Huge refactor to flatten everything

but no API change I think
This commit is contained in:
Andrew Cassidy 2023-05-21 22:52:47 -07:00
parent 2b303892f7
commit e2a2bc7529
9 changed files with 669 additions and 539 deletions

View File

@ -69,7 +69,7 @@ pub struct LUDecomposition<T: Copy, const N: usize> {
/// note that the diagonals of the $bbL$ matrix are always 1, so no information is lost
pub lu: Matrix<T, N, N>,
/// The indices of the permutation matrix $P$, such that $PxxA$ = $LxxU$
/// The indices of the permutation matrix $bbP$, such that $bbP xx bbA$ = $bbL xx bbU$
///
/// The permutation matrix rearranges the rows of the original matrix in order to produce
/// the LU decomposition. This makes calculation simpler, but makes the result

66
src/identities.rs Normal file
View File

@ -0,0 +1,66 @@
use crate::Matrix;
use num_traits::{Bounded, One, Zero};
// Identity
impl<T: Copy + Zero + One, const N: usize> Matrix<T, N, N> {
/// Create an identity matrix, a square matrix where the diagonals are 1 and all other elements
/// are 0.
/// for example,
///
/// $bbI = [[1,0,0],[0,1,0],[0,0,1]]$
///
/// Matrix multiplication between a matrix and the identity matrix always results in itself
///
/// $bbA xx bbI = bbA$
///
/// # Examples
/// ```
/// # use vector_victor::Matrix;
/// let i = Matrix::<i32,3,3>::identity();
/// assert_eq!(i, Matrix::mat([[1,0,0],[0,1,0],[0,0,1]]))
/// ```
///
/// Note that the identity only exists for matrices that are square, so this doesnt work:
/// ```compile_fail
/// # use vector_victor::Matrix;
/// let i = Matrix::<i32,4,2>::identity();
/// ```
#[must_use]
pub fn identity() -> Self {
let mut result = Self::zero();
for i in 0..N {
result[(i, i)] = T::one();
}
return result;
}
}
// Zero
impl<T: Copy + Zero, const M: usize, const N: usize> Zero for Matrix<T, M, N> {
fn zero() -> Self {
Matrix::fill(T::zero())
}
fn is_zero(&self) -> bool {
self.elements().all(|e| e.is_zero())
}
}
// One
impl<T: Copy + One, const M: usize, const N: usize> One for Matrix<T, M, N> {
fn one() -> Self {
Matrix::fill(T::one())
}
}
// min_value and max_value
// LowerBounded and UpperBounded are automatically implemented from this
impl<T: Copy + Bounded, const N: usize, const M: usize> Bounded for Matrix<T, N, M> {
fn min_value() -> Self {
Self::fill(T::min_value())
}
fn max_value() -> Self {
Self::fill(T::max_value())
}
}

View File

@ -1,7 +1,422 @@
extern crate core;
use index::Index2D;
use std::cmp::min;
use std::fmt::Debug;
use std::iter::{zip, Flatten};
use std::ops::{Index, IndexMut};
pub mod decompose;
mod matrix;
mod identities;
pub mod index;
mod math;
mod ops;
mod util;
pub use matrix::{Matrix, Vector};
/// A 2D array of values which can be operated upon.
///
/// Matrices have a fixed size known at compile time
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Matrix<T, const M: usize, const N: usize>
where
T: Copy,
{
data: [[T; N]; M], // Row-Major order
}
/// An alias for a [Matrix] with a single column
pub type Vector<T, const N: usize> = Matrix<T, N, 1>;
// CONSTRUCTORS
// Default
impl<T: Copy + Default, const M: usize, const N: usize> Default for Matrix<T, M, N> {
fn default() -> Self {
Matrix::fill(T::default())
}
}
// Matrix constructors
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
/// Generate a new matrix from a 2D Array
///
/// # Arguments
///
/// * `data`: A 2D array of elements to copy into the new matrix
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let a = Matrix::mat([[1,2,3,4];4]);
/// ```
#[must_use]
pub fn mat(data: [[T; N]; M]) -> Self {
assert!(M > 0, "Matrix must have at least 1 row");
assert!(N > 0, "Matrix must have at least 1 column");
Matrix::<T, M, N> { data }
}
/// Generate a new matrix from a single scalar
///
/// # Arguments
///
/// * `scalar`: Scalar value to copy into the new matrix.
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::<i32,4,4>::fill(5);
/// // is equivalent to
/// assert_eq!(my_matrix, Matrix::mat([[5;4];4]))
/// ```
#[must_use]
pub fn fill(scalar: T) -> Matrix<T, M, N> {
assert!(M > 0, "Matrix must have at least 1 row");
assert!(N > 0, "Matrix must have at least 1 column");
Matrix::<T, M, N> {
data: [[scalar; N]; M],
}
}
/// Create a matrix from an iterator of vectors
///
/// # Arguments
///
/// * `iter`: iterator of vectors to copy into rows
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::mat([[1,2,3],[4,5,6]]);
/// let transpose : Matrix<_,3,2>= Matrix::from_rows(my_matrix.cols());
/// assert_eq!(transpose, Matrix::mat([[1,4],[2,5],[3,6]]))
/// ```
#[must_use]
pub fn from_rows<I>(iter: I) -> Self
where
I: IntoIterator<Item = Vector<T, N>>,
Self: Default,
{
let mut result = Self::default();
for (m, row) in iter.into_iter().enumerate().take(M) {
result.set_row(m, &row)
}
result
}
/// Create a matrix from an iterator of vectors
///
/// # Arguments
///
/// * `iter`: iterator of vectors to copy into columns
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::mat([[1,2,3],[4,5,6]]);
/// let transpose : Matrix<_,3,2>= Matrix::from_cols(my_matrix.rows());
/// assert_eq!(transpose, Matrix::mat([[1,4],[2,5],[3,6]]))
/// ```
#[must_use]
pub fn from_cols<I>(iter: I) -> Self
where
I: IntoIterator<Item = Vector<T, M>>,
Self: Default,
{
let mut result = Self::default();
for (n, col) in iter.into_iter().enumerate().take(N) {
result.set_col(n, &col)
}
result
}
}
// Vector constructor
impl<T: Copy, const N: usize> Vector<T, N> {
/// Create a vector from a 1D array.
/// Note that vectors are always column vectors unless explicitly instantiated as row vectors
///
/// # Examples
/// ```
/// # use vector_victor::{Matrix, Vector};
/// let my_vector = Vector::vec([1,2,3,4]);
/// // is equivalent to
/// assert_eq!(my_vector, Matrix::mat([[1],[2],[3],[4]]));
/// ```
pub fn vec(data: [T; N]) -> Self {
assert!(N > 0, "Vector must have at least 1 element");
return Vector::<T, N> {
data: data.map(|e| [e]),
};
}
}
// ACCESSORS AND MUTATORS
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
/// Returns an iterator over the elements of the matrix in row-major order.
///
/// # Examples
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::mat([[1,2],[3,4]]);
/// assert!(vec![1,2,3,4].iter().eq(my_matrix.elements()))
/// ```
#[must_use]
pub fn elements<'a>(&'a self) -> impl Iterator<Item = &'a T> + 'a {
self.data.iter().flatten()
}
/// Returns a mutable iterator over the elements of the matrix in row-major order.
#[must_use]
pub fn elements_mut<'a>(&'a mut self) -> impl Iterator<Item = &'a mut T> + 'a {
self.data.iter_mut().flatten()
}
/// returns an iterator over the elements along the diagonal of a matrix
#[must_use]
pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
(0..min(N, M)).map(|n| self[(n, n)])
}
/// Returns an iterator over the elements directly below the diagonal of a matrix
#[must_use]
pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
(0..min(N, M) - 1).map(|n| self[(n, n + 1)])
}
/// Returns a reference to the element at that position in the matrix, or `None` if out of bounds.
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::mat([[1,2],[3,4]]);
///
/// // element at index 2 is the same as the element at (row 1, column 0).
/// assert_eq!(my_matrix.get(2), my_matrix.get((1,0)));
///
/// // my_matrix.get() is equivalent to my_matrix[],
/// // but returns an Option instead of panicking
/// assert_eq!(my_matrix.get(2), Some(&my_matrix[2]));
///
/// // index 4 is out of range, so get(4) returns None.
/// assert_eq!(my_matrix.get(4), None);
/// ```
#[inline]
#[must_use]
pub fn get(&self, index: impl Index2D) -> Option<&T> {
let (m, n) = index.to_2d(M, N)?;
Some(&self.data[m][n])
}
/// Returns a mutable reference to the element at that position in the matrix, or `None` if out of bounds.
#[inline]
#[must_use]
pub fn get_mut(&mut self, index: impl Index2D) -> Option<&mut T> {
let (m, n) = index.to_2d(M, N)?;
Some(&mut self.data[m][n])
}
/// Returns a row of the matrix. or [None] if index is out of bounds
///
/// # Examples
///
/// ```
/// # use vector_victor::{Matrix, Vector};
/// let my_matrix = Matrix::mat([[1,2],[3,4]]);
///
/// // row at index 1
/// assert_eq!(my_matrix.row(1), Vector::vec([3,4]));
/// ```
#[inline]
#[must_use]
pub fn row(&self, m: usize) -> Vector<T, N> {
assert!(
m < M,
"Row index {} out of bounds for {}x{} matrix",
m,
M,
N
);
Vector::<T, N>::vec(self.data[m])
}
#[inline]
pub fn set_row(&mut self, m: usize, val: &Vector<T, N>) {
assert!(
m < M,
"Row index {} out of bounds for {}x{} matrix",
m,
M,
N
);
for n in 0..N {
self.data[m][n] = val.data[n][0];
}
}
pub fn pivot_row(&mut self, m1: usize, m2: usize) {
let tmp = self.row(m2);
self.set_row(m2, &self.row(m1));
self.set_row(m1, &tmp);
}
#[inline]
#[must_use]
pub fn col(&self, n: usize) -> Vector<T, M> {
assert!(
n < N,
"Column index {} out of bounds for {}x{} matrix",
n,
M,
N
);
Vector::<T, M>::vec(self.data.map(|r| r[n]))
}
#[inline]
pub fn set_col(&mut self, n: usize, val: &Vector<T, M>) {
assert!(
n < N,
"Column index {} out of bounds for {}x{} matrix",
n,
M,
N
);
for m in 0..M {
self.data[m][n] = val.data[m][0];
}
}
pub fn pivot_col(&mut self, n1: usize, n2: usize) {
let tmp = self.col(n2);
self.set_col(n2, &self.col(n1));
self.set_col(n1, &tmp);
}
#[must_use]
pub fn rows<'a>(&'a self) -> impl Iterator<Item = Vector<T, N>> + 'a {
(0..M).map(|m| self.row(m))
}
#[must_use]
pub fn cols<'a>(&'a self) -> impl Iterator<Item = Vector<T, M>> + 'a {
(0..N).map(|n| self.col(n))
}
#[must_use]
pub fn permute_rows(&self, ms: &Vector<usize, M>) -> Self
where
T: Default,
{
Self::from_rows(ms.elements().map(|&m| self.row(m)))
}
#[must_use]
pub fn permute_cols(&self, ns: &Vector<usize, N>) -> Self
where
T: Default,
{
Self::from_cols(ns.elements().map(|&n| self.col(n)))
}
pub fn transpose(&self) -> Matrix<T, N, M>
where
Matrix<T, N, M>: Default,
{
Matrix::<T, N, M>::from_rows(self.cols())
}
}
// Index
impl<I, T, const M: usize, const N: usize> Index<I> for Matrix<T, M, N>
where
I: Index2D,
T: Copy,
{
type Output = T;
#[inline(always)]
fn index(&self, index: I) -> &Self::Output {
self.get(index).expect(&*format!(
"index {:?} out of range for {}x{} Matrix",
index, M, N
))
}
}
// IndexMut
impl<I, T, const M: usize, const N: usize> IndexMut<I> for Matrix<T, M, N>
where
I: Index2D,
T: Copy,
{
#[inline(always)]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
self.get_mut(index).expect(&*format!(
"index {:?} out of range for {}x{} Matrix",
index, M, N
))
}
}
// CONVERSIONS
// Convert from 2D Array (equivalent to new)
impl<T: Copy, const M: usize, const N: usize> From<[[T; N]; M]> for Matrix<T, M, N> {
fn from(data: [[T; N]; M]) -> Self {
Self::mat(data)
}
}
// Convert from 1D Array (equivalent to vec)
impl<T: Copy, const M: usize> From<[T; M]> for Vector<T, M> {
fn from(data: [T; M]) -> Self {
Self::vec(data)
}
}
// Convert from scalar (equivalent to fill)
impl<T: Copy, const M: usize, const N: usize> From<T> for Matrix<T, M, N> {
fn from(scalar: T) -> Self {
Self::fill(scalar)
}
}
// IntoIter
impl<T: Copy, const M: usize, const N: usize> IntoIterator for Matrix<T, M, N> {
type Item = T;
type IntoIter = Flatten<std::array::IntoIter<[T; N], M>>;
fn into_iter(self) -> Self::IntoIter {
self.data.into_iter().flatten()
}
}
// FromIterator
impl<T: Copy, const M: usize, const N: usize> FromIterator<T> for Matrix<T, M, N>
where
Self: Default,
{
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
let mut result: Self = Default::default();
for (l, r) in zip(result.elements_mut(), iter) {
*l = r;
}
result
}
}

182
src/math.rs Normal file
View File

@ -0,0 +1,182 @@
use crate::{Matrix, Vector};
use num_traits::real::Real;
use num_traits::{Inv, Num, NumOps, One, Pow, Signed, Zero};
use std::iter::{zip, Product, Sum};
use std::ops::{Add, Mul};
/// Operations for column vectors
impl<T: Copy, const N: usize> Vector<T, N> {
/// Compute the dot product of two vectors, otherwise known as the scalar product.
/// This is the sum of the elementwise product, or in math terms
///
/// $vec(a) * vec(b) = sum_(i=1)^n a_i b_i = a_1 b_1 + a_2 b_2 + ... + a_n b_n$
///
/// for example, $[[1],[2],[3]] * [[4],[5],[6]] = (1 * 4) + (2 * 5) + (3 * 6) = 32$
///
/// For vectors in euclidean space, this has the property that it is equal to the magnitudes of
/// the vectors times the cosine of the angle between them.
///
/// $vec(a) * vec(b) = |vec(a)| |vec(b)| cos(theta)$
///
/// this also gives it the special property that the dot product of a vector and itself is the
/// square of its magnitude. You may recognize the 2D version as the
/// [pythagorean theorem](https://en.wikipedia.org/wiki/Pythagorean_theorem).
///
/// see [dot product](https://en.wikipedia.org/wiki/Dot_product) on Wikipedia for more
/// information.
pub fn dot<R>(&self, rhs: &R) -> T
where
for<'s> &'s Self: Mul<&'s R, Output = Self>,
T: Sum<T>,
{
(self * rhs).elements().cloned().sum()
}
pub fn sqrmag(&self) -> T
where
for<'s> &'s Self: Mul<&'s Self, Output = Self>,
T: Sum<T>,
{
self.dot(self)
}
pub fn mag(&self) -> T
where
T: Sum<T> + Mul<T> + Real,
{
self.sqrmag().sqrt()
}
pub fn normalized(&self) -> Option<Self>
where
T: Sum<T> + Mul<T> + Real,
{
match self.mag() {
mag if mag.abs() < T::epsilon() => None,
mag => Some(self / mag),
}
}
}
/// Cross product operations for column vectors in $RR^3$
impl<T: Copy> Vector<T, 3> {
pub fn cross_r<R: Copy>(&self, rhs: &Vector<R, 3>) -> Self
where
T: NumOps<R> + NumOps,
{
Self::vec([
(self[1] * rhs[2]) - (self[2] * rhs[1]),
(self[2] * rhs[0]) - (self[0] * rhs[2]),
(self[0] * rhs[1]) - (self[1] * rhs[0]),
])
}
pub fn cross_l<R: Copy>(&self, rhs: &Vector<R, 3>) -> Vector<R, 3>
where
R: NumOps<T> + NumOps,
{
rhs.cross_r(self)
}
}
/// Operations for Matrices
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
pub fn mmul<R: Copy, const P: usize>(&self, rhs: &Matrix<R, N, P>) -> Matrix<T, M, P>
where
T: Default + NumOps<R> + Sum,
{
let mut result: Matrix<T, M, P> = Default::default();
for (m, a) in self.rows().enumerate() {
for (n, b) in rhs.cols().enumerate() {
result[(m, n)] = a.dot(&b)
}
}
return result;
}
/// Computes the absolute value of each element of the matrix
pub fn abs(&self) -> Self
where
T: Signed + Default,
{
self.elements().map(|&x| x.abs()).collect()
}
/// Computes the sign of each element of the matrix
pub fn signum(&self) -> Self
where
T: Signed + Default,
{
self.elements().map(|&x| x.signum()).collect()
}
/// Raises every element to the power of rhs, where rhs is either a scalar or a matrix of exponents
pub fn pow<R, O>(self, rhs: R) -> O
where
Self: Pow<R, Output = O>,
{
Pow::pow(self, rhs)
}
}
// Sum up matrices
impl<T: Copy, const M: usize, const N: usize> Sum for Matrix<T, M, N>
where
Self: Zero + Add<Output = Self>,
{
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::zero(), Self::add)
}
}
// Product of matrices
impl<T: Copy, const M: usize, const N: usize> Product for Matrix<T, M, N>
where
Self: One + Mul<Output = Self>,
{
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::one(), Self::mul)
}
}
/// Inverse trait. Note that this is the elementwise inverse, not the matrix inverse.
/// For the inverse matrix see [`LUDecomposable::inv()`](crate::decompose::LUDecompose::inv())
impl<T: Copy + Inv<Output = T> + Default, const M: usize, const N: usize> Inv for Matrix<T, M, N> {
type Output = Self;
fn inv(self) -> Self::Output {
self.elements().map(|t| t.inv()).collect()
}
}
/// Pow for $Matrix^{scalar}$
impl<T, R, O, const M: usize, const N: usize> Pow<R> for Matrix<T, M, N>
where
T: Copy + Pow<R, Output = O>,
R: Copy + Num,
O: Copy + Default,
{
type Output = Matrix<O, M, N>;
fn pow(self, rhs: R) -> Self::Output {
self.elements().map(|&x| x.pow(rhs)).collect()
}
}
/// Pow for $Matrix^{Matrix}$
impl<T, R, O, const M: usize, const N: usize> Pow<Matrix<R, M, N>> for Matrix<T, M, N>
where
T: Copy + Pow<R, Output = O>,
R: Copy,
O: Copy + Default,
{
type Output = Matrix<O, M, N>;
fn pow(self, rhs: Matrix<R, M, N>) -> Self::Output {
zip(self.elements(), rhs.elements())
.map(|(x, &r)| x.pow(r))
.collect()
}
}

View File

@ -1,533 +0,0 @@
use index::Index2D;
use num_traits::{NumOps, One, Zero};
use std::fmt::Debug;
use std::iter::{zip, Flatten, Product, Sum};
use std::ops::{Add, AddAssign, Deref, DerefMut, Index, IndexMut, Mul, MulAssign, Neg};
pub mod ops;
mod index;
/// A 2D array of values which can be operated upon.
///
/// Matrices have a fixed size known at compile time
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct Matrix<T, const M: usize, const N: usize>
where
T: Copy,
{
data: [[T; N]; M], // Row-Major order
}
/// An alias for a [Matrix] with a single column
pub type Vector<T, const N: usize> = Matrix<T, N, 1>;
// Simple access functions that only require T be copyable
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
/// Generate a new matrix from a 2D Array
///
/// # Arguments
///
/// * `data`: A 2D array of elements to copy into the new matrix
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let a = Matrix::new([[1,2,3,4];4]);
/// ```
#[must_use]
pub fn new(data: [[T; N]; M]) -> Self {
assert!(M > 0, "Matrix must have at least 1 row");
assert!(N > 0, "Matrix must have at least 1 column");
Matrix::<T, M, N> { data }
}
/// Generate a new matrix from a single scalar
///
/// # Arguments
///
/// * `scalar`: Scalar value to copy into the new matrix.
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::<i32,4,4>::fill(5);
/// // is equivalent to
/// assert_eq!(my_matrix, Matrix::new([[5;4];4]))
/// ```
#[must_use]
pub fn fill(scalar: T) -> Matrix<T, M, N> {
assert!(M > 0, "Matrix must have at least 1 row");
assert!(N > 0, "Matrix must have at least 1 column");
Matrix::<T, M, N> {
data: [[scalar; N]; M],
}
}
/// Create a matrix from an iterator of vectors
///
/// # Arguments
///
/// * `iter`: iterator of vectors to copy into rows
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::new([[1,2,3],[4,5,6]]);
/// let transpose : Matrix<_,3,2>= Matrix::from_rows(my_matrix.cols());
/// assert_eq!(transpose, Matrix::new([[1,4],[2,5],[3,6]]))
/// ```
#[must_use]
pub fn from_rows<I>(iter: I) -> Self
where
I: IntoIterator<Item = Vector<T, N>>,
Self: Default,
{
let mut result = Self::default();
for (m, row) in iter.into_iter().enumerate().take(M) {
result.set_row(m, &row)
}
result
}
/// Create a matrix from an iterator of vectors
///
/// # Arguments
///
/// * `iter`: iterator of vectors to copy into columns
///
/// returns: Matrix<T, M, N>
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::new([[1,2,3],[4,5,6]]);
/// let transpose : Matrix<_,3,2>= Matrix::from_cols(my_matrix.rows());
/// assert_eq!(transpose, Matrix::new([[1,4],[2,5],[3,6]]))
/// ```
#[must_use]
pub fn from_cols<I>(iter: I) -> Self
where
I: IntoIterator<Item = Vector<T, M>>,
Self: Default,
{
let mut result = Self::default();
for (n, col) in iter.into_iter().enumerate().take(N) {
result.set_col(n, &col)
}
result
}
/// Returns an iterator over the elements of the matrix in row-major order.
///
/// # Examples
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::new([[1,2],[3,4]]);
/// assert!(vec![1,2,3,4].iter().eq(my_matrix.elements()))
/// ```
#[must_use]
pub fn elements<'a>(&'a self) -> impl Iterator<Item = &'a T> + 'a {
self.data.iter().flatten()
}
/// Returns a mutable iterator over the elements of the matrix in row-major order.
#[must_use]
pub fn elements_mut<'a>(&'a mut self) -> impl Iterator<Item = &'a mut T> + 'a {
self.data.iter_mut().flatten()
}
/// Returns a reference to the element at that position in the matrix, or `None` if out of bounds.
///
/// # Examples
///
/// ```
/// # use vector_victor::Matrix;
/// let my_matrix = Matrix::new([[1,2],[3,4]]);
///
/// // element at index 2 is the same as the element at (row 1, column 0).
/// assert_eq!(my_matrix.get(2), my_matrix.get((1,0)));
///
/// // my_matrix.get() is equivalent to my_matrix[],
/// // but returns an Option instead of panicking
/// assert_eq!(my_matrix.get(2), Some(&my_matrix[2]));
///
/// // index 4 is out of range, so get(4) returns None.
/// assert_eq!(my_matrix.get(4), None);
/// ```
#[inline]
#[must_use]
pub fn get(&self, index: impl Index2D) -> Option<&T> {
let (m, n) = index.to_2d(M, N)?;
Some(&self.data[m][n])
}
/// Returns a mutable reference to the element at that position in the matrix, or `None` if out of bounds.
#[inline]
#[must_use]
pub fn get_mut(&mut self, index: impl Index2D) -> Option<&mut T> {
let (m, n) = index.to_2d(M, N)?;
Some(&mut self.data[m][n])
}
/// Returns a row of the matrix. or [None] if index is out of bounds
///
/// # Examples
///
/// ```
/// # use vector_victor::{Matrix, Vector};
/// let my_matrix = Matrix::new([[1,2],[3,4]]);
///
/// // row at index 1
/// assert_eq!(my_matrix.row(1), Vector::vec([3,4]));
/// ```
#[inline]
#[must_use]
pub fn row(&self, m: usize) -> Vector<T, N> {
assert!(
m < M,
"Row index {} out of bounds for {}x{} matrix",
m,
M,
N
);
Vector::<T, N>::vec(self.data[m])
}
#[inline]
pub fn set_row(&mut self, m: usize, val: &Vector<T, N>) {
assert!(
m < M,
"Row index {} out of bounds for {}x{} matrix",
m,
M,
N
);
for n in 0..N {
self.data[m][n] = val.data[n][0];
}
}
pub fn pivot_row(&mut self, m1: usize, m2: usize) {
let tmp = self.row(m2);
self.set_row(m2, &self.row(m1));
self.set_row(m1, &tmp);
}
#[inline]
#[must_use]
pub fn col(&self, n: usize) -> Vector<T, M> {
assert!(
n < N,
"Column index {} out of bounds for {}x{} matrix",
n,
M,
N
);
Vector::<T, M>::vec(self.data.map(|r| r[n]))
}
#[inline]
pub fn set_col(&mut self, n: usize, val: &Vector<T, M>) {
assert!(
n < N,
"Column index {} out of bounds for {}x{} matrix",
n,
M,
N
);
for m in 0..M {
self.data[m][n] = val.data[m][0];
}
}
pub fn pivot_col(&mut self, n1: usize, n2: usize) {
let tmp = self.col(n2);
self.set_col(n2, &self.col(n1));
self.set_col(n1, &tmp);
}
#[must_use]
pub fn rows<'a>(&'a self) -> impl Iterator<Item = Vector<T, N>> + 'a {
(0..M).map(|m| self.row(m))
}
#[must_use]
pub fn cols<'a>(&'a self) -> impl Iterator<Item = Vector<T, M>> + 'a {
(0..N).map(|n| self.col(n))
}
#[must_use]
pub fn permute_rows(&self, ms: &Vector<usize, M>) -> Self
where
T: Default,
{
Self::from_rows(ms.elements().map(|&m| self.row(m)))
}
#[must_use]
pub fn permute_cols(&self, ns: &Vector<usize, N>) -> Self
where
T: Default,
{
Self::from_cols(ns.elements().map(|&n| self.col(n)))
}
pub fn transpose(&self) -> Matrix<T, N, M>
where
Matrix<T, N, M>: Default,
{
Matrix::<T, N, M>::from_rows(self.cols())
}
pub fn abs(&self) -> Self
where
T: Default + PartialOrd + Zero + Neg<Output = T>,
{
self.elements()
.map(|&x| match x > T::zero() {
true => x,
false => -x,
})
.collect()
}
}
// 1D vector implementations
impl<T: Copy, const N: usize> Vector<T, N> {
/// Create a vector from a 1D array.
/// Note that vectors are always column vectors unless explicitly instantiated as row vectors
///
/// # Examples
/// ```
/// # use vector_victor::{Matrix, Vector};
/// let my_vector = Vector::vec([1,2,3,4]);
/// // is equivalent to
/// assert_eq!(my_vector, Matrix::new([[1],[2],[3],[4]]));
/// ```
pub fn vec(data: [T; N]) -> Self {
assert!(N > 0, "Vector must have at least 1 element");
return Vector::<T, N> {
data: data.map(|e| [e]),
};
}
pub fn dot<R>(&self, rhs: &R) -> T
where
for<'s> &'s Self: Mul<&'s R, Output = Self>,
T: Sum<T>,
{
(self * rhs).elements().cloned().sum()
}
}
// Cross Product
impl<T: Copy> Vector<T, 3> {
pub fn cross_r<R: Copy>(&self, rhs: &Vector<R, 3>) -> Self
where
T: NumOps<R> + NumOps,
{
Self::vec([
(self[1] * rhs[2]) - (self[2] * rhs[1]),
(self[2] * rhs[0]) - (self[0] * rhs[2]),
(self[0] * rhs[1]) - (self[1] * rhs[0]),
])
}
pub fn cross_l<R: Copy>(&self, rhs: &Vector<R, 3>) -> Vector<R, 3>
where
R: NumOps<T> + NumOps,
{
rhs.cross_r(self)
}
}
//Matrix Multiplication
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
pub fn mmul<R: Copy, const P: usize>(&self, rhs: &Matrix<R, N, P>) -> Matrix<T, M, P>
where
T: Default + NumOps<R> + Sum,
{
let mut result: Matrix<T, M, P> = Default::default();
for (m, a) in self.rows().enumerate() {
for (n, b) in rhs.cols().enumerate() {
result[(m, n)] = a.dot(&b)
}
}
return result;
}
}
// Square matrix implementations
impl<T: Copy, const N: usize> Matrix<T, N, N> {
/// Create an identity matrix
#[must_use]
pub fn identity() -> Self
where
T: Zero + One,
{
let mut result = Self::zero();
for i in 0..N {
result[(i, i)] = T::one();
}
return result;
}
/// returns an iterator over the elements along the diagonal of a square matrix
#[must_use]
pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
(0..N).map(|n| self[(n, n)])
}
/// Returns an iterator over the elements directly below the diagonal of a square matrix
#[must_use]
pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
(0..N - 1).map(|n| self[(n, n + 1)])
}
}
// Index
impl<I, T, const M: usize, const N: usize> Index<I> for Matrix<T, M, N>
where
I: Index2D,
T: Copy,
{
type Output = T;
#[inline(always)]
fn index(&self, index: I) -> &Self::Output {
self.get(index).expect(&*format!(
"index {:?} out of range for {}x{} Matrix",
index, M, N
))
}
}
// IndexMut
impl<I, T, const M: usize, const N: usize> IndexMut<I> for Matrix<T, M, N>
where
I: Index2D,
T: Copy,
{
#[inline(always)]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
self.get_mut(index).expect(&*format!(
"index {:?} out of range for {}x{} Matrix",
index, M, N
))
}
}
// Default
impl<T: Copy + Default, const M: usize, const N: usize> Default for Matrix<T, M, N> {
fn default() -> Self {
Matrix::fill(T::default())
}
}
// Zero
impl<T: Copy + Zero, const M: usize, const N: usize> Zero for Matrix<T, M, N> {
fn zero() -> Self {
Matrix::fill(T::zero())
}
fn is_zero(&self) -> bool {
self.elements().all(|e| e.is_zero())
}
}
// One
impl<T: Copy + One, const M: usize, const N: usize> One for Matrix<T, M, N> {
fn one() -> Self {
Matrix::fill(T::one())
}
}
impl<T: Copy, const M: usize, const N: usize> From<[[T; N]; M]> for Matrix<T, M, N> {
fn from(data: [[T; N]; M]) -> Self {
Self::new(data)
}
}
impl<T: Copy, const M: usize> From<[T; M]> for Vector<T, M> {
fn from(data: [T; M]) -> Self {
Self::vec(data)
}
}
impl<T: Copy, const M: usize, const N: usize> From<T> for Matrix<T, M, N> {
fn from(scalar: T) -> Self {
Self::fill(scalar)
}
}
// deref 1x1 matrices to a scalar automatically
impl<T: Copy> Deref for Matrix<T, 1, 1> {
type Target = T;
fn deref(&self) -> &Self::Target {
&self.data[0][0]
}
}
// deref 1x1 matrices to a mutable scalar automatically
impl<T: Copy> DerefMut for Matrix<T, 1, 1> {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.data[0][0]
}
}
// IntoIter
impl<T: Copy, const M: usize, const N: usize> IntoIterator for Matrix<T, M, N> {
type Item = T;
type IntoIter = Flatten<std::array::IntoIter<[T; N], M>>;
fn into_iter(self) -> Self::IntoIter {
self.data.into_iter().flatten()
}
}
// FromIterator
impl<T: Copy, const M: usize, const N: usize> FromIterator<T> for Matrix<T, M, N>
where
Self: Default,
{
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
let mut result: Self = Default::default();
for (l, r) in zip(result.elements_mut(), iter) {
*l = r;
}
result
}
}
impl<T: Copy + AddAssign, const M: usize, const N: usize> Sum for Matrix<T, M, N>
where
Self: Zero + Add<Output = Self>,
{
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::zero(), Self::add)
}
}
impl<T: Copy + MulAssign, const M: usize, const N: usize> Product for Matrix<T, M, N>
where
Self: One + Mul<Output = Self>,
{
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
iter.fold(Self::one(), Self::mul)
}
}

1
src/mod.rs Normal file
View File

@ -0,0 +1 @@

View File

@ -1,4 +1,4 @@
use crate::matrix::Matrix;
use crate::Matrix;
use num_traits::Num;
// borrowed from the auto_ops crate

View File

@ -4,9 +4,8 @@ mod common;
use common::Approx;
use generic_parameterize::parameterize;
use num_traits::real::Real;
use num_traits::{Float, One, Signed, Zero};
use num_traits::Zero;
use std::fmt::Debug;
use std::iter::{Product, Sum};
use vector_victor::decompose::{LUDecompose, LUDecomposition, Parity};
use vector_victor::{Matrix, Vector};