mirror of
https://github.com/drewcassidy/vector-victor.git
synced 2024-09-01 14:58:35 +00:00
Use block comments for docs
Much more readable in the raw source
This commit is contained in:
parent
9b14bebb2d
commit
bd1bde1657
128
src/index.rs
128
src/index.rs
@ -2,77 +2,77 @@
|
|||||||
|
|
||||||
use std::fmt::Debug;
|
use std::fmt::Debug;
|
||||||
|
|
||||||
/// Trait implemented by types that can be used as a matrix index
|
/** Trait implemented by types that can be used as a matrix index
|
||||||
///
|
|
||||||
/// There are currently two implementations:
|
There are currently two implementations:
|
||||||
/// [`usize`](#impl-Index2D-for-usize) and [`(usize,usize)`](#impl-Index2D-for-(usize,+usize))
|
[`usize`](#impl-Index2D-for-usize) and [`(usize,usize)`](#impl-Index2D-for-(usize,+usize))
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
/// Indexing by a `usize` indexes starting at the first element and
|
Indexing by a `usize` indexes starting at the first element and
|
||||||
/// increments linearly in row-major order. This is especially useful for column vectors.
|
increments linearly in row-major order. This is especially useful for column vectors.
|
||||||
///
|
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::{Matrix, Vector};
|
# use vector_victor::{Matrix, Vector};
|
||||||
/// let m = Matrix::mat([[1,2,3],[4,5,6],[7,8,9]]);
|
let m = Matrix::mat([[1,2,3],[4,5,6],[7,8,9]]);
|
||||||
/// assert_eq!(m[0], 1);
|
assert_eq!(m[0], 1);
|
||||||
/// assert_eq!(m[4], 5);
|
assert_eq!(m[4], 5);
|
||||||
/// assert_eq!(m[7], 8);
|
assert_eq!(m[7], 8);
|
||||||
///
|
|
||||||
/// let v = Vector::vec([4,8,15,16,23,42]);
|
let v = Vector::vec([4,8,15,16,23,42]);
|
||||||
/// assert_eq!(v[2], 15); // just like a std::vec
|
assert_eq!(v[2], 15); // just like a std::vec
|
||||||
/// ```
|
```
|
||||||
///
|
|
||||||
/// Indexing by a `(usize,usize)` indexes by row and column
|
Indexing by a `(usize,usize)` indexes by row and column
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::{Matrix, Vector};
|
# use vector_victor::{Matrix, Vector};
|
||||||
/// let m = Matrix::mat([[1,2,3],[4,5,6],[7,8,9]]);
|
let m = Matrix::mat([[1,2,3],[4,5,6],[7,8,9]]);
|
||||||
/// assert_eq!(m[(0,0)], 1);
|
assert_eq!(m[(0,0)], 1);
|
||||||
/// assert_eq!(m[(1,1)], 5);
|
assert_eq!(m[(1,1)], 5);
|
||||||
/// assert_eq!(m[(2,1)], 8);
|
assert_eq!(m[(2,1)], 8);
|
||||||
/// ```
|
``` */
|
||||||
pub trait Index2D: Copy + Debug {
|
pub trait Index2D: Copy + Debug {
|
||||||
/// Convert an index to its 1-D linear interpretation, given the `width` and `height` of the
|
/** Convert an index to its 1-D linear interpretation, given the `width` and `height` of the
|
||||||
/// matrix being subscripted.
|
matrix being subscripted.
|
||||||
///
|
|
||||||
/// If the index is out of bounds for the given dimensions, this returns `None`,
|
If the index is out of bounds for the given dimensions, this returns `None`,
|
||||||
/// otherwise it returns `Some(usize)`
|
otherwise it returns `Some(usize)`
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::index::Index2D;
|
# use vector_victor::index::Index2D;
|
||||||
/// assert_eq!(
|
assert_eq!(
|
||||||
/// (1usize,2usize).to_1d(3,3),
|
(1usize,2usize).to_1d(3,3),
|
||||||
/// Some(5),
|
Some(5),
|
||||||
/// "(1,2) is index 5 in a 3×3 matrix");
|
"(1,2) is index 5 in a 3×3 matrix");
|
||||||
/// assert_eq!(
|
assert_eq!(
|
||||||
/// (3usize, 2usize).to_1d(3,3),
|
(3usize, 2usize).to_1d(3,3),
|
||||||
/// None,
|
None,
|
||||||
/// "row 3, column 2 is out of bounds for a 3×3 matrix");
|
"row 3, column 2 is out of bounds for a 3×3 matrix");
|
||||||
/// ```
|
``` */
|
||||||
#[inline(always)]
|
#[inline(always)]
|
||||||
fn to_1d(self, height: usize, width: usize) -> Option<usize> {
|
fn to_1d(self, height: usize, width: usize) -> Option<usize> {
|
||||||
let (r, c) = self.to_2d(height, width)?;
|
let (r, c) = self.to_2d(height, width)?;
|
||||||
Some(r * width + c)
|
Some(r * width + c)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Convert an index to its 2-D interpretation, given the `width` and `height` of the
|
/** Convert an index to its 2-D interpretation, given the `width` and `height` of the
|
||||||
/// matrix being subscripted.
|
matrix being subscripted.
|
||||||
///
|
|
||||||
/// If the index is out of bounds for the given dimensions, this returns `None`,
|
If the index is out of bounds for the given dimensions, this returns `None`,
|
||||||
/// otherwise it returns `Some((usize, usize))`
|
otherwise it returns `Some((usize, usize))`
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::index::Index2D;
|
# use vector_victor::index::Index2D;
|
||||||
/// assert_eq!(
|
assert_eq!(
|
||||||
/// 5usize.to_2d(3,3),
|
5usize.to_2d(3,3),
|
||||||
/// Some((1usize,2usize)),
|
Some((1usize,2usize)),
|
||||||
/// "index 5 is at row 1 column 2 in a 3×3 matrix");
|
"index 5 is at row 1 column 2 in a 3×3 matrix");
|
||||||
/// assert_eq!(
|
assert_eq!(
|
||||||
/// 10usize.to_2d(3,3),
|
10usize.to_2d(3,3),
|
||||||
/// None,
|
None,
|
||||||
/// "a 3×3 matrix only has 9 elements, so index 10 is out of bounds.");
|
"a 3×3 matrix only has 9 elements, so index 10 is out of bounds.");
|
||||||
/// ```
|
``` */
|
||||||
fn to_2d(self, height: usize, width: usize) -> Option<(usize, usize)>;
|
fn to_2d(self, height: usize, width: usize) -> Option<(usize, usize)>;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
640
src/lib.rs
640
src/lib.rs
@ -14,9 +14,9 @@ mod ops;
|
|||||||
|
|
||||||
mod util;
|
mod util;
|
||||||
|
|
||||||
/// A 2D array of values which can be operated upon.
|
/** A 2D array of values which can be operated upon.
|
||||||
///
|
|
||||||
/// Matrices have a fixed size known at compile time
|
Matrices have a fixed size known at compile time */
|
||||||
#[derive(Debug, Copy, Clone, PartialEq)]
|
#[derive(Debug, Copy, Clone, PartialEq)]
|
||||||
pub struct Matrix<T, const M: usize, const N: usize>
|
pub struct Matrix<T, const M: usize, const N: usize>
|
||||||
where
|
where
|
||||||
@ -69,30 +69,31 @@ impl<T: Copy + Bounded, const N: usize, const M: usize> Bounded for Matrix<T, N,
|
|||||||
|
|
||||||
// Identity
|
// Identity
|
||||||
impl<T: Copy + Zero + One, const N: usize> Matrix<T, N, N> {
|
impl<T: Copy + Zero + One, const N: usize> Matrix<T, N, N> {
|
||||||
/// Create an identity matrix, a square matrix where the diagonals are 1 and all other elements
|
/** Create an identity matrix, a square matrix where the diagonals are 1 and
|
||||||
/// are 0.
|
all other elements are 0.
|
||||||
/// for example,
|
|
||||||
///
|
for example,
|
||||||
/// $bbI = [[1,0,0],[0,1,0],[0,0,1]]$
|
|
||||||
///
|
$bbI = \[\[1,0,0],\[0,1,0],\[0,0,1]]$
|
||||||
/// Matrix multiplication between a matrix and the identity matrix always results in itself
|
|
||||||
///
|
Matrix multiplication between a matrix and the identity matrix always results in itself
|
||||||
/// $bbA xx bbI = bbA$
|
|
||||||
///
|
$bbA xx bbI = bbA$
|
||||||
/// # Examples
|
|
||||||
/// ```
|
# Examples
|
||||||
/// # use vector_victor::Matrix;
|
```
|
||||||
/// let i = Matrix::<i32,3,3>::identity();
|
# use vector_victor::Matrix;
|
||||||
/// assert_eq!(i, Matrix::mat([[1, 0, 0],
|
let i = Matrix::<i32,3,3>::identity();
|
||||||
/// [0, 1, 0],
|
assert_eq!(i, Matrix::mat([[1, 0, 0],
|
||||||
/// [0, 0, 1]]))
|
[0, 1, 0],
|
||||||
/// ```
|
[0, 0, 1]]))
|
||||||
///
|
```
|
||||||
/// Note that the identity only exists for matrices that are square, so this doesnt work:
|
|
||||||
/// ```compile_fail
|
Note that the identity only exists for matrices that are square, so this doesnt work:
|
||||||
/// # use vector_victor::Matrix;
|
```compile_fail
|
||||||
/// let i = Matrix::<i32,4,2>::identity();
|
# use vector_victor::Matrix;
|
||||||
/// ```
|
let i = Matrix::<i32,4,2>::identity();
|
||||||
|
``` */
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn identity() -> Self {
|
pub fn identity() -> Self {
|
||||||
let mut result = Self::zero();
|
let mut result = Self::zero();
|
||||||
@ -105,18 +106,18 @@ impl<T: Copy + Zero + One, const N: usize> Matrix<T, N, N> {
|
|||||||
|
|
||||||
// Matrix constructors
|
// Matrix constructors
|
||||||
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||||
/// Generate a new matrix from a 2D Array
|
/** Generate a new matrix from a 2D Array
|
||||||
///
|
|
||||||
/// # Arguments
|
# Arguments
|
||||||
///
|
|
||||||
/// * `data`: A 2D array of elements to copy into the new matrix
|
* `data`: A 2D array of elements to copy into the new matrix
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
///
|
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::Matrix;
|
# use vector_victor::Matrix;
|
||||||
/// let a = Matrix::mat([[1,2,3,4];4]);
|
let a = Matrix::mat([[1,2,3,4];4]);
|
||||||
/// ```
|
``` */
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn mat(data: [[T; N]; M]) -> Self {
|
pub fn mat(data: [[T; N]; M]) -> Self {
|
||||||
assert!(M > 0, "Matrix must have at least 1 row");
|
assert!(M > 0, "Matrix must have at least 1 row");
|
||||||
@ -124,19 +125,19 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
Matrix::<T, M, N> { data }
|
Matrix::<T, M, N> { data }
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Generate a new matrix from a single scalar
|
/** Generate a new matrix from a single scalar
|
||||||
///
|
|
||||||
/// # Arguments
|
# Arguments
|
||||||
///
|
|
||||||
/// * `scalar`: Scalar value to copy into the new matrix.
|
* `scalar`: Scalar value to copy into the new matrix.
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
///
|
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::Matrix;
|
# use vector_victor::Matrix;
|
||||||
/// // these are equivalent
|
// these are equivalent
|
||||||
/// assert_eq!(Matrix::<i32,4,4>::fill(5), Matrix::mat([[5;4];4]))
|
assert_eq!(Matrix::<i32,4,4>::fill(5), Matrix::mat([[5;4];4]))
|
||||||
/// ```
|
``` */
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn fill(scalar: T) -> Matrix<T, M, N> {
|
pub fn fill(scalar: T) -> Matrix<T, M, N> {
|
||||||
assert!(M > 0, "Matrix must have at least 1 row");
|
assert!(M > 0, "Matrix must have at least 1 row");
|
||||||
@ -146,26 +147,26 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Create a matrix from an iterator of vectors
|
/** Create a matrix from an iterator of vectors
|
||||||
///
|
|
||||||
/// # Arguments
|
# Arguments
|
||||||
///
|
|
||||||
/// * `iter`: iterator of vectors to copy into rows
|
* `iter`: iterator of vectors to copy into rows
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
///
|
|
||||||
/// The following is another way of performing [`Matrix::transpose()`]
|
The following is another way of performing [`Matrix::transpose()`]
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::Matrix;
|
# use vector_victor::Matrix;
|
||||||
/// let my_matrix = Matrix::mat([[1, 2, 3],
|
let my_matrix = Matrix::mat([[1, 2, 3],
|
||||||
/// [4, 5, 6]]);
|
[4, 5, 6]]);
|
||||||
///
|
|
||||||
/// let transpose : Matrix<_,3,2>= Matrix::from_rows(my_matrix.cols());
|
let transpose : Matrix<_,3,2>= Matrix::from_rows(my_matrix.cols());
|
||||||
///
|
|
||||||
/// assert_eq!(transpose, Matrix::mat([[1, 4],
|
assert_eq!(transpose, Matrix::mat([[1, 4],
|
||||||
/// [2, 5],
|
[2, 5],
|
||||||
/// [3, 6]]))
|
[3, 6]]))
|
||||||
/// ```
|
``` */
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn from_rows<I>(iter: I) -> Self
|
pub fn from_rows<I>(iter: I) -> Self
|
||||||
where
|
where
|
||||||
@ -179,26 +180,26 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
result
|
result
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Create a matrix from an iterator of vectors
|
/** Create a matrix from an iterator of vectors
|
||||||
///
|
|
||||||
/// # Arguments
|
# Arguments
|
||||||
///
|
|
||||||
/// * `iter`: iterator of vectors to copy into columns
|
* `iter`: iterator of vectors to copy into columns
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
///
|
|
||||||
/// The following is another way of performing [`Matrix::transpose()`]
|
The following is another way of performing [`Matrix::transpose()`]
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::Matrix;
|
# use vector_victor::Matrix;
|
||||||
/// let my_matrix = Matrix::mat([[1, 2, 3],
|
let my_matrix = Matrix::mat([[1, 2, 3],
|
||||||
/// [4, 5, 6]]);
|
[4, 5, 6]]);
|
||||||
///
|
|
||||||
/// let transpose : Matrix<_,3,2>= Matrix::from_cols(my_matrix.rows());
|
let transpose : Matrix<_,3,2>= Matrix::from_cols(my_matrix.rows());
|
||||||
///
|
|
||||||
/// assert_eq!(transpose, Matrix::mat([[1, 4],
|
assert_eq!(transpose, Matrix::mat([[1, 4],
|
||||||
/// [2, 5],
|
[2, 5],
|
||||||
/// [3, 6]]))
|
[3, 6]]))
|
||||||
/// ```
|
``` */
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn from_cols<I>(iter: I) -> Self
|
pub fn from_cols<I>(iter: I) -> Self
|
||||||
where
|
where
|
||||||
@ -215,15 +216,15 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
|
|
||||||
// Vector constructor
|
// Vector constructor
|
||||||
impl<T: Copy, const N: usize> Vector<T, N> {
|
impl<T: Copy, const N: usize> Vector<T, N> {
|
||||||
/// Create a vector from a 1D array.
|
/** Create a vector from a 1D array.
|
||||||
/// Note that vectors are always column vectors unless explicitly instantiated as row vectors
|
Note that vectors are always column vectors unless explicitly instantiated as row vectors
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::{Matrix, Vector};
|
# use vector_victor::{Matrix, Vector};
|
||||||
/// // these are equivalent
|
// these are equivalent
|
||||||
/// assert_eq!(Vector::vec([1,2,3,4]), Matrix::mat([[1],[2],[3],[4]]));
|
assert_eq!(Vector::vec([1,2,3,4]), Matrix::mat([[1],[2],[3],[4]]));
|
||||||
/// ```
|
``` */
|
||||||
pub fn vec(data: [T; N]) -> Self {
|
pub fn vec(data: [T; N]) -> Self {
|
||||||
assert!(N > 0, "Vector must have at least 1 element");
|
assert!(N > 0, "Vector must have at least 1 element");
|
||||||
return Vector::<T, N> {
|
return Vector::<T, N> {
|
||||||
@ -234,100 +235,99 @@ impl<T: Copy, const N: usize> Vector<T, N> {
|
|||||||
|
|
||||||
// ACCESSORS AND MUTATORS
|
// ACCESSORS AND MUTATORS
|
||||||
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||||
/// Returns an iterator over the elements of the matrix in row-major order.
|
/** Returns an iterator over the elements of the matrix in row-major order.
|
||||||
///
|
|
||||||
/// This is identical to the behavior of [`IntoIterator`](#associatedtype.IntoIter)
|
This is identical to the behavior of [`IntoIterator`](#associatedtype.IntoIter)
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::Matrix;
|
# use vector_victor::Matrix;
|
||||||
/// let my_matrix = Matrix::mat([[1, 2],
|
let my_matrix = Matrix::mat([[1, 2],
|
||||||
/// [3, 4]]);
|
[3, 4]]);
|
||||||
///
|
|
||||||
/// itertools::assert_equal(my_matrix.elements(), [1,2,3,4].iter())
|
itertools::assert_equal(my_matrix.elements(), [1,2,3,4].iter())
|
||||||
/// ```
|
``` */
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn elements<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
|
pub fn elements<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
|
||||||
self.data.iter().flatten()
|
self.data.iter().flatten()
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns a mutable iterator over the elements of the matrix in row-major order.
|
/** Returns a mutable iterator over the elements of the matrix in row-major order.
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::Matrix;
|
# use vector_victor::Matrix;
|
||||||
/// let mut my_matrix = Matrix::mat([[1, 2],
|
let mut my_matrix = Matrix::mat([[1, 2],
|
||||||
/// [3, 4]]);
|
[3, 4]]);
|
||||||
///
|
|
||||||
/// for elem in my_matrix.elements_mut() {*elem += 2;}
|
for elem in my_matrix.elements_mut() {*elem += 2;}
|
||||||
/// itertools::assert_equal(my_matrix.elements(), [3,4,5,6].iter())
|
itertools::assert_equal(my_matrix.elements(), [3,4,5,6].iter())
|
||||||
/// ```
|
``` */
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn elements_mut<'s>(&'s mut self) -> impl Iterator<Item = &'s mut T> + 's {
|
pub fn elements_mut<'s>(&'s mut self) -> impl Iterator<Item = &'s mut T> + 's {
|
||||||
self.data.iter_mut().flatten()
|
self.data.iter_mut().flatten()
|
||||||
}
|
}
|
||||||
|
|
||||||
/// returns an iterator over the elements along the diagonal of a matrix
|
/** returns an iterator over the elements along the diagonal of a matrix
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::Matrix;
|
# use vector_victor::Matrix;
|
||||||
/// let my_matrix = Matrix::mat([[1, 2, 3],
|
let my_matrix = Matrix::mat([[1, 2, 3],
|
||||||
/// [4, 5, 6],
|
[4, 5, 6],
|
||||||
/// [7, 8, 9],
|
[7, 8, 9],
|
||||||
/// [10,11,12]]);
|
[10,11,12]]);
|
||||||
///
|
|
||||||
/// itertools::assert_equal(my_matrix.diagonals(), [1,5,9].iter())
|
itertools::assert_equal(my_matrix.diagonals(), [1,5,9].iter())
|
||||||
/// ```
|
``` */
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
|
pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
|
||||||
(0..min(N, M)).map(|n| &self[(n, n)])
|
(0..min(N, M)).map(|n| &self[(n, n)])
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns an iterator over the elements directly below the diagonal of a matrix
|
/** Returns an iterator over the elements directly below the diagonal of a matrix
|
||||||
/// returns an iterator over the elements along the diagonal of a matrix
|
|
||||||
///
|
# Examples
|
||||||
/// # Examples
|
```
|
||||||
/// ```
|
# use vector_victor::Matrix;
|
||||||
/// # use vector_victor::Matrix;
|
let my_matrix = Matrix::mat([[1, 2, 3],
|
||||||
/// let my_matrix = Matrix::mat([[1, 2, 3],
|
[4, 5, 6],
|
||||||
/// [4, 5, 6],
|
[7, 8, 9],
|
||||||
/// [7, 8, 9],
|
[10,11,12]]);
|
||||||
/// [10,11,12]]);
|
|
||||||
///
|
itertools::assert_equal(my_matrix.subdiagonals(), [4,8,12].iter());
|
||||||
/// itertools::assert_equal(my_matrix.subdiagonals(), [4,8,12].iter());
|
``` */
|
||||||
/// ```
|
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
|
pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
|
||||||
(0..min(N, M - 1)).map(|n| &self[(n + 1, n)])
|
(0..min(N, M - 1)).map(|n| &self[(n + 1, n)])
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns a reference to the element at that position in the matrix, or `None` if out of bounds.
|
/** Returns a reference to the element at that position in the matrix, or `None` if out of bounds.
|
||||||
///
|
|
||||||
/// [`Index`](#impl-Index%3CI%3E-for-Matrix%3CT,+M,+N%3E) behaves similarly,
|
[`Index`](#impl-Index%3CI%3E-for-Matrix%3CT,+M,+N%3E) behaves similarly,
|
||||||
/// but will panic if the index is out of bounds instead of returning an option
|
but will panic if the index is out of bounds instead of returning an option
|
||||||
///
|
|
||||||
/// # Arguments
|
# Arguments
|
||||||
///
|
|
||||||
/// * `index`: a 1D or 2D index into the matrix. See [Index2D] for more information on matrix indexing.
|
* `index`: a 1D or 2D index into the matrix. See [Index2D] for more information on matrix indexing.
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
///
|
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::Matrix;
|
# use vector_victor::Matrix;
|
||||||
/// let my_matrix = Matrix::mat([[1, 2],
|
let my_matrix = Matrix::mat([[1, 2],
|
||||||
/// [3, 4]]);
|
[3, 4]]);
|
||||||
///
|
|
||||||
/// // element at index 2 is the same as the element at row 1, column 0.
|
// element at index 2 is the same as the element at row 1, column 0.
|
||||||
/// assert_eq!(my_matrix.get(2), my_matrix.get((1,0)));
|
assert_eq!(my_matrix.get(2), my_matrix.get((1,0)));
|
||||||
///
|
|
||||||
/// // my_matrix.get() is equivalent to my_matrix[],
|
// my_matrix.get() is equivalent to my_matrix[],
|
||||||
/// // but returns an Option instead of panicking
|
// but returns an Option instead of panicking
|
||||||
/// assert_eq!(my_matrix.get(2), Some(&my_matrix[2]));
|
assert_eq!(my_matrix.get(2), Some(&my_matrix[2]));
|
||||||
///
|
|
||||||
/// // index 4 is out of range, so get(4) returns None.
|
// index 4 is out of range, so get(4) returns None.
|
||||||
/// assert_eq!(my_matrix.get(4), None);
|
assert_eq!(my_matrix.get(4), None);
|
||||||
/// ```
|
``` */
|
||||||
#[inline]
|
#[inline]
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn get(&self, index: impl Index2D) -> Option<&T> {
|
pub fn get(&self, index: impl Index2D) -> Option<&T> {
|
||||||
@ -335,29 +335,29 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
Some(&self.data[m][n])
|
Some(&self.data[m][n])
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns a mutable reference to the element at that position in the matrix,
|
/** Returns a mutable reference to the element at that position in the matrix,
|
||||||
/// or `None` if out of bounds.
|
or `None` if out of bounds.
|
||||||
///
|
|
||||||
/// [`IndexMut`](#impl-IndexMut%3CI%3E-for-Matrix%3CT,+M,+N%3E) behaves similarly,
|
[`IndexMut`](#impl-IndexMut%3CI%3E-for-Matrix%3CT,+M,+N%3E) behaves similarly,
|
||||||
/// but will panic if the index is out of bounds instead of returning an option
|
but will panic if the index is out of bounds instead of returning an option
|
||||||
///
|
|
||||||
/// # Arguments
|
# Arguments
|
||||||
///
|
|
||||||
/// * `index`: a 1D or 2D index into the matrix. See [Index2D] for more information
|
* `index`: a 1D or 2D index into the matrix. See [Index2D] for more information
|
||||||
/// on matrix indexing.
|
on matrix indexing.
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
///
|
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::Matrix;
|
# use vector_victor::Matrix;
|
||||||
/// let mut my_matrix = Matrix::mat([[1, 2],
|
let mut my_matrix = Matrix::mat([[1, 2],
|
||||||
/// [3, 4]]);
|
[3, 4]]);
|
||||||
///
|
|
||||||
/// match my_matrix.get_mut(2) {
|
match my_matrix.get_mut(2) {
|
||||||
/// Some(t) => *t = 5,
|
Some(t) => *t = 5,
|
||||||
/// None => panic!()};
|
None => panic!()};
|
||||||
/// assert_eq!(my_matrix, Matrix::mat([[1,2],[5,4]]))
|
assert_eq!(my_matrix, Matrix::mat([[1,2],[5,4]]))
|
||||||
/// ```
|
``` */
|
||||||
#[inline]
|
#[inline]
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn get_mut(&mut self, index: impl Index2D) -> Option<&mut T> {
|
pub fn get_mut(&mut self, index: impl Index2D) -> Option<&mut T> {
|
||||||
@ -365,22 +365,22 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
Some(&mut self.data[m][n])
|
Some(&mut self.data[m][n])
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns a row of the matrix.
|
/** Returns a row of the matrix.
|
||||||
///
|
|
||||||
/// # Panics
|
# Panics
|
||||||
///
|
|
||||||
/// Panics if row index `m` is out of bounds.
|
Panics if row index `m` is out of bounds.
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
///
|
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::{Matrix, Vector};
|
# use vector_victor::{Matrix, Vector};
|
||||||
/// let my_matrix = Matrix::mat([[1, 2],
|
let my_matrix = Matrix::mat([[1, 2],
|
||||||
/// [3, 4]]);
|
[3, 4]]);
|
||||||
///
|
|
||||||
/// // row at index 1
|
// row at index 1
|
||||||
/// assert_eq!(my_matrix.row(1), Vector::vec([3,4]));
|
assert_eq!(my_matrix.row(1), Vector::vec([3,4]));
|
||||||
/// ```
|
``` */
|
||||||
#[inline]
|
#[inline]
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn row(&self, m: usize) -> Vector<T, N> {
|
pub fn row(&self, m: usize) -> Vector<T, N> {
|
||||||
@ -394,22 +394,22 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
Vector::<T, N>::vec(self.data[m])
|
Vector::<T, N>::vec(self.data[m])
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Sets a row of the matrix.
|
/** Sets a row of the matrix.
|
||||||
///
|
|
||||||
/// # Panics
|
# Panics
|
||||||
///
|
|
||||||
/// Panics if row index `m` is out of bounds.
|
Panics if row index `m` is out of bounds.
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
///
|
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::{Matrix, Vector};
|
# use vector_victor::{Matrix, Vector};
|
||||||
/// let mut my_matrix = Matrix::mat([[1, 2],
|
let mut my_matrix = Matrix::mat([[1, 2],
|
||||||
/// [3, 4]]);
|
[3, 4]]);
|
||||||
/// // row at index 1
|
// row at index 1
|
||||||
/// my_matrix.set_row(1, &Vector::vec([5,6]));
|
my_matrix.set_row(1, &Vector::vec([5,6]));
|
||||||
/// assert_eq!(my_matrix, Matrix::mat([[1,2],[5,6]]));
|
assert_eq!(my_matrix, Matrix::mat([[1,2],[5,6]]));
|
||||||
/// ```
|
``` */
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn set_row(&mut self, m: usize, val: &Vector<T, N>) {
|
pub fn set_row(&mut self, m: usize, val: &Vector<T, N>) {
|
||||||
assert!(
|
assert!(
|
||||||
@ -424,22 +424,22 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns a column of the matrix.
|
/** Returns a column of the matrix.
|
||||||
///
|
|
||||||
/// # Panics
|
# Panics
|
||||||
///
|
|
||||||
/// Panics if column index `n` is out of bounds.
|
Panics if column index `n` is out of bounds.
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
///
|
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::{Matrix, Vector};
|
# use vector_victor::{Matrix, Vector};
|
||||||
/// let my_matrix = Matrix::mat([[1, 2],
|
let my_matrix = Matrix::mat([[1, 2],
|
||||||
/// [3, 4]]);
|
[3, 4]]);
|
||||||
///
|
|
||||||
/// // column at index 1
|
// column at index 1
|
||||||
/// assert_eq!(my_matrix.col(1), Vector::vec([2,4]));
|
assert_eq!(my_matrix.col(1), Vector::vec([2,4]));
|
||||||
/// ```
|
``` */
|
||||||
#[inline]
|
#[inline]
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn col(&self, n: usize) -> Vector<T, M> {
|
pub fn col(&self, n: usize) -> Vector<T, M> {
|
||||||
@ -453,22 +453,22 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
Vector::<T, M>::vec(self.data.map(|r| r[n]))
|
Vector::<T, M>::vec(self.data.map(|r| r[n]))
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Sets a column of the matrix.
|
/** Sets a column of the matrix.
|
||||||
///
|
|
||||||
/// # Panics
|
# Panics
|
||||||
///
|
|
||||||
/// Panics if column index `n` is out of bounds.
|
Panics if column index `n` is out of bounds.
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
///
|
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::{Matrix, Vector};
|
# use vector_victor::{Matrix, Vector};
|
||||||
/// let mut my_matrix = Matrix::mat([[1, 2],
|
let mut my_matrix = Matrix::mat([[1, 2],
|
||||||
/// [3, 4]]);
|
[3, 4]]);
|
||||||
/// // column at index 1
|
// column at index 1
|
||||||
/// my_matrix.set_col(1, &Vector::vec([5,6]));
|
my_matrix.set_col(1, &Vector::vec([5,6]));
|
||||||
/// assert_eq!(my_matrix, Matrix::mat([[1,5],[3,6]]));
|
assert_eq!(my_matrix, Matrix::mat([[1,5],[3,6]]));
|
||||||
/// ```
|
``` */
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn set_col(&mut self, n: usize, val: &Vector<T, M>) {
|
pub fn set_col(&mut self, n: usize, val: &Vector<T, M>) {
|
||||||
assert!(
|
assert!(
|
||||||
@ -496,52 +496,52 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
(0..N).map(|n| self.col(n))
|
(0..N).map(|n| self.col(n))
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Interchange two rows
|
/** Interchange two rows
|
||||||
///
|
|
||||||
/// # Panics
|
# Panics
|
||||||
///
|
|
||||||
/// Panics if row index `m1` or `m2` are out of bounds
|
Panics if row index `m1` or `m2` are out of bounds */
|
||||||
pub fn pivot_row(&mut self, m1: usize, m2: usize) {
|
pub fn pivot_row(&mut self, m1: usize, m2: usize) {
|
||||||
let tmp = self.row(m2);
|
let tmp = self.row(m2);
|
||||||
self.set_row(m2, &self.row(m1));
|
self.set_row(m2, &self.row(m1));
|
||||||
self.set_row(m1, &tmp);
|
self.set_row(m1, &tmp);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Interchange two columns
|
/** Interchange two columns
|
||||||
///
|
|
||||||
/// # Panics
|
# Panics
|
||||||
///
|
|
||||||
/// Panics if column index `n1` or `n2` are out of bounds
|
Panics if column index `n1` or `n2` are out of bounds */
|
||||||
pub fn pivot_col(&mut self, n1: usize, n2: usize) {
|
pub fn pivot_col(&mut self, n1: usize, n2: usize) {
|
||||||
let tmp = self.col(n2);
|
let tmp = self.col(n2);
|
||||||
self.set_col(n2, &self.col(n1));
|
self.set_col(n2, &self.col(n1));
|
||||||
self.set_col(n1, &tmp);
|
self.set_col(n1, &tmp);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Apply a permutation matrix to the rows of a matrix
|
/** Apply a permutation matrix to the rows of a matrix
|
||||||
///
|
|
||||||
/// # Arguments
|
# Arguments
|
||||||
///
|
|
||||||
/// * `ms`: a [`Vector`] of [`usize`] of length M. Each entry is the index of the row that will
|
* `ms`: a [`Vector`] of [`usize`] of length M. Each entry is the index of the row that will
|
||||||
/// appear in the result
|
appear in the result
|
||||||
///
|
|
||||||
/// # Panics
|
# Panics
|
||||||
///
|
|
||||||
/// Panics if any of the row indices in `ms` is out of bounds
|
Panics if any of the row indices in `ms` is out of bounds
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
///
|
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::{Matrix, Vector};
|
# use vector_victor::{Matrix, Vector};
|
||||||
/// let my_matrix = Matrix::mat([[1, 2, 3],
|
let my_matrix = Matrix::mat([[1, 2, 3],
|
||||||
/// [4, 5, 6],
|
[4, 5, 6],
|
||||||
/// [7, 8, 9]]);
|
[7, 8, 9]]);
|
||||||
///
|
|
||||||
/// let permuted = my_matrix.permute_rows(&Vector::vec([1, 0, 2]));
|
let permuted = my_matrix.permute_rows(&Vector::vec([1, 0, 2]));
|
||||||
/// assert_eq!(permuted, Matrix::mat([[4, 5, 6],
|
assert_eq!(permuted, Matrix::mat([[4, 5, 6],
|
||||||
/// [1, 2, 3],
|
[1, 2, 3],
|
||||||
/// [7, 8, 9]]))
|
[7, 8, 9]]))
|
||||||
/// ```
|
``` */
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn permute_rows(&self, ms: &Vector<usize, M>) -> Self
|
pub fn permute_rows(&self, ms: &Vector<usize, M>) -> Self
|
||||||
where
|
where
|
||||||
@ -550,16 +550,16 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
Self::from_rows(ms.elements().map(|&m| self.row(m)))
|
Self::from_rows(ms.elements().map(|&m| self.row(m)))
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Apply a permutation matrix to the columns of a matrix
|
/** Apply a permutation matrix to the columns of a matrix
|
||||||
///
|
|
||||||
/// # Arguments
|
# Arguments
|
||||||
///
|
|
||||||
/// * `ns`: a [`Vector`] of [`usize`] of length N. Each entry is the index of the column that will
|
* `ns`: a [`Vector`] of [`usize`] of length N. Each entry is the index of the column that will
|
||||||
/// appear in the result
|
appear in the result
|
||||||
///
|
|
||||||
/// # Panics
|
# Panics
|
||||||
///
|
|
||||||
/// Panics if any of the column indices in `ns` is out of bounds
|
Panics if any of the column indices in `ns` is out of bounds */
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn permute_cols(&self, ns: &Vector<usize, N>) -> Self
|
pub fn permute_cols(&self, ns: &Vector<usize, N>) -> Self
|
||||||
where
|
where
|
||||||
@ -568,20 +568,20 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
Self::from_cols(ns.elements().map(|&n| self.col(n)))
|
Self::from_cols(ns.elements().map(|&n| self.col(n)))
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns the transpose $M^T$ of the matrix, or the matrix flipped across its diagonal.
|
/** Returns the transpose $M^T$ of the matrix, or the matrix flipped across its diagonal.
|
||||||
///
|
|
||||||
/// # Examples
|
# Examples
|
||||||
/// ```
|
```
|
||||||
/// # use vector_victor::Matrix;
|
# use vector_victor::Matrix;
|
||||||
/// let my_matrix = Matrix::mat([[1, 2, 3],
|
let my_matrix = Matrix::mat([[1, 2, 3],
|
||||||
/// [4, 5, 6]]);
|
[4, 5, 6]]);
|
||||||
///
|
|
||||||
/// assert_eq!(
|
assert_eq!(
|
||||||
/// my_matrix.transpose(),
|
my_matrix.transpose(),
|
||||||
/// Matrix::mat([[1, 4],
|
Matrix::mat([[1, 4],
|
||||||
/// [2, 5],
|
[2, 5],
|
||||||
/// [3, 6]]))
|
[3, 6]]))
|
||||||
/// ```
|
``` */
|
||||||
pub fn transpose(&self) -> Matrix<T, N, M>
|
pub fn transpose(&self) -> Matrix<T, N, M>
|
||||||
where
|
where
|
||||||
Matrix<T, N, M>: Default,
|
Matrix<T, N, M>: Default,
|
||||||
|
37
src/math.rs
37
src/math.rs
@ -6,24 +6,25 @@ use std::ops::{Add, Mul};
|
|||||||
|
|
||||||
/// Operations for column vectors
|
/// Operations for column vectors
|
||||||
impl<T: Copy, const N: usize> Vector<T, N> {
|
impl<T: Copy, const N: usize> Vector<T, N> {
|
||||||
/// Compute the dot product of two vectors, otherwise known as the scalar product.
|
/** Compute the dot product of two vectors, otherwise known as the scalar product.
|
||||||
/// This is the sum of the elementwise product, or in math terms
|
|
||||||
///
|
This is the sum of the elementwise product, or in math terms
|
||||||
/// $vec(a) * vec(b) = sum_(i=1)^n a_i b_i = a_1 b_1 + a_2 b_2 + ... + a_n b_n$
|
|
||||||
///
|
$vec(a) * vec(b) = sum_(i=1)^n a_i b_i = a_1 b_1 + a_2 b_2 + ... + a_n b_n$
|
||||||
/// for example, $[[1],[2],[3]] * [[4],[5],[6]] = (1 * 4) + (2 * 5) + (3 * 6) = 32$
|
|
||||||
///
|
for example, $\[\[1],\[2],\[3]] * \[\[4],\[5],\[6]] = (1 * 4) + (2 * 5) + (3 * 6) = 32$
|
||||||
/// For vectors in euclidean space, this has the property that it is equal to the magnitudes of
|
|
||||||
/// the vectors times the cosine of the angle between them.
|
For vectors in euclidean space, this has the property that it is equal to the magnitudes of
|
||||||
///
|
the vectors times the cosine of the angle between them.
|
||||||
/// $vec(a) * vec(b) = |vec(a)| |vec(b)| cos(theta)$
|
|
||||||
///
|
$vec(a) * vec(b) = |vec(a)| |vec(b)| cos(theta)$
|
||||||
/// this also gives it the special property that the dot product of a vector and itself is the
|
|
||||||
/// square of its magnitude. You may recognize the 2D version as the
|
this also gives it the special property that the dot product of a vector and itself is the
|
||||||
/// [pythagorean theorem](https://en.wikipedia.org/wiki/Pythagorean_theorem).
|
square of its magnitude. You may recognize the 2D version as the
|
||||||
///
|
[pythagorean theorem](https://en.wikipedia.org/wiki/Pythagorean_theorem).
|
||||||
/// see [dot product](https://en.wikipedia.org/wiki/Dot_product) on Wikipedia for more
|
|
||||||
/// information.
|
see [dot product](https://en.wikipedia.org/wiki/Dot_product) on Wikipedia for more
|
||||||
|
information. */
|
||||||
pub fn dot<R>(&self, rhs: &R) -> T
|
pub fn dot<R>(&self, rhs: &R) -> T
|
||||||
where
|
where
|
||||||
for<'s> &'s Self: Mul<&'s R, Output = Self>,
|
for<'s> &'s Self: Mul<&'s R, Output = Self>,
|
||||||
|
Loading…
Reference in New Issue
Block a user