 1;
static constexpr size_t height = 1;
static constexpr size_t dims = 0;
};
template <typename V>
requires is_matrix<V>
struct vector_stats<V> {
static constexpr size_t width = V::width();
static constexpr size_t height = V::height();
static constexpr size_t dims = ((width > 1) ? 1 : 0) + ((height > 1) ? 1 : 0);
};
template <typename V> constexpr size_t vector_width = vector_stats<V>::width;
template <typename V> constexpr size_t vector_height = vector_stats<V>::height;
template <typename V> constexpr size_t vector_dims = vector_stats<V>::dims;
// endregion
template <typename T, size_t N> class VecBase {
public:
const T &operator[](size_t index) const { return _c[index]; }
T &operator[](size_t index) { return _c[index]; }
const T &at(size_t index) const { return _c.at(index); }
T &at(size_t index) { return _c.at(index); }
auto begin() { return _c.begin(); }
auto begin() const { return _c.begin(); }
auto end() { return _c.end(); }
auto end() const { return _c.end(); }
private:
std::array<T, N> _c;
};
template <typename T, size_t N, size_t M> using matrix_row_type = std::conditional_t<N <= 1, T, Vec<T, N>>;
template <typename T, size_t N, size_t M> using matrix_column_type = std::conditional_t<M <= 1, T, Vec<T, M>>;
/**
* Extension of Matrix with some helper aliases for use as a vector of channels
* A matrix of values that can be operated on
* @tparam T Scalar type
* @tparam N Width of the matrix
* @tparam M Height of the matrix
*/
template <typename T, size_t M, size_t N> class ChannelSet : Matrix<T, M, N> {
Vec<T, N> &channel(size_t m) { return this->row(m); }
const Vec<T, N> &channel(size_t m) const { return this->row(m); }
template <typename T, size_t N, size_t M>
class Matrix : public VecBase<std::conditional_t<N == 1, T, VecBase<T, N>>, M> {
public:
using base = VecBase<std::conditional_t<N == 1, T, VecBase<T, N>>, M>;
Vec<T, M> get_pixel(size_t n) { return this->get_column(n); }
using value_type = T;
using row_type = std::conditional_t<N == 1, T, Vec<T, N>>;
using column_type = std::conditional_t<M == 1, T, Vec<T, M>>;
void set_pixel(size_t n, const Vec<T, M> &pixel) { this->set_column(n, pixel); }
using base::base;
using base::begin;
using base::end;
using base::operator[];
public:
// region constructors
/**
* Create a vector from an intializer list
* @param il values to populate with
*/
Matrix(std::initializer_list<T> il) {
assert(il.size() == M); // ensure il is of the right size
std::copy_n(il.begin(), M, this->begin());
}
/**
* Create a vector from a scalar value
* @param scalar value to populate with
*/
Matrix(const T &scalar) { std::fill(this->begin(), this->end(), scalar); }
/**
* Create a vector from an iterator
* @tparam II input iterator type
* @param input_iterator iterator to copy from
*/
template <typename II>
Matrix(const II input_iterator)
requires std::input_iterator<II> && std::convertible_to<std::iter_value_t<II>,
T> {
std::copy_n(input_iterator, M, this->begin());
}
/**
* Create a vector from a range type
* @tparam R Range type
* @param input_range Range to copy from
*/
template <typename R>
Matrix(const R &input_range)
requires range<R> && std::convertible_to<typename R::value_type, T>
: Matrix(input_range.begin()) {
assert(std::distance(input_range.begin(), input_range.end()) == M);
}
// endregion
// region iterators and accessors
static constexpr size_t size() { return M; }
static constexpr size_t width() { return N; }
static constexpr size_t height() { return M; }
auto row_begin() { return this->begin(); }
auto row_begin() const { return this->begin(); }
auto row_end() { return this->end(); }
auto row_end() const { return this->end(); }
auto column_begin() const { return column_iterator(this, 0); }
auto column_end() const { return column_iterator(this, N); }
const row_type &get_row(size_t y) const { return this->at(y); }
template <typename R> void set_row(size_t y, const R &value) { this->at(y) = value; }
template <typename S = T> column_type get_column(size_t n) const {
column_type ret;
for (unsigned m = 0; m < M; m++) { ret[m] = element(m, n); }
return ret;
}
void set_column(size_t n, const column_type &value) {
column_type ret;
for (unsigned m = 0; m < M; m++) { element(m, n) = value[m]; }
return ret;
}
const T &element(size_t m, size_t n) const {
assert(n < N);
assert(m < M);
if constexpr (N == 1) {
return this->at(m);
} else {
return this->at(m)[n];
}
}
T &element(size_t n, size_t m) { return const_cast<T &>(static_cast<const Matrix &>(*this).element(n, m)); }
const T &element(size_t i) const { return element(i / N, i % N); }
T &element(size_t i) { return element(i / N, i % N); }
// RGBA accessors
const T &r() const { return this->at(0); }
T &r() { return this->at(0); }
template <typename S = T> std::enable_if_t<M >= 2, const S &> g() const { return this->at(1); }
template <typename S = T> std::enable_if_t<M >= 2, S &> g() { return this->at(1); }
template <typename S = T> std::enable_if_t<M >= 3, const S &> b() const { return this->at(2); }
template <typename S = T> std::enable_if_t<M >= 3, S &> b() { return this->at(2); }
template <typename S = T> std::enable_if_t<M >= 4, const S &> a() const { return this->at(3); }
template <typename S = T> std::enable_if_t<M >= 4, S &> a() { return this->at(3); }
// XYZW accessors
const T &x() const { return this->at(0); }
T &x() { return this->at(0); }
template <typename S = T> std::enable_if_t<M >= 2, const S &> y() const { return this->at(1); }
template <typename S = T> std::enable_if_t<M >= 2, S &> y() { return this->at(1); }
template <typename S = T> std::enable_if_t<M >= 3, const S &> z() const { return this->at(2); }
template <typename S = T> std::enable_if_t<M >= 3, S &> z() { return this->at(2); }
template <typename S = T> std::enable_if_t<M >= 4, const S &> w() const { return this->at(3); }
template <typename S = T> std::enable_if_t<M >= 4, S &> w() { return this->at(3); }
// endregion
template <typename R>
requires std::equality_comparable_with<T, R> bool
operator==(const Matrix<R, N, M> &rhs) const {
return size() == rhs.size() && std::equal(this->begin(), this->end(), rhs.begin());
};
// unary vector negation
template <typename S = T>
requires(!std::unsigned_integral<T>) && requires(T &t) { -t; }
Matrix operator-() const {
return map(*this, std::negate());
};
// add vectors
template <typename R>
requires operable<R, T, std::plus<>>
Matrix operator+(const Matrix<R, N, M> &rhs) const {
return map(*this, rhs, std::plus());
};
// subtract vectors
template <typename R>
requires operable<R, T, std::minus<>>
Matrix operator-(const Matrix<R, N, M> &rhs) const {
// we can't just add the negation because that's invalid for unsigned types
return map(*this, rhs, std::minus());
};
// multiply matrix with a matrix or column vector
template <typename R, size_t NN>
requires(NN == 1 || NN == N) && operable<R, T, std::multiplies<>>
Matrix operator*(const Matrix<R, NN, M> &rhs) const {
return map(*this, rhs, std::multiplies());
};
// multiply matrix with a scalar
template <typename R>
requires operable<R, T, std::multiplies<>>
Matrix operator*(const R &rhs) const {
return map(*this, rhs, std::multiplies());
};
// divides a matrix by a matrix or column vector
template <typename R, size_t NN>
requires(NN == 1 || NN == N) && operable<R, T, std::divides<>>
Matrix operator/(const Matrix<R, NN, M> &rhs) const {
return map(*this, rhs, std::divides());
};
// divides a matrix by a scalar
template <typename R>
requires operable<R, T, std::divides<>>
Matrix operator/(const R &rhs) const {
return map(*this, rhs, std::divides());
};
// add-assigns a matrix with a matrix
template <typename R>
requires operable<Matrix, R, std::plus<>>
Matrix &operator+=(const R &rhs) {
return *this = *this + rhs;
}
// subtract-assigns a matrix with a matrix
template <typename R>
requires operable<Matrix, R, std::minus<>>
Matrix &operator-=(const R &rhs) {
return *this = *this - rhs;
}
// multiply-assigns a matrix with a matrix, column vector, or a scalar
template <typename R>
requires operable<Matrix, R, std::multiplies<>>
Matrix &operator*=(const R &rhs) {
return *this = *this * rhs;
}
// divide-assigns a matrix by a matrix, column vector, or a scalar
template <typename R>
requires operable<Matrix, R, std::divides<>>
Matrix &operator/=(const R &rhs) {
return *this = *this / rhs;
}
// decay a 1x1 matrix to a scalar on demand
template <typename S = T>
requires(N == 1 && M == 1)
operator S &() {
return this->at(0);
}
template <typename S = T>
requires(N == 1 && M == 1)
operator const S &() const {
return this->at(0);
}
// sum up all columns
column_type hsum() const { return std::accumulate(column_begin(), column_end(), column_type{}); }
// sum up all rows
row_type vsum() const { return std::accumulate(row_begin(), row_end(), row_type{}); }
// dot product of two compatible matrices
template <typename R>
requires operable<T, R, std::multiplies<>> && operable<T, T, std::plus<>>
row_type dot(const Matrix<R, N, M> &rhs) const {
Matrix product = *this * rhs;
return product.vsum();
}
row_type sqr_mag() const { return this->dot(*this); }
Matrix abs() const {
Matrix ret;
for (unsigned i = 0; i < N * M; i++) { ret.element(i) = quicktex::abs(element(i)); }
return ret;
}
Matrix clamp(T low, T high) {
Matrix ret;
for (unsigned i = 0; i < N * M; i++) { ret.element(i) = quicktex::clamp(element(i), low, high); }
return ret;
}
Matrix clamp(const Matrix &low, const Matrix &high) {
Matrix ret;
for (unsigned i = 0; i < N * M; i++) {
ret.element(i) = quicktex::clamp(element(i), low.element(i), high.element(i));
}
return ret;
}
protected:
template <typename Op> static inline Matrix map(Matrix &lhs, Op f) {
Matrix ret;
for (unsigned i = 0; i < lhs.size(); i++) { ret[i] = f(lhs[i]); }
return ret;
}
template <typename Op, typename R>
requires operable<R, T, Op>
static inline Matrix map(const Matrix &lhs, const R &rhs, Op f) {
Matrix r;
for (unsigned i = 0; i < lhs.size(); i++) { r[i] = f(lhs[i], rhs); }
return r;
}
template <typename Op, typename R>
requires operable<R, T, Op>
static inline Matrix map(const Matrix &lhs, const Matrix<R, N, M> &rhs, Op f) {
Matrix r;
for (unsigned i = 0; i < lhs.size(); i++) { r[i] = f(lhs[i], rhs[i]); }
return r;
}
class column_iterator : public index_iterator_base<column_iterator> {
public:
using value_type = column_type;
using base = index_iterator_base<column_iterator>;
column_iterator(const Matrix *matrix = nullptr, size_t index = 0) : base(index), _matrix(matrix){};
column_type operator*() const { return _matrix->get_column(this->_index); }
const column_type *operator->() const { &(_matrix->get_column(this->_index)); }
friend bool operator==(const column_iterator &lhs, const column_iterator &rhs) {
return (lhs._matrix == rhs._matrix) && (lhs._index == rhs._index);
}
private:
const Matrix *_matrix;
};
class linear_iterator : public index_iterator_base<column_iterator> {
public:
using value_type = column_type;
using base = index_iterator_base<column_iterator>;
linear_iterator(const Matrix *matrix = nullptr, size_t index = 0) : base(index), _matrix(matrix){};
T &operator*() const { return _matrix->element(this->_index); }
T *operator->() const { &(_matrix->element(this->_index)); }
friend bool operator==(const column_iterator &lhs, const column_iterator &rhs) {
return (lhs._matrix == rhs._matrix) && (lhs._index == rhs._index);
}
private:
const Matrix *_matrix;
};
};
template <typename T, size_t M, typename A = xsimd::default_arch> class BatchVec : Vec<xsimd::batch<T, A>, M> {
template <size_t N, typename U = xsimd::unaligned_mode>
static BatchVec load_columns(const Matrix<T, N, M> &matrix, size_t column) {
const size_t batch_size = xsimd::batch<T, A>::size;
assert(column + batch_size <= N);
BatchVec ret;
for (unsigned i = 0; i < M; i++) { ret[i] = xsimd::load<A, T>(&(matrix[column][i]), U{}); }
return ret;
}
template <typename U = xsimd::unaligned_mode, typename V, size_t N>
void store_columns(Matrix<T, N, M> &matrix, size_t column) {
const size_t batch_size = xsimd::batch<T, A>::size;
assert(column + batch_size <= N);
for (unsigned i = 0; i < M; i++) { this->at(i).store((&(matrix[column][i]), U{})); }
}
};
} // namespace quicktex

View File

@ -22,7 +22,7 @@
#include <cstddef> // for size_t
#include <cstdint> // for uint8_t, uint16_t
#include "Vec.h"
#include "Matrix.h"
namespace quicktex {
class Vector4;

View File

@ -1,428 +0,0 @@
/* Quicktex Texture Compression Library
Copyright (C) 2021 Andrew Cassidy <drewcassidy@me.com>
Partially derived from rgbcx.h written by Richard Geldreich <richgel99@gmail.com>
and licenced under the public domain
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <algorithm>
#include <cstdint>
#include <numeric>
#include <xsimd/xsimd.hpp>
#include "util/math.h"
#include "util/ranges.h"
namespace quicktex {
template <typename T, size_t N, size_t M>
requires(N >= 1) && (M >= 1)
class Matrix;
template <typename T, size_t M> using Vec = Matrix<T, 1, M>;
template <typename V>
concept vector_like = subscriptable_range<V> && requires { V::size(); };
template <typename L, typename R, typename Op>
concept operable_VV =
vector_like<L> && vector_like<R> && requires(range_value_t<L> &l, range_value_t<R> &r, Op &op) { op(l, r); };
template <typename L, typename R, typename Op>
concept operable_Vs = vector_like<L> && (!vector_like<R>) && requires(range_value_t<L> &l, R &r, Op &op) { op(l, r); };
template <typename L, typename R, typename Op>
concept operable = requires(L &l, R &r, Op &op) {
{ op(l, r) } -> std::same_as<L>;
};
template <typename L, typename R, typename Op>
concept scalar_operable = std::is_scalar_v<L> && std::is_scalar_v<R> && operable<L, R, Op>;
template <typename V>
concept is_matrix = requires(V &v) {
V::width();
V::height();
V::value_type;
} && std::same_as < Matrix<typename V::value_type, V::width(), V::height()>,
std::remove_cvref_t < V >> ;
template <typename V, size_t N, size_t M>
concept is_matrix_NxM = is_matrix<V> && (V::width() == N) && (V::height() == M);
template <typename T, size_t N> class VecBase {
public:
const T &operator[](size_t index) const { return _c[index]; }
T &operator[](size_t index) { return _c[index]; }
const T &at(size_t index) const { return _c.at(index); }
T &at(size_t index) { return _c.at(index); }
auto begin() { return _c.begin(); }
auto begin() const { return _c.begin(); }
auto end() { return _c.end(); }
auto end() const { return _c.end(); }
private:
std::array<T, N> _c;
};
template <typename T, size_t N, size_t M> using matrix_row_type = std::conditional_t<N <= 1, T, Vec<T, N>>;
template <typename T, size_t N, size_t M> using matrix_column_type = std::conditional_t<M <= 1, T, Vec<T, M>>;
/**
* A matrix of values that can be operated on
* @tparam T Scalar type
* @tparam N Width of the matrix
* @tparam M Height of the matrix
*/
template <typename T, size_t N, size_t M>
requires(N >= 1) && (M >= 1)
class Matrix : public VecBase<std::conditional_t<N == 1, T, VecBase<T, N>>, M> {
public:
using base = VecBase<std::conditional_t<N == 1, T, VecBase<T, N>>, M>;
using value_type = T;
using row_type = std::conditional_t<N == 1, T, Vec<T, N>>;
using column_type = std::conditional_t<M == 1, T, Vec<T, M>>;
using base::base;
using base::begin;
using base::end;
using base::operator[];
public:
// region constructors
/**
* Create a vector from an intializer list
* @param il values to populate with
*/
Matrix(std::initializer_list<T> il) {
assert(il.size() == M); // ensure il is of the right size
std::copy_n(il.begin(), M, this->begin());
}
/**
* Create a vector from a scalar value
* @param scalar value to populate with
*/
Matrix(const T &scalar) { std::fill(this->begin(), this->end(), scalar); }
/**
* Create a vector from an iterator
* @tparam II input iterator type
* @param input_iterator iterator to copy from
*/
template <typename II>
Matrix(const II input_iterator)
requires std::input_iterator<II> && std::convertible_to<std::iter_value_t<II>,
T> {
std::copy_n(input_iterator, M, this->begin());
}
/**
* Create a vector from a range type
* @tparam R Range type
* @param input_range Range to copy from
*/
template <typename R>
Matrix(const R &input_range)
requires range<R> && std::convertible_to<typename R::value_type, T>
: Matrix(input_range.begin()) {
assert(std::distance(input_range.begin(), input_range.end()) == M);
}
// endregion
// region iterators and accessors
static constexpr size_t size() { return M; }
static constexpr size_t width() { return N; }
static constexpr size_t height() { return M; }
auto row_begin() { return this->begin(); }
auto row_begin() const { return this->begin(); }
auto row_end() { return this->end(); }
auto row_end() const { return this->end(); }
auto column_begin() const { return column_iterator(this, 0); }
auto column_end() const { return column_iterator(this, N); }
const row_type &get_row(size_t y) const { return this->at(y); }
template <typename R> void set_row(size_t y, const R &value) { this->at(y) = value; }
template <typename S = T> column_type get_column(size_t n) const {
column_type ret;
for (unsigned m = 0; m < M; m++) { ret[m] = element(m, n); }
return ret;
}
void set_column(size_t n, const column_type &value) {
column_type ret;
for (unsigned m = 0; m < M; m++) { element(m, n) = value[m]; }
return ret;
}
const T &element(size_t m, size_t n) const {
assert(n < N);
assert(m < M);
if constexpr (N == 1) {
return this->at(m);
} else {
return this->at(m)[n];
}
}
T &element(size_t n, size_t m) { return const_cast<T &>(static_cast<const Matrix &>(*this).element(n, m)); }
const T &element(size_t i) const { return element(i / N, i % N); }
T &element(size_t i) { return element(i / N, i % N); }
// RGBA accessors
const T &r() const { return this->at(0); }
T &r() { return this->at(0); }
template <typename S = T> std::enable_if_t<M >= 2, const S &> g() const { return this->at(1); }
template <typename S = T> std::enable_if_t<M >= 2, S &> g() { return this->at(1); }
template <typename S = T> std::enable_if_t<M >= 3, const S &> b() const { return this->at(2); }
template <typename S = T> std::enable_if_t<M >= 3, S &> b() { return this->at(2); }
template <typename S = T> std::enable_if_t<M >= 4, const S &> a() const { return this->at(3); }
template <typename S = T> std::enable_if_t<M >= 4, S &> a() { return this->at(3); }
// XYZW accessors
const T &x() const { return this->at(0); }
T &x() { return this->at(0); }
template <typename S = T> std::enable_if_t<M >= 2, const S &> y() const { return this->at(1); }
template <typename S = T> std::enable_if_t<M >= 2, S &> y() { return this->at(1); }
template <typename S = T> std::enable_if_t<M >= 3, const S &> z() const { return this->at(2); }
template <typename S = T> std::enable_if_t<M >= 3, S &> z() { return this->at(2); }
template <typename S = T> std::enable_if_t<M >= 4, const S &> w() const { return this->at(3); }
template <typename S = T> std::enable_if_t<M >= 4, S &> w() { return this->at(3); }
// endregion
template <typename R>
requires std::equality_comparable_with<T, R> bool
operator==(const Matrix<R, N, M> &rhs) const {
return size() == rhs.size() && std::equal(this->begin(), this->end(), rhs.begin());
};
// unary vector negation
template <typename S = T>
requires(!std::unsigned_integral<T>) && requires(T &t) { -t; }
Matrix operator-() const {
return map(*this, std::negate());
};
// add vectors
template <typename R>
requires operable<R, T, std::plus<>>
Matrix operator+(const Matrix<R, N, M> &rhs) const {
return map(*this, rhs, std::plus());
};
// subtract vectors
template <typename R>
requires operable<R, T, std::minus<>>
Matrix operator-(const Matrix<R, N, M> &rhs) const {
// we can't just add the negation because that's invalid for unsigned types
return map(*this, rhs, std::minus());
};
// multiply matrix with a matrix
template <typename R>
requires operable<R, T, std::multiplies<>>
Matrix operator*(const Matrix<R, N, M> &rhs) const {
return map(*this, rhs, std::multiplies());
};
// multiply matrix with a scalar
template <typename R>
requires scalar_operable<R, T, std::multiplies<>>
Matrix operator*(const R &rhs) const {
return map(*this, rhs, std::multiplies());
};
// multiply a scalar by a matrix
template <typename L>
requires scalar_operable<L, T, std::multiplies<>>
friend Matrix operator*(const L &lhs, const Matrix &rhs) {
return rhs * lhs;
}
// divides a matrix by a matrix
template <typename R>
requires operable<R, T, std::divides<>>
Matrix operator/(const Matrix<R, N, M> &rhs) const {
return map(*this, rhs, std::divides());
};
// divides a matrix by a scalar
template <typename R>
requires scalar_operable<R, T, std::divides<>>
Matrix operator/(const R &rhs) const {
return map(*this, rhs, std::divides());
};
template <typename R>
requires operable<Matrix, R, std::plus<>>
Matrix &operator+=(const R &rhs) {
return *this = *this + rhs;
}
template <typename R>
requires operable<Matrix, R, std::minus<>>
Matrix &operator-=(const R &rhs) {
return *this = *this - rhs;
}
template <typename R>
requires operable<Matrix, R, std::multiplies<>>
Matrix &operator*=(const R &rhs) {
return *this = *this * rhs;
}
template <typename R>
requires operable<Matrix, R, std::divides<>>
Matrix &operator/=(const R &rhs) {
return *this = *this / rhs;
}
template <typename S = T>
requires(N == 1 && M == 1)
operator S &() {
return this->at(0);
}
template <typename S = T>
requires(N == 1 && M == 1)
operator const S &() const {
return this->at(0);
}
column_type hsum() const { return std::accumulate(column_begin(), column_end(), column_type{}); }
row_type vsum() const { return std::accumulate(row_begin(), row_end(), row_type{}); }
template <typename R>
requires operable<T, R, std::multiplies<>> && operable<T, T, std::plus<>>
row_type dot(const Matrix<R, N, M> &rhs) const {
Matrix product = *this * rhs;
return product.vsum();
}
row_type sqr_mag() const { return this->dot(*this); }
Matrix abs() const {
Matrix ret;
for (unsigned i = 0; i < N * M; i++) { ret.element(i) = quicktex::abs(element(i)); }
return ret;
}
Matrix clamp(T low, T high) {
Matrix ret;
for (unsigned i = 0; i < N * M; i++) { ret.element(i) = quicktex::clamp(element(i), low, high); }
return ret;
}
Matrix clamp(const Matrix &low, const Matrix &high) {
Matrix ret;
for (unsigned i = 0; i < N * M; i++) {
ret.element(i) = quicktex::clamp(element(i), low.element(i), high.element(i));
}
return ret;
}
protected:
template <typename Op> static inline Matrix map(Matrix &lhs, Op f) {
Matrix ret;
for (unsigned i = 0; i < lhs.size(); i++) { ret[i] = f(lhs[i]); }
return ret;
}
template <typename Op, typename R>
requires scalar_operable<R, T, Op>
static inline Matrix map(const Matrix &lhs, const R &rhs, Op f) {
Matrix r;
for (unsigned i = 0; i < lhs.size(); i++) { r[i] = f(lhs[i], rhs); }
return r;
}
template <typename Op, typename R>
requires scalar_operable<R, T, Op>
static inline Matrix map(const Matrix &lhs, const Matrix<R, N, M> &rhs, Op f) {
Matrix r;
for (unsigned i = 0; i < lhs.size(); i++) { r[i] = f(lhs[i], rhs[i]); }
return r;
}
class column_iterator : public index_iterator_base<column_iterator> {
public:
using value_type = column_type;
using base = index_iterator_base<column_iterator>;
column_iterator(const Matrix *matrix = nullptr, size_t index = 0) : base(index), _matrix(matrix){};
column_type operator*() const { return _matrix->get_column(this->_index); }
const column_type *operator->() const { &(_matrix->get_column(this->_index)); }
friend bool operator==(const column_iterator &lhs, const column_iterator &rhs) {
return (lhs._matrix == rhs._matrix) && (lhs._index == rhs._index);
}
private:
const Matrix *_matrix;
};
class linear_iterator : public index_iterator_base<column_iterator> {
public:
using value_type = column_type;
using base = index_iterator_base<column_iterator>;
linear_iterator(const Matrix *matrix = nullptr, size_t index = 0) : base(index), _matrix(matrix){};
T &operator*() const { return _matrix->element(this->_index); }
T *operator->() const { &(_matrix->element(this->_index)); }
friend bool operator==(const column_iterator &lhs, const column_iterator &rhs) {
return (lhs._matrix == rhs._matrix) && (lhs._index == rhs._index);
}
private:
const Matrix *_matrix;
};
};
template <typename T, size_t M, typename A = xsimd::default_arch> class BatchVec : Vec<xsimd::batch<T, A>, M> {
template <size_t N, typename U = xsimd::unaligned_mode>
static BatchVec load_columns(const Matrix<T, N, M> &matrix, size_t column) {
const size_t batch_size = xsimd::batch<T, A>::size;
assert(column + batch_size <= N);
BatchVec ret;
for (unsigned i = 0; i < M; i++) { ret[i] = xsimd::load<A, T>(&(matrix[column][i]), U{}); }
return ret;
}
template <typename U = xsimd::unaligned_mode, typename V, size_t N>
void store_columns(Matrix<T, N, M> &matrix, size_t column) {
const size_t batch_size = xsimd::batch<T, A>::size;
assert(column + batch_size <= N);
for (unsigned i = 0; i < M; i++) { this->at(i).store((&(matrix[column][i]), U{})); }
}
};
} // namespace quicktex

View File

@ -22,7 +22,7 @@
#include <array> // for operator==
#include "../Vec.h" // for Vec, ope...
#include "../Matrix.h" // for Vec, ope...
#include "util/math.h" // for abs
namespace quicktex::tests {