vector-victor/tests/decompose.rs

118 lines
3.8 KiB
Rust
Raw Normal View History

2023-05-06 07:39:06 +00:00
#[macro_use]
mod common;
use common::Approx;
use generic_parameterize::parameterize;
use num_traits::real::Real;
use num_traits::Zero;
use std::fmt::Debug;
use std::iter::{Product, Sum};
2023-05-10 05:27:05 +00:00
use vector_victor::decompose::Parity::Even;
use vector_victor::decompose::{LUDecomposable, LUDecomposition};
use vector_victor::{Matrix, Vector};
2023-05-06 07:39:06 +00:00
#[parameterize(S = (f32, f64), M = [1,2,3,4])]
#[test]
/// The LU decomposition of the identity matrix should produce
/// the identity matrix with no permutations and parity 1
fn test_lu_identity<S: Default + Approx + Real + Debug + Product + Sum, const M: usize>() {
// let a: Matrix<f32, 3, 3> = Matrix::<f32, 3, 3>::identity();
let i = Matrix::<S, M, M>::identity();
let ones = Vector::<S, M>::fill(S::one());
let decomp = i.lu().expect("Singular matrix encountered");
let LUDecomposition { lu, idx, parity } = decomp;
2023-05-06 07:39:06 +00:00
assert_eq!(lu, i, "Incorrect LU decomposition");
assert!(
(0..M).eq(idx.elements().cloned()),
"Incorrect permutation matrix",
);
2023-05-10 05:27:05 +00:00
assert_eq!(parity, Even, "Incorrect permutation parity");
2023-05-06 07:39:06 +00:00
// Check determinant calculation which uses LU decomposition
assert_approx!(
i.det(),
S::one(),
"Identity matrix should have determinant of 1"
);
// Check inverse calculation with uses LU decomposition
assert_eq!(
i.inverse(),
Some(i),
"Identity matrix should be its own inverse"
);
assert_eq!(
i.solve(&ones),
Some(ones),
"Failed to solve using identity matrix"
);
// Check triangle separation
assert_eq!(decomp.separate(), (i, i));
}
#[parameterize(S = (f32, f64), M = [2,3,4])]
#[test]
/// The LU decomposition of any singular matrix should be `None`
fn test_lu_singular<S: Default + Real + Debug + Product + Sum, const M: usize>() {
// let a: Matrix<f32, 3, 3> = Matrix::<f32, 3, 3>::identity();
let mut a = Matrix::<S, M, M>::zero();
let ones = Vector::<S, M>::fill(S::one());
a.set_row(0, &ones);
assert_eq!(a.lu(), None, "Matrix should be singular");
assert_eq!(
a.det(),
S::zero(),
"Singular matrix should have determinant of zero"
);
assert_eq!(a.inverse(), None, "Singular matrix should have no inverse");
assert_eq!(
a.solve(&ones),
None,
"Singular matrix should not be solvable"
)
}
#[test]
fn test_lu_2x2() {
let a = Matrix::new([[1.0, 2.0], [3.0, 0.0]]);
let decomp = a.lu().expect("Singular matrix encountered");
// the decomposition is non-unique, due to the combination of lu and idx.
// Instead of checking the exact value, we only check the results.
// Also check if they produce the same results with both methods, since the
// Matrix<> methods use shortcuts the decomposition methods don't
let (l, u) = decomp.separate();
assert_approx!(l.mmul(&u), a.permute_rows(&decomp.idx));
2023-05-06 07:39:06 +00:00
assert_approx!(a.det(), -6.0);
assert_approx!(a.det(), decomp.det());
assert_approx!(
a.inverse().unwrap(),
Matrix::new([[0.0, 2.0], [3.0, -1.0]]) * (1.0 / 6.0)
);
assert_approx!(a.inverse().unwrap(), decomp.inverse());
assert_approx!(a.inverse().unwrap().inverse().unwrap(), a)
}
#[test]
fn test_lu_3x3() {
let a = Matrix::new([[1.0, -5.0, 8.0], [1.0, -2.0, 1.0], [2.0, -1.0, -4.0]]);
let decomp = a.lu().expect("Singular matrix encountered");
let (l, u) = decomp.separate();
assert_approx!(l.mmul(&u), a.permute_rows(&decomp.idx));
2023-05-06 07:39:06 +00:00
assert_approx!(a.det(), 3.0);
assert_approx!(a.det(), decomp.det());
assert_approx!(
a.inverse().unwrap(),
Matrix::new([[9.0, -28.0, 11.0], [6.0, -20.0, 7.0], [3.0, -9.0, 3.0]]) * (1.0 / 3.0)
);
assert_approx!(a.inverse().unwrap(), decomp.inverse());
assert_approx!(a.inverse().unwrap().inverse().unwrap(), a)
}