mirror of
https://github.com/drewcassidy/vector-victor.git
synced 2024-09-01 14:58:35 +00:00
Use block comments for docs
Much more readable in the raw source
This commit is contained in:
parent
9b14bebb2d
commit
bd1bde1657
128
src/index.rs
128
src/index.rs
@ -2,77 +2,77 @@
|
||||
|
||||
use std::fmt::Debug;
|
||||
|
||||
/// Trait implemented by types that can be used as a matrix index
|
||||
///
|
||||
/// There are currently two implementations:
|
||||
/// [`usize`](#impl-Index2D-for-usize) and [`(usize,usize)`](#impl-Index2D-for-(usize,+usize))
|
||||
///
|
||||
/// # Examples
|
||||
/// Indexing by a `usize` indexes starting at the first element and
|
||||
/// increments linearly in row-major order. This is especially useful for column vectors.
|
||||
///
|
||||
/// ```
|
||||
/// # use vector_victor::{Matrix, Vector};
|
||||
/// let m = Matrix::mat([[1,2,3],[4,5,6],[7,8,9]]);
|
||||
/// assert_eq!(m[0], 1);
|
||||
/// assert_eq!(m[4], 5);
|
||||
/// assert_eq!(m[7], 8);
|
||||
///
|
||||
/// let v = Vector::vec([4,8,15,16,23,42]);
|
||||
/// assert_eq!(v[2], 15); // just like a std::vec
|
||||
/// ```
|
||||
///
|
||||
/// Indexing by a `(usize,usize)` indexes by row and column
|
||||
/// ```
|
||||
/// # use vector_victor::{Matrix, Vector};
|
||||
/// let m = Matrix::mat([[1,2,3],[4,5,6],[7,8,9]]);
|
||||
/// assert_eq!(m[(0,0)], 1);
|
||||
/// assert_eq!(m[(1,1)], 5);
|
||||
/// assert_eq!(m[(2,1)], 8);
|
||||
/// ```
|
||||
/** Trait implemented by types that can be used as a matrix index
|
||||
|
||||
There are currently two implementations:
|
||||
[`usize`](#impl-Index2D-for-usize) and [`(usize,usize)`](#impl-Index2D-for-(usize,+usize))
|
||||
|
||||
# Examples
|
||||
Indexing by a `usize` indexes starting at the first element and
|
||||
increments linearly in row-major order. This is especially useful for column vectors.
|
||||
|
||||
```
|
||||
# use vector_victor::{Matrix, Vector};
|
||||
let m = Matrix::mat([[1,2,3],[4,5,6],[7,8,9]]);
|
||||
assert_eq!(m[0], 1);
|
||||
assert_eq!(m[4], 5);
|
||||
assert_eq!(m[7], 8);
|
||||
|
||||
let v = Vector::vec([4,8,15,16,23,42]);
|
||||
assert_eq!(v[2], 15); // just like a std::vec
|
||||
```
|
||||
|
||||
Indexing by a `(usize,usize)` indexes by row and column
|
||||
```
|
||||
# use vector_victor::{Matrix, Vector};
|
||||
let m = Matrix::mat([[1,2,3],[4,5,6],[7,8,9]]);
|
||||
assert_eq!(m[(0,0)], 1);
|
||||
assert_eq!(m[(1,1)], 5);
|
||||
assert_eq!(m[(2,1)], 8);
|
||||
``` */
|
||||
pub trait Index2D: Copy + Debug {
|
||||
/// Convert an index to its 1-D linear interpretation, given the `width` and `height` of the
|
||||
/// matrix being subscripted.
|
||||
///
|
||||
/// If the index is out of bounds for the given dimensions, this returns `None`,
|
||||
/// otherwise it returns `Some(usize)`
|
||||
///
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// # use vector_victor::index::Index2D;
|
||||
/// assert_eq!(
|
||||
/// (1usize,2usize).to_1d(3,3),
|
||||
/// Some(5),
|
||||
/// "(1,2) is index 5 in a 3×3 matrix");
|
||||
/// assert_eq!(
|
||||
/// (3usize, 2usize).to_1d(3,3),
|
||||
/// None,
|
||||
/// "row 3, column 2 is out of bounds for a 3×3 matrix");
|
||||
/// ```
|
||||
/** Convert an index to its 1-D linear interpretation, given the `width` and `height` of the
|
||||
matrix being subscripted.
|
||||
|
||||
If the index is out of bounds for the given dimensions, this returns `None`,
|
||||
otherwise it returns `Some(usize)`
|
||||
|
||||
# Examples
|
||||
```
|
||||
# use vector_victor::index::Index2D;
|
||||
assert_eq!(
|
||||
(1usize,2usize).to_1d(3,3),
|
||||
Some(5),
|
||||
"(1,2) is index 5 in a 3×3 matrix");
|
||||
assert_eq!(
|
||||
(3usize, 2usize).to_1d(3,3),
|
||||
None,
|
||||
"row 3, column 2 is out of bounds for a 3×3 matrix");
|
||||
``` */
|
||||
#[inline(always)]
|
||||
fn to_1d(self, height: usize, width: usize) -> Option<usize> {
|
||||
let (r, c) = self.to_2d(height, width)?;
|
||||
Some(r * width + c)
|
||||
}
|
||||
|
||||
/// Convert an index to its 2-D interpretation, given the `width` and `height` of the
|
||||
/// matrix being subscripted.
|
||||
///
|
||||
/// If the index is out of bounds for the given dimensions, this returns `None`,
|
||||
/// otherwise it returns `Some((usize, usize))`
|
||||
///
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// # use vector_victor::index::Index2D;
|
||||
/// assert_eq!(
|
||||
/// 5usize.to_2d(3,3),
|
||||
/// Some((1usize,2usize)),
|
||||
/// "index 5 is at row 1 column 2 in a 3×3 matrix");
|
||||
/// assert_eq!(
|
||||
/// 10usize.to_2d(3,3),
|
||||
/// None,
|
||||
/// "a 3×3 matrix only has 9 elements, so index 10 is out of bounds.");
|
||||
/// ```
|
||||
/** Convert an index to its 2-D interpretation, given the `width` and `height` of the
|
||||
matrix being subscripted.
|
||||
|
||||
If the index is out of bounds for the given dimensions, this returns `None`,
|
||||
otherwise it returns `Some((usize, usize))`
|
||||
|
||||
# Examples
|
||||
```
|
||||
# use vector_victor::index::Index2D;
|
||||
assert_eq!(
|
||||
5usize.to_2d(3,3),
|
||||
Some((1usize,2usize)),
|
||||
"index 5 is at row 1 column 2 in a 3×3 matrix");
|
||||
assert_eq!(
|
||||
10usize.to_2d(3,3),
|
||||
None,
|
||||
"a 3×3 matrix only has 9 elements, so index 10 is out of bounds.");
|
||||
``` */
|
||||
fn to_2d(self, height: usize, width: usize) -> Option<(usize, usize)>;
|
||||
}
|
||||
|
||||
|
640
src/lib.rs
640
src/lib.rs
@ -14,9 +14,9 @@ mod ops;
|
||||
|
||||
mod util;
|
||||
|
||||
/// A 2D array of values which can be operated upon.
|
||||
///
|
||||
/// Matrices have a fixed size known at compile time
|
||||
/** A 2D array of values which can be operated upon.
|
||||
|
||||
Matrices have a fixed size known at compile time */
|
||||
#[derive(Debug, Copy, Clone, PartialEq)]
|
||||
pub struct Matrix<T, const M: usize, const N: usize>
|
||||
where
|
||||
@ -69,30 +69,31 @@ impl<T: Copy + Bounded, const N: usize, const M: usize> Bounded for Matrix<T, N,
|
||||
|
||||
// Identity
|
||||
impl<T: Copy + Zero + One, const N: usize> Matrix<T, N, N> {
|
||||
/// Create an identity matrix, a square matrix where the diagonals are 1 and all other elements
|
||||
/// are 0.
|
||||
/// for example,
|
||||
///
|
||||
/// $bbI = [[1,0,0],[0,1,0],[0,0,1]]$
|
||||
///
|
||||
/// Matrix multiplication between a matrix and the identity matrix always results in itself
|
||||
///
|
||||
/// $bbA xx bbI = bbA$
|
||||
///
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// # use vector_victor::Matrix;
|
||||
/// let i = Matrix::<i32,3,3>::identity();
|
||||
/// assert_eq!(i, Matrix::mat([[1, 0, 0],
|
||||
/// [0, 1, 0],
|
||||
/// [0, 0, 1]]))
|
||||
/// ```
|
||||
///
|
||||
/// Note that the identity only exists for matrices that are square, so this doesnt work:
|
||||
/// ```compile_fail
|
||||
/// # use vector_victor::Matrix;
|
||||
/// let i = Matrix::<i32,4,2>::identity();
|
||||
/// ```
|
||||
/** Create an identity matrix, a square matrix where the diagonals are 1 and
|
||||
all other elements are 0.
|
||||
|
||||
for example,
|
||||
|
||||
$bbI = \[\[1,0,0],\[0,1,0],\[0,0,1]]$
|
||||
|
||||
Matrix multiplication between a matrix and the identity matrix always results in itself
|
||||
|
||||
$bbA xx bbI = bbA$
|
||||
|
||||
# Examples
|
||||
```
|
||||
# use vector_victor::Matrix;
|
||||
let i = Matrix::<i32,3,3>::identity();
|
||||
assert_eq!(i, Matrix::mat([[1, 0, 0],
|
||||
[0, 1, 0],
|
||||
[0, 0, 1]]))
|
||||
```
|
||||
|
||||
Note that the identity only exists for matrices that are square, so this doesnt work:
|
||||
```compile_fail
|
||||
# use vector_victor::Matrix;
|
||||
let i = Matrix::<i32,4,2>::identity();
|
||||
``` */
|
||||
#[must_use]
|
||||
pub fn identity() -> Self {
|
||||
let mut result = Self::zero();
|
||||
@ -105,18 +106,18 @@ impl<T: Copy + Zero + One, const N: usize> Matrix<T, N, N> {
|
||||
|
||||
// Matrix constructors
|
||||
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
/// Generate a new matrix from a 2D Array
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `data`: A 2D array of elements to copy into the new matrix
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// # use vector_victor::Matrix;
|
||||
/// let a = Matrix::mat([[1,2,3,4];4]);
|
||||
/// ```
|
||||
/** Generate a new matrix from a 2D Array
|
||||
|
||||
# Arguments
|
||||
|
||||
* `data`: A 2D array of elements to copy into the new matrix
|
||||
|
||||
# Examples
|
||||
|
||||
```
|
||||
# use vector_victor::Matrix;
|
||||
let a = Matrix::mat([[1,2,3,4];4]);
|
||||
``` */
|
||||
#[must_use]
|
||||
pub fn mat(data: [[T; N]; M]) -> Self {
|
||||
assert!(M > 0, "Matrix must have at least 1 row");
|
||||
@ -124,19 +125,19 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
Matrix::<T, M, N> { data }
|
||||
}
|
||||
|
||||
/// Generate a new matrix from a single scalar
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `scalar`: Scalar value to copy into the new matrix.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// # use vector_victor::Matrix;
|
||||
/// // these are equivalent
|
||||
/// assert_eq!(Matrix::<i32,4,4>::fill(5), Matrix::mat([[5;4];4]))
|
||||
/// ```
|
||||
/** Generate a new matrix from a single scalar
|
||||
|
||||
# Arguments
|
||||
|
||||
* `scalar`: Scalar value to copy into the new matrix.
|
||||
|
||||
# Examples
|
||||
|
||||
```
|
||||
# use vector_victor::Matrix;
|
||||
// these are equivalent
|
||||
assert_eq!(Matrix::<i32,4,4>::fill(5), Matrix::mat([[5;4];4]))
|
||||
``` */
|
||||
#[must_use]
|
||||
pub fn fill(scalar: T) -> Matrix<T, M, N> {
|
||||
assert!(M > 0, "Matrix must have at least 1 row");
|
||||
@ -146,26 +147,26 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Create a matrix from an iterator of vectors
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `iter`: iterator of vectors to copy into rows
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// The following is another way of performing [`Matrix::transpose()`]
|
||||
/// ```
|
||||
/// # use vector_victor::Matrix;
|
||||
/// let my_matrix = Matrix::mat([[1, 2, 3],
|
||||
/// [4, 5, 6]]);
|
||||
///
|
||||
/// let transpose : Matrix<_,3,2>= Matrix::from_rows(my_matrix.cols());
|
||||
///
|
||||
/// assert_eq!(transpose, Matrix::mat([[1, 4],
|
||||
/// [2, 5],
|
||||
/// [3, 6]]))
|
||||
/// ```
|
||||
/** Create a matrix from an iterator of vectors
|
||||
|
||||
# Arguments
|
||||
|
||||
* `iter`: iterator of vectors to copy into rows
|
||||
|
||||
# Examples
|
||||
|
||||
The following is another way of performing [`Matrix::transpose()`]
|
||||
```
|
||||
# use vector_victor::Matrix;
|
||||
let my_matrix = Matrix::mat([[1, 2, 3],
|
||||
[4, 5, 6]]);
|
||||
|
||||
let transpose : Matrix<_,3,2>= Matrix::from_rows(my_matrix.cols());
|
||||
|
||||
assert_eq!(transpose, Matrix::mat([[1, 4],
|
||||
[2, 5],
|
||||
[3, 6]]))
|
||||
``` */
|
||||
#[must_use]
|
||||
pub fn from_rows<I>(iter: I) -> Self
|
||||
where
|
||||
@ -179,26 +180,26 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
result
|
||||
}
|
||||
|
||||
/// Create a matrix from an iterator of vectors
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `iter`: iterator of vectors to copy into columns
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// The following is another way of performing [`Matrix::transpose()`]
|
||||
/// ```
|
||||
/// # use vector_victor::Matrix;
|
||||
/// let my_matrix = Matrix::mat([[1, 2, 3],
|
||||
/// [4, 5, 6]]);
|
||||
///
|
||||
/// let transpose : Matrix<_,3,2>= Matrix::from_cols(my_matrix.rows());
|
||||
///
|
||||
/// assert_eq!(transpose, Matrix::mat([[1, 4],
|
||||
/// [2, 5],
|
||||
/// [3, 6]]))
|
||||
/// ```
|
||||
/** Create a matrix from an iterator of vectors
|
||||
|
||||
# Arguments
|
||||
|
||||
* `iter`: iterator of vectors to copy into columns
|
||||
|
||||
# Examples
|
||||
|
||||
The following is another way of performing [`Matrix::transpose()`]
|
||||
```
|
||||
# use vector_victor::Matrix;
|
||||
let my_matrix = Matrix::mat([[1, 2, 3],
|
||||
[4, 5, 6]]);
|
||||
|
||||
let transpose : Matrix<_,3,2>= Matrix::from_cols(my_matrix.rows());
|
||||
|
||||
assert_eq!(transpose, Matrix::mat([[1, 4],
|
||||
[2, 5],
|
||||
[3, 6]]))
|
||||
``` */
|
||||
#[must_use]
|
||||
pub fn from_cols<I>(iter: I) -> Self
|
||||
where
|
||||
@ -215,15 +216,15 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
|
||||
// Vector constructor
|
||||
impl<T: Copy, const N: usize> Vector<T, N> {
|
||||
/// Create a vector from a 1D array.
|
||||
/// Note that vectors are always column vectors unless explicitly instantiated as row vectors
|
||||
///
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// # use vector_victor::{Matrix, Vector};
|
||||
/// // these are equivalent
|
||||
/// assert_eq!(Vector::vec([1,2,3,4]), Matrix::mat([[1],[2],[3],[4]]));
|
||||
/// ```
|
||||
/** Create a vector from a 1D array.
|
||||
Note that vectors are always column vectors unless explicitly instantiated as row vectors
|
||||
|
||||
# Examples
|
||||
```
|
||||
# use vector_victor::{Matrix, Vector};
|
||||
// these are equivalent
|
||||
assert_eq!(Vector::vec([1,2,3,4]), Matrix::mat([[1],[2],[3],[4]]));
|
||||
``` */
|
||||
pub fn vec(data: [T; N]) -> Self {
|
||||
assert!(N > 0, "Vector must have at least 1 element");
|
||||
return Vector::<T, N> {
|
||||
@ -234,100 +235,99 @@ impl<T: Copy, const N: usize> Vector<T, N> {
|
||||
|
||||
// ACCESSORS AND MUTATORS
|
||||
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
/// Returns an iterator over the elements of the matrix in row-major order.
|
||||
///
|
||||
/// This is identical to the behavior of [`IntoIterator`](#associatedtype.IntoIter)
|
||||
///
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// # use vector_victor::Matrix;
|
||||
/// let my_matrix = Matrix::mat([[1, 2],
|
||||
/// [3, 4]]);
|
||||
///
|
||||
/// itertools::assert_equal(my_matrix.elements(), [1,2,3,4].iter())
|
||||
/// ```
|
||||
/** Returns an iterator over the elements of the matrix in row-major order.
|
||||
|
||||
This is identical to the behavior of [`IntoIterator`](#associatedtype.IntoIter)
|
||||
|
||||
# Examples
|
||||
```
|
||||
# use vector_victor::Matrix;
|
||||
let my_matrix = Matrix::mat([[1, 2],
|
||||
[3, 4]]);
|
||||
|
||||
itertools::assert_equal(my_matrix.elements(), [1,2,3,4].iter())
|
||||
``` */
|
||||
#[must_use]
|
||||
pub fn elements<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
|
||||
self.data.iter().flatten()
|
||||
}
|
||||
|
||||
/// Returns a mutable iterator over the elements of the matrix in row-major order.
|
||||
///
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// # use vector_victor::Matrix;
|
||||
/// let mut my_matrix = Matrix::mat([[1, 2],
|
||||
/// [3, 4]]);
|
||||
///
|
||||
/// for elem in my_matrix.elements_mut() {*elem += 2;}
|
||||
/// itertools::assert_equal(my_matrix.elements(), [3,4,5,6].iter())
|
||||
/// ```
|
||||
/** Returns a mutable iterator over the elements of the matrix in row-major order.
|
||||
|
||||
# Examples
|
||||
```
|
||||
# use vector_victor::Matrix;
|
||||
let mut my_matrix = Matrix::mat([[1, 2],
|
||||
[3, 4]]);
|
||||
|
||||
for elem in my_matrix.elements_mut() {*elem += 2;}
|
||||
itertools::assert_equal(my_matrix.elements(), [3,4,5,6].iter())
|
||||
``` */
|
||||
#[must_use]
|
||||
pub fn elements_mut<'s>(&'s mut self) -> impl Iterator<Item = &'s mut T> + 's {
|
||||
self.data.iter_mut().flatten()
|
||||
}
|
||||
|
||||
/// returns an iterator over the elements along the diagonal of a matrix
|
||||
///
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// # use vector_victor::Matrix;
|
||||
/// let my_matrix = Matrix::mat([[1, 2, 3],
|
||||
/// [4, 5, 6],
|
||||
/// [7, 8, 9],
|
||||
/// [10,11,12]]);
|
||||
///
|
||||
/// itertools::assert_equal(my_matrix.diagonals(), [1,5,9].iter())
|
||||
/// ```
|
||||
/** returns an iterator over the elements along the diagonal of a matrix
|
||||
|
||||
# Examples
|
||||
```
|
||||
# use vector_victor::Matrix;
|
||||
let my_matrix = Matrix::mat([[1, 2, 3],
|
||||
[4, 5, 6],
|
||||
[7, 8, 9],
|
||||
[10,11,12]]);
|
||||
|
||||
itertools::assert_equal(my_matrix.diagonals(), [1,5,9].iter())
|
||||
``` */
|
||||
#[must_use]
|
||||
pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
|
||||
(0..min(N, M)).map(|n| &self[(n, n)])
|
||||
}
|
||||
|
||||
/// Returns an iterator over the elements directly below the diagonal of a matrix
|
||||
/// returns an iterator over the elements along the diagonal of a matrix
|
||||
///
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// # use vector_victor::Matrix;
|
||||
/// let my_matrix = Matrix::mat([[1, 2, 3],
|
||||
/// [4, 5, 6],
|
||||
/// [7, 8, 9],
|
||||
/// [10,11,12]]);
|
||||
///
|
||||
/// itertools::assert_equal(my_matrix.subdiagonals(), [4,8,12].iter());
|
||||
/// ```
|
||||
/** Returns an iterator over the elements directly below the diagonal of a matrix
|
||||
|
||||
# Examples
|
||||
```
|
||||
# use vector_victor::Matrix;
|
||||
let my_matrix = Matrix::mat([[1, 2, 3],
|
||||
[4, 5, 6],
|
||||
[7, 8, 9],
|
||||
[10,11,12]]);
|
||||
|
||||
itertools::assert_equal(my_matrix.subdiagonals(), [4,8,12].iter());
|
||||
``` */
|
||||
#[must_use]
|
||||
pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
|
||||
(0..min(N, M - 1)).map(|n| &self[(n + 1, n)])
|
||||
}
|
||||
|
||||
/// Returns a reference to the element at that position in the matrix, or `None` if out of bounds.
|
||||
///
|
||||
/// [`Index`](#impl-Index%3CI%3E-for-Matrix%3CT,+M,+N%3E) behaves similarly,
|
||||
/// but will panic if the index is out of bounds instead of returning an option
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `index`: a 1D or 2D index into the matrix. See [Index2D] for more information on matrix indexing.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// # use vector_victor::Matrix;
|
||||
/// let my_matrix = Matrix::mat([[1, 2],
|
||||
/// [3, 4]]);
|
||||
///
|
||||
/// // element at index 2 is the same as the element at row 1, column 0.
|
||||
/// assert_eq!(my_matrix.get(2), my_matrix.get((1,0)));
|
||||
///
|
||||
/// // my_matrix.get() is equivalent to my_matrix[],
|
||||
/// // but returns an Option instead of panicking
|
||||
/// assert_eq!(my_matrix.get(2), Some(&my_matrix[2]));
|
||||
///
|
||||
/// // index 4 is out of range, so get(4) returns None.
|
||||
/// assert_eq!(my_matrix.get(4), None);
|
||||
/// ```
|
||||
/** Returns a reference to the element at that position in the matrix, or `None` if out of bounds.
|
||||
|
||||
[`Index`](#impl-Index%3CI%3E-for-Matrix%3CT,+M,+N%3E) behaves similarly,
|
||||
but will panic if the index is out of bounds instead of returning an option
|
||||
|
||||
# Arguments
|
||||
|
||||
* `index`: a 1D or 2D index into the matrix. See [Index2D] for more information on matrix indexing.
|
||||
|
||||
# Examples
|
||||
|
||||
```
|
||||
# use vector_victor::Matrix;
|
||||
let my_matrix = Matrix::mat([[1, 2],
|
||||
[3, 4]]);
|
||||
|
||||
// element at index 2 is the same as the element at row 1, column 0.
|
||||
assert_eq!(my_matrix.get(2), my_matrix.get((1,0)));
|
||||
|
||||
// my_matrix.get() is equivalent to my_matrix[],
|
||||
// but returns an Option instead of panicking
|
||||
assert_eq!(my_matrix.get(2), Some(&my_matrix[2]));
|
||||
|
||||
// index 4 is out of range, so get(4) returns None.
|
||||
assert_eq!(my_matrix.get(4), None);
|
||||
``` */
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn get(&self, index: impl Index2D) -> Option<&T> {
|
||||
@ -335,29 +335,29 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
Some(&self.data[m][n])
|
||||
}
|
||||
|
||||
/// Returns a mutable reference to the element at that position in the matrix,
|
||||
/// or `None` if out of bounds.
|
||||
///
|
||||
/// [`IndexMut`](#impl-IndexMut%3CI%3E-for-Matrix%3CT,+M,+N%3E) behaves similarly,
|
||||
/// but will panic if the index is out of bounds instead of returning an option
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `index`: a 1D or 2D index into the matrix. See [Index2D] for more information
|
||||
/// on matrix indexing.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// # use vector_victor::Matrix;
|
||||
/// let mut my_matrix = Matrix::mat([[1, 2],
|
||||
/// [3, 4]]);
|
||||
///
|
||||
/// match my_matrix.get_mut(2) {
|
||||
/// Some(t) => *t = 5,
|
||||
/// None => panic!()};
|
||||
/// assert_eq!(my_matrix, Matrix::mat([[1,2],[5,4]]))
|
||||
/// ```
|
||||
/** Returns a mutable reference to the element at that position in the matrix,
|
||||
or `None` if out of bounds.
|
||||
|
||||
[`IndexMut`](#impl-IndexMut%3CI%3E-for-Matrix%3CT,+M,+N%3E) behaves similarly,
|
||||
but will panic if the index is out of bounds instead of returning an option
|
||||
|
||||
# Arguments
|
||||
|
||||
* `index`: a 1D or 2D index into the matrix. See [Index2D] for more information
|
||||
on matrix indexing.
|
||||
|
||||
# Examples
|
||||
|
||||
```
|
||||
# use vector_victor::Matrix;
|
||||
let mut my_matrix = Matrix::mat([[1, 2],
|
||||
[3, 4]]);
|
||||
|
||||
match my_matrix.get_mut(2) {
|
||||
Some(t) => *t = 5,
|
||||
None => panic!()};
|
||||
assert_eq!(my_matrix, Matrix::mat([[1,2],[5,4]]))
|
||||
``` */
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn get_mut(&mut self, index: impl Index2D) -> Option<&mut T> {
|
||||
@ -365,22 +365,22 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
Some(&mut self.data[m][n])
|
||||
}
|
||||
|
||||
/// Returns a row of the matrix.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Panics if row index `m` is out of bounds.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// # use vector_victor::{Matrix, Vector};
|
||||
/// let my_matrix = Matrix::mat([[1, 2],
|
||||
/// [3, 4]]);
|
||||
///
|
||||
/// // row at index 1
|
||||
/// assert_eq!(my_matrix.row(1), Vector::vec([3,4]));
|
||||
/// ```
|
||||
/** Returns a row of the matrix.
|
||||
|
||||
# Panics
|
||||
|
||||
Panics if row index `m` is out of bounds.
|
||||
|
||||
# Examples
|
||||
|
||||
```
|
||||
# use vector_victor::{Matrix, Vector};
|
||||
let my_matrix = Matrix::mat([[1, 2],
|
||||
[3, 4]]);
|
||||
|
||||
// row at index 1
|
||||
assert_eq!(my_matrix.row(1), Vector::vec([3,4]));
|
||||
``` */
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn row(&self, m: usize) -> Vector<T, N> {
|
||||
@ -394,22 +394,22 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
Vector::<T, N>::vec(self.data[m])
|
||||
}
|
||||
|
||||
/// Sets a row of the matrix.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Panics if row index `m` is out of bounds.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// # use vector_victor::{Matrix, Vector};
|
||||
/// let mut my_matrix = Matrix::mat([[1, 2],
|
||||
/// [3, 4]]);
|
||||
/// // row at index 1
|
||||
/// my_matrix.set_row(1, &Vector::vec([5,6]));
|
||||
/// assert_eq!(my_matrix, Matrix::mat([[1,2],[5,6]]));
|
||||
/// ```
|
||||
/** Sets a row of the matrix.
|
||||
|
||||
# Panics
|
||||
|
||||
Panics if row index `m` is out of bounds.
|
||||
|
||||
# Examples
|
||||
|
||||
```
|
||||
# use vector_victor::{Matrix, Vector};
|
||||
let mut my_matrix = Matrix::mat([[1, 2],
|
||||
[3, 4]]);
|
||||
// row at index 1
|
||||
my_matrix.set_row(1, &Vector::vec([5,6]));
|
||||
assert_eq!(my_matrix, Matrix::mat([[1,2],[5,6]]));
|
||||
``` */
|
||||
#[inline]
|
||||
pub fn set_row(&mut self, m: usize, val: &Vector<T, N>) {
|
||||
assert!(
|
||||
@ -424,22 +424,22 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a column of the matrix.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Panics if column index `n` is out of bounds.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// # use vector_victor::{Matrix, Vector};
|
||||
/// let my_matrix = Matrix::mat([[1, 2],
|
||||
/// [3, 4]]);
|
||||
///
|
||||
/// // column at index 1
|
||||
/// assert_eq!(my_matrix.col(1), Vector::vec([2,4]));
|
||||
/// ```
|
||||
/** Returns a column of the matrix.
|
||||
|
||||
# Panics
|
||||
|
||||
Panics if column index `n` is out of bounds.
|
||||
|
||||
# Examples
|
||||
|
||||
```
|
||||
# use vector_victor::{Matrix, Vector};
|
||||
let my_matrix = Matrix::mat([[1, 2],
|
||||
[3, 4]]);
|
||||
|
||||
// column at index 1
|
||||
assert_eq!(my_matrix.col(1), Vector::vec([2,4]));
|
||||
``` */
|
||||
#[inline]
|
||||
#[must_use]
|
||||
pub fn col(&self, n: usize) -> Vector<T, M> {
|
||||
@ -453,22 +453,22 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
Vector::<T, M>::vec(self.data.map(|r| r[n]))
|
||||
}
|
||||
|
||||
/// Sets a column of the matrix.
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Panics if column index `n` is out of bounds.
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// # use vector_victor::{Matrix, Vector};
|
||||
/// let mut my_matrix = Matrix::mat([[1, 2],
|
||||
/// [3, 4]]);
|
||||
/// // column at index 1
|
||||
/// my_matrix.set_col(1, &Vector::vec([5,6]));
|
||||
/// assert_eq!(my_matrix, Matrix::mat([[1,5],[3,6]]));
|
||||
/// ```
|
||||
/** Sets a column of the matrix.
|
||||
|
||||
# Panics
|
||||
|
||||
Panics if column index `n` is out of bounds.
|
||||
|
||||
# Examples
|
||||
|
||||
```
|
||||
# use vector_victor::{Matrix, Vector};
|
||||
let mut my_matrix = Matrix::mat([[1, 2],
|
||||
[3, 4]]);
|
||||
// column at index 1
|
||||
my_matrix.set_col(1, &Vector::vec([5,6]));
|
||||
assert_eq!(my_matrix, Matrix::mat([[1,5],[3,6]]));
|
||||
``` */
|
||||
#[inline]
|
||||
pub fn set_col(&mut self, n: usize, val: &Vector<T, M>) {
|
||||
assert!(
|
||||
@ -496,52 +496,52 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
(0..N).map(|n| self.col(n))
|
||||
}
|
||||
|
||||
/// Interchange two rows
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Panics if row index `m1` or `m2` are out of bounds
|
||||
/** Interchange two rows
|
||||
|
||||
# Panics
|
||||
|
||||
Panics if row index `m1` or `m2` are out of bounds */
|
||||
pub fn pivot_row(&mut self, m1: usize, m2: usize) {
|
||||
let tmp = self.row(m2);
|
||||
self.set_row(m2, &self.row(m1));
|
||||
self.set_row(m1, &tmp);
|
||||
}
|
||||
|
||||
/// Interchange two columns
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Panics if column index `n1` or `n2` are out of bounds
|
||||
/** Interchange two columns
|
||||
|
||||
# Panics
|
||||
|
||||
Panics if column index `n1` or `n2` are out of bounds */
|
||||
pub fn pivot_col(&mut self, n1: usize, n2: usize) {
|
||||
let tmp = self.col(n2);
|
||||
self.set_col(n2, &self.col(n1));
|
||||
self.set_col(n1, &tmp);
|
||||
}
|
||||
|
||||
/// Apply a permutation matrix to the rows of a matrix
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `ms`: a [`Vector`] of [`usize`] of length M. Each entry is the index of the row that will
|
||||
/// appear in the result
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Panics if any of the row indices in `ms` is out of bounds
|
||||
///
|
||||
/// # Examples
|
||||
///
|
||||
/// ```
|
||||
/// # use vector_victor::{Matrix, Vector};
|
||||
/// let my_matrix = Matrix::mat([[1, 2, 3],
|
||||
/// [4, 5, 6],
|
||||
/// [7, 8, 9]]);
|
||||
///
|
||||
/// let permuted = my_matrix.permute_rows(&Vector::vec([1, 0, 2]));
|
||||
/// assert_eq!(permuted, Matrix::mat([[4, 5, 6],
|
||||
/// [1, 2, 3],
|
||||
/// [7, 8, 9]]))
|
||||
/// ```
|
||||
/** Apply a permutation matrix to the rows of a matrix
|
||||
|
||||
# Arguments
|
||||
|
||||
* `ms`: a [`Vector`] of [`usize`] of length M. Each entry is the index of the row that will
|
||||
appear in the result
|
||||
|
||||
# Panics
|
||||
|
||||
Panics if any of the row indices in `ms` is out of bounds
|
||||
|
||||
# Examples
|
||||
|
||||
```
|
||||
# use vector_victor::{Matrix, Vector};
|
||||
let my_matrix = Matrix::mat([[1, 2, 3],
|
||||
[4, 5, 6],
|
||||
[7, 8, 9]]);
|
||||
|
||||
let permuted = my_matrix.permute_rows(&Vector::vec([1, 0, 2]));
|
||||
assert_eq!(permuted, Matrix::mat([[4, 5, 6],
|
||||
[1, 2, 3],
|
||||
[7, 8, 9]]))
|
||||
``` */
|
||||
#[must_use]
|
||||
pub fn permute_rows(&self, ms: &Vector<usize, M>) -> Self
|
||||
where
|
||||
@ -550,16 +550,16 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
Self::from_rows(ms.elements().map(|&m| self.row(m)))
|
||||
}
|
||||
|
||||
/// Apply a permutation matrix to the columns of a matrix
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `ns`: a [`Vector`] of [`usize`] of length N. Each entry is the index of the column that will
|
||||
/// appear in the result
|
||||
///
|
||||
/// # Panics
|
||||
///
|
||||
/// Panics if any of the column indices in `ns` is out of bounds
|
||||
/** Apply a permutation matrix to the columns of a matrix
|
||||
|
||||
# Arguments
|
||||
|
||||
* `ns`: a [`Vector`] of [`usize`] of length N. Each entry is the index of the column that will
|
||||
appear in the result
|
||||
|
||||
# Panics
|
||||
|
||||
Panics if any of the column indices in `ns` is out of bounds */
|
||||
#[must_use]
|
||||
pub fn permute_cols(&self, ns: &Vector<usize, N>) -> Self
|
||||
where
|
||||
@ -568,20 +568,20 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||
Self::from_cols(ns.elements().map(|&n| self.col(n)))
|
||||
}
|
||||
|
||||
/// Returns the transpose $M^T$ of the matrix, or the matrix flipped across its diagonal.
|
||||
///
|
||||
/// # Examples
|
||||
/// ```
|
||||
/// # use vector_victor::Matrix;
|
||||
/// let my_matrix = Matrix::mat([[1, 2, 3],
|
||||
/// [4, 5, 6]]);
|
||||
///
|
||||
/// assert_eq!(
|
||||
/// my_matrix.transpose(),
|
||||
/// Matrix::mat([[1, 4],
|
||||
/// [2, 5],
|
||||
/// [3, 6]]))
|
||||
/// ```
|
||||
/** Returns the transpose $M^T$ of the matrix, or the matrix flipped across its diagonal.
|
||||
|
||||
# Examples
|
||||
```
|
||||
# use vector_victor::Matrix;
|
||||
let my_matrix = Matrix::mat([[1, 2, 3],
|
||||
[4, 5, 6]]);
|
||||
|
||||
assert_eq!(
|
||||
my_matrix.transpose(),
|
||||
Matrix::mat([[1, 4],
|
||||
[2, 5],
|
||||
[3, 6]]))
|
||||
``` */
|
||||
pub fn transpose(&self) -> Matrix<T, N, M>
|
||||
where
|
||||
Matrix<T, N, M>: Default,
|
||||
|
37
src/math.rs
37
src/math.rs
@ -6,24 +6,25 @@ use std::ops::{Add, Mul};
|
||||
|
||||
/// Operations for column vectors
|
||||
impl<T: Copy, const N: usize> Vector<T, N> {
|
||||
/// Compute the dot product of two vectors, otherwise known as the scalar product.
|
||||
/// This is the sum of the elementwise product, or in math terms
|
||||
///
|
||||
/// $vec(a) * vec(b) = sum_(i=1)^n a_i b_i = a_1 b_1 + a_2 b_2 + ... + a_n b_n$
|
||||
///
|
||||
/// for example, $[[1],[2],[3]] * [[4],[5],[6]] = (1 * 4) + (2 * 5) + (3 * 6) = 32$
|
||||
///
|
||||
/// For vectors in euclidean space, this has the property that it is equal to the magnitudes of
|
||||
/// the vectors times the cosine of the angle between them.
|
||||
///
|
||||
/// $vec(a) * vec(b) = |vec(a)| |vec(b)| cos(theta)$
|
||||
///
|
||||
/// this also gives it the special property that the dot product of a vector and itself is the
|
||||
/// square of its magnitude. You may recognize the 2D version as the
|
||||
/// [pythagorean theorem](https://en.wikipedia.org/wiki/Pythagorean_theorem).
|
||||
///
|
||||
/// see [dot product](https://en.wikipedia.org/wiki/Dot_product) on Wikipedia for more
|
||||
/// information.
|
||||
/** Compute the dot product of two vectors, otherwise known as the scalar product.
|
||||
|
||||
This is the sum of the elementwise product, or in math terms
|
||||
|
||||
$vec(a) * vec(b) = sum_(i=1)^n a_i b_i = a_1 b_1 + a_2 b_2 + ... + a_n b_n$
|
||||
|
||||
for example, $\[\[1],\[2],\[3]] * \[\[4],\[5],\[6]] = (1 * 4) + (2 * 5) + (3 * 6) = 32$
|
||||
|
||||
For vectors in euclidean space, this has the property that it is equal to the magnitudes of
|
||||
the vectors times the cosine of the angle between them.
|
||||
|
||||
$vec(a) * vec(b) = |vec(a)| |vec(b)| cos(theta)$
|
||||
|
||||
this also gives it the special property that the dot product of a vector and itself is the
|
||||
square of its magnitude. You may recognize the 2D version as the
|
||||
[pythagorean theorem](https://en.wikipedia.org/wiki/Pythagorean_theorem).
|
||||
|
||||
see [dot product](https://en.wikipedia.org/wiki/Dot_product) on Wikipedia for more
|
||||
information. */
|
||||
pub fn dot<R>(&self, rhs: &R) -> T
|
||||
where
|
||||
for<'s> &'s Self: Mul<&'s R, Output = Self>,
|
||||
|
Loading…
Reference in New Issue
Block a user