mirror of
https://github.com/drewcassidy/vector-victor.git
synced 2024-09-01 14:58:35 +00:00
Huge refactor to flatten everything
but no API change I think
This commit is contained in:
parent
2b303892f7
commit
e2a2bc7529
@ -69,7 +69,7 @@ pub struct LUDecomposition<T: Copy, const N: usize> {
|
|||||||
/// note that the diagonals of the $bbL$ matrix are always 1, so no information is lost
|
/// note that the diagonals of the $bbL$ matrix are always 1, so no information is lost
|
||||||
pub lu: Matrix<T, N, N>,
|
pub lu: Matrix<T, N, N>,
|
||||||
|
|
||||||
/// The indices of the permutation matrix $P$, such that $PxxA$ = $LxxU$
|
/// The indices of the permutation matrix $bbP$, such that $bbP xx bbA$ = $bbL xx bbU$
|
||||||
///
|
///
|
||||||
/// The permutation matrix rearranges the rows of the original matrix in order to produce
|
/// The permutation matrix rearranges the rows of the original matrix in order to produce
|
||||||
/// the LU decomposition. This makes calculation simpler, but makes the result
|
/// the LU decomposition. This makes calculation simpler, but makes the result
|
||||||
|
66
src/identities.rs
Normal file
66
src/identities.rs
Normal file
@ -0,0 +1,66 @@
|
|||||||
|
use crate::Matrix;
|
||||||
|
use num_traits::{Bounded, One, Zero};
|
||||||
|
|
||||||
|
// Identity
|
||||||
|
impl<T: Copy + Zero + One, const N: usize> Matrix<T, N, N> {
|
||||||
|
/// Create an identity matrix, a square matrix where the diagonals are 1 and all other elements
|
||||||
|
/// are 0.
|
||||||
|
/// for example,
|
||||||
|
///
|
||||||
|
/// $bbI = [[1,0,0],[0,1,0],[0,0,1]]$
|
||||||
|
///
|
||||||
|
/// Matrix multiplication between a matrix and the identity matrix always results in itself
|
||||||
|
///
|
||||||
|
/// $bbA xx bbI = bbA$
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
/// ```
|
||||||
|
/// # use vector_victor::Matrix;
|
||||||
|
/// let i = Matrix::<i32,3,3>::identity();
|
||||||
|
/// assert_eq!(i, Matrix::mat([[1,0,0],[0,1,0],[0,0,1]]))
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// Note that the identity only exists for matrices that are square, so this doesnt work:
|
||||||
|
/// ```compile_fail
|
||||||
|
/// # use vector_victor::Matrix;
|
||||||
|
/// let i = Matrix::<i32,4,2>::identity();
|
||||||
|
/// ```
|
||||||
|
#[must_use]
|
||||||
|
pub fn identity() -> Self {
|
||||||
|
let mut result = Self::zero();
|
||||||
|
for i in 0..N {
|
||||||
|
result[(i, i)] = T::one();
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Zero
|
||||||
|
impl<T: Copy + Zero, const M: usize, const N: usize> Zero for Matrix<T, M, N> {
|
||||||
|
fn zero() -> Self {
|
||||||
|
Matrix::fill(T::zero())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn is_zero(&self) -> bool {
|
||||||
|
self.elements().all(|e| e.is_zero())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// One
|
||||||
|
impl<T: Copy + One, const M: usize, const N: usize> One for Matrix<T, M, N> {
|
||||||
|
fn one() -> Self {
|
||||||
|
Matrix::fill(T::one())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// min_value and max_value
|
||||||
|
// LowerBounded and UpperBounded are automatically implemented from this
|
||||||
|
impl<T: Copy + Bounded, const N: usize, const M: usize> Bounded for Matrix<T, N, M> {
|
||||||
|
fn min_value() -> Self {
|
||||||
|
Self::fill(T::min_value())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn max_value() -> Self {
|
||||||
|
Self::fill(T::max_value())
|
||||||
|
}
|
||||||
|
}
|
419
src/lib.rs
419
src/lib.rs
@ -1,7 +1,422 @@
|
|||||||
extern crate core;
|
extern crate core;
|
||||||
|
|
||||||
|
use index::Index2D;
|
||||||
|
use std::cmp::min;
|
||||||
|
use std::fmt::Debug;
|
||||||
|
use std::iter::{zip, Flatten};
|
||||||
|
use std::ops::{Index, IndexMut};
|
||||||
|
|
||||||
pub mod decompose;
|
pub mod decompose;
|
||||||
mod matrix;
|
mod identities;
|
||||||
|
pub mod index;
|
||||||
|
mod math;
|
||||||
|
mod ops;
|
||||||
|
|
||||||
mod util;
|
mod util;
|
||||||
|
|
||||||
pub use matrix::{Matrix, Vector};
|
/// A 2D array of values which can be operated upon.
|
||||||
|
///
|
||||||
|
/// Matrices have a fixed size known at compile time
|
||||||
|
#[derive(Debug, Copy, Clone, PartialEq)]
|
||||||
|
pub struct Matrix<T, const M: usize, const N: usize>
|
||||||
|
where
|
||||||
|
T: Copy,
|
||||||
|
{
|
||||||
|
data: [[T; N]; M], // Row-Major order
|
||||||
|
}
|
||||||
|
|
||||||
|
/// An alias for a [Matrix] with a single column
|
||||||
|
pub type Vector<T, const N: usize> = Matrix<T, N, 1>;
|
||||||
|
|
||||||
|
// CONSTRUCTORS
|
||||||
|
|
||||||
|
// Default
|
||||||
|
impl<T: Copy + Default, const M: usize, const N: usize> Default for Matrix<T, M, N> {
|
||||||
|
fn default() -> Self {
|
||||||
|
Matrix::fill(T::default())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Matrix constructors
|
||||||
|
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||||
|
/// Generate a new matrix from a 2D Array
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `data`: A 2D array of elements to copy into the new matrix
|
||||||
|
///
|
||||||
|
/// returns: Matrix<T, M, N>
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// # use vector_victor::Matrix;
|
||||||
|
/// let a = Matrix::mat([[1,2,3,4];4]);
|
||||||
|
/// ```
|
||||||
|
#[must_use]
|
||||||
|
pub fn mat(data: [[T; N]; M]) -> Self {
|
||||||
|
assert!(M > 0, "Matrix must have at least 1 row");
|
||||||
|
assert!(N > 0, "Matrix must have at least 1 column");
|
||||||
|
Matrix::<T, M, N> { data }
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Generate a new matrix from a single scalar
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `scalar`: Scalar value to copy into the new matrix.
|
||||||
|
///
|
||||||
|
/// returns: Matrix<T, M, N>
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// # use vector_victor::Matrix;
|
||||||
|
/// let my_matrix = Matrix::<i32,4,4>::fill(5);
|
||||||
|
/// // is equivalent to
|
||||||
|
/// assert_eq!(my_matrix, Matrix::mat([[5;4];4]))
|
||||||
|
/// ```
|
||||||
|
#[must_use]
|
||||||
|
pub fn fill(scalar: T) -> Matrix<T, M, N> {
|
||||||
|
assert!(M > 0, "Matrix must have at least 1 row");
|
||||||
|
assert!(N > 0, "Matrix must have at least 1 column");
|
||||||
|
Matrix::<T, M, N> {
|
||||||
|
data: [[scalar; N]; M],
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create a matrix from an iterator of vectors
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `iter`: iterator of vectors to copy into rows
|
||||||
|
///
|
||||||
|
/// returns: Matrix<T, M, N>
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// # use vector_victor::Matrix;
|
||||||
|
/// let my_matrix = Matrix::mat([[1,2,3],[4,5,6]]);
|
||||||
|
/// let transpose : Matrix<_,3,2>= Matrix::from_rows(my_matrix.cols());
|
||||||
|
/// assert_eq!(transpose, Matrix::mat([[1,4],[2,5],[3,6]]))
|
||||||
|
/// ```
|
||||||
|
#[must_use]
|
||||||
|
pub fn from_rows<I>(iter: I) -> Self
|
||||||
|
where
|
||||||
|
I: IntoIterator<Item = Vector<T, N>>,
|
||||||
|
Self: Default,
|
||||||
|
{
|
||||||
|
let mut result = Self::default();
|
||||||
|
for (m, row) in iter.into_iter().enumerate().take(M) {
|
||||||
|
result.set_row(m, &row)
|
||||||
|
}
|
||||||
|
result
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Create a matrix from an iterator of vectors
|
||||||
|
///
|
||||||
|
/// # Arguments
|
||||||
|
///
|
||||||
|
/// * `iter`: iterator of vectors to copy into columns
|
||||||
|
///
|
||||||
|
/// returns: Matrix<T, M, N>
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// # use vector_victor::Matrix;
|
||||||
|
/// let my_matrix = Matrix::mat([[1,2,3],[4,5,6]]);
|
||||||
|
/// let transpose : Matrix<_,3,2>= Matrix::from_cols(my_matrix.rows());
|
||||||
|
/// assert_eq!(transpose, Matrix::mat([[1,4],[2,5],[3,6]]))
|
||||||
|
/// ```
|
||||||
|
#[must_use]
|
||||||
|
pub fn from_cols<I>(iter: I) -> Self
|
||||||
|
where
|
||||||
|
I: IntoIterator<Item = Vector<T, M>>,
|
||||||
|
Self: Default,
|
||||||
|
{
|
||||||
|
let mut result = Self::default();
|
||||||
|
for (n, col) in iter.into_iter().enumerate().take(N) {
|
||||||
|
result.set_col(n, &col)
|
||||||
|
}
|
||||||
|
result
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Vector constructor
|
||||||
|
impl<T: Copy, const N: usize> Vector<T, N> {
|
||||||
|
/// Create a vector from a 1D array.
|
||||||
|
/// Note that vectors are always column vectors unless explicitly instantiated as row vectors
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
/// ```
|
||||||
|
/// # use vector_victor::{Matrix, Vector};
|
||||||
|
/// let my_vector = Vector::vec([1,2,3,4]);
|
||||||
|
/// // is equivalent to
|
||||||
|
/// assert_eq!(my_vector, Matrix::mat([[1],[2],[3],[4]]));
|
||||||
|
/// ```
|
||||||
|
pub fn vec(data: [T; N]) -> Self {
|
||||||
|
assert!(N > 0, "Vector must have at least 1 element");
|
||||||
|
return Vector::<T, N> {
|
||||||
|
data: data.map(|e| [e]),
|
||||||
|
};
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// ACCESSORS AND MUTATORS
|
||||||
|
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||||
|
/// Returns an iterator over the elements of the matrix in row-major order.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
/// ```
|
||||||
|
/// # use vector_victor::Matrix;
|
||||||
|
/// let my_matrix = Matrix::mat([[1,2],[3,4]]);
|
||||||
|
/// assert!(vec![1,2,3,4].iter().eq(my_matrix.elements()))
|
||||||
|
/// ```
|
||||||
|
#[must_use]
|
||||||
|
pub fn elements<'a>(&'a self) -> impl Iterator<Item = &'a T> + 'a {
|
||||||
|
self.data.iter().flatten()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a mutable iterator over the elements of the matrix in row-major order.
|
||||||
|
#[must_use]
|
||||||
|
pub fn elements_mut<'a>(&'a mut self) -> impl Iterator<Item = &'a mut T> + 'a {
|
||||||
|
self.data.iter_mut().flatten()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// returns an iterator over the elements along the diagonal of a matrix
|
||||||
|
#[must_use]
|
||||||
|
pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
|
||||||
|
(0..min(N, M)).map(|n| self[(n, n)])
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns an iterator over the elements directly below the diagonal of a matrix
|
||||||
|
#[must_use]
|
||||||
|
pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
|
||||||
|
(0..min(N, M) - 1).map(|n| self[(n, n + 1)])
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a reference to the element at that position in the matrix, or `None` if out of bounds.
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// # use vector_victor::Matrix;
|
||||||
|
/// let my_matrix = Matrix::mat([[1,2],[3,4]]);
|
||||||
|
///
|
||||||
|
/// // element at index 2 is the same as the element at (row 1, column 0).
|
||||||
|
/// assert_eq!(my_matrix.get(2), my_matrix.get((1,0)));
|
||||||
|
///
|
||||||
|
/// // my_matrix.get() is equivalent to my_matrix[],
|
||||||
|
/// // but returns an Option instead of panicking
|
||||||
|
/// assert_eq!(my_matrix.get(2), Some(&my_matrix[2]));
|
||||||
|
///
|
||||||
|
/// // index 4 is out of range, so get(4) returns None.
|
||||||
|
/// assert_eq!(my_matrix.get(4), None);
|
||||||
|
/// ```
|
||||||
|
#[inline]
|
||||||
|
#[must_use]
|
||||||
|
pub fn get(&self, index: impl Index2D) -> Option<&T> {
|
||||||
|
let (m, n) = index.to_2d(M, N)?;
|
||||||
|
Some(&self.data[m][n])
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a mutable reference to the element at that position in the matrix, or `None` if out of bounds.
|
||||||
|
#[inline]
|
||||||
|
#[must_use]
|
||||||
|
pub fn get_mut(&mut self, index: impl Index2D) -> Option<&mut T> {
|
||||||
|
let (m, n) = index.to_2d(M, N)?;
|
||||||
|
Some(&mut self.data[m][n])
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Returns a row of the matrix. or [None] if index is out of bounds
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
///
|
||||||
|
/// ```
|
||||||
|
/// # use vector_victor::{Matrix, Vector};
|
||||||
|
/// let my_matrix = Matrix::mat([[1,2],[3,4]]);
|
||||||
|
///
|
||||||
|
/// // row at index 1
|
||||||
|
/// assert_eq!(my_matrix.row(1), Vector::vec([3,4]));
|
||||||
|
/// ```
|
||||||
|
#[inline]
|
||||||
|
#[must_use]
|
||||||
|
pub fn row(&self, m: usize) -> Vector<T, N> {
|
||||||
|
assert!(
|
||||||
|
m < M,
|
||||||
|
"Row index {} out of bounds for {}x{} matrix",
|
||||||
|
m,
|
||||||
|
M,
|
||||||
|
N
|
||||||
|
);
|
||||||
|
Vector::<T, N>::vec(self.data[m])
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
pub fn set_row(&mut self, m: usize, val: &Vector<T, N>) {
|
||||||
|
assert!(
|
||||||
|
m < M,
|
||||||
|
"Row index {} out of bounds for {}x{} matrix",
|
||||||
|
m,
|
||||||
|
M,
|
||||||
|
N
|
||||||
|
);
|
||||||
|
for n in 0..N {
|
||||||
|
self.data[m][n] = val.data[n][0];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn pivot_row(&mut self, m1: usize, m2: usize) {
|
||||||
|
let tmp = self.row(m2);
|
||||||
|
self.set_row(m2, &self.row(m1));
|
||||||
|
self.set_row(m1, &tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
#[must_use]
|
||||||
|
pub fn col(&self, n: usize) -> Vector<T, M> {
|
||||||
|
assert!(
|
||||||
|
n < N,
|
||||||
|
"Column index {} out of bounds for {}x{} matrix",
|
||||||
|
n,
|
||||||
|
M,
|
||||||
|
N
|
||||||
|
);
|
||||||
|
Vector::<T, M>::vec(self.data.map(|r| r[n]))
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline]
|
||||||
|
pub fn set_col(&mut self, n: usize, val: &Vector<T, M>) {
|
||||||
|
assert!(
|
||||||
|
n < N,
|
||||||
|
"Column index {} out of bounds for {}x{} matrix",
|
||||||
|
n,
|
||||||
|
M,
|
||||||
|
N
|
||||||
|
);
|
||||||
|
|
||||||
|
for m in 0..M {
|
||||||
|
self.data[m][n] = val.data[m][0];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn pivot_col(&mut self, n1: usize, n2: usize) {
|
||||||
|
let tmp = self.col(n2);
|
||||||
|
self.set_col(n2, &self.col(n1));
|
||||||
|
self.set_col(n1, &tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn rows<'a>(&'a self) -> impl Iterator<Item = Vector<T, N>> + 'a {
|
||||||
|
(0..M).map(|m| self.row(m))
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn cols<'a>(&'a self) -> impl Iterator<Item = Vector<T, M>> + 'a {
|
||||||
|
(0..N).map(|n| self.col(n))
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn permute_rows(&self, ms: &Vector<usize, M>) -> Self
|
||||||
|
where
|
||||||
|
T: Default,
|
||||||
|
{
|
||||||
|
Self::from_rows(ms.elements().map(|&m| self.row(m)))
|
||||||
|
}
|
||||||
|
|
||||||
|
#[must_use]
|
||||||
|
pub fn permute_cols(&self, ns: &Vector<usize, N>) -> Self
|
||||||
|
where
|
||||||
|
T: Default,
|
||||||
|
{
|
||||||
|
Self::from_cols(ns.elements().map(|&n| self.col(n)))
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn transpose(&self) -> Matrix<T, N, M>
|
||||||
|
where
|
||||||
|
Matrix<T, N, M>: Default,
|
||||||
|
{
|
||||||
|
Matrix::<T, N, M>::from_rows(self.cols())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Index
|
||||||
|
impl<I, T, const M: usize, const N: usize> Index<I> for Matrix<T, M, N>
|
||||||
|
where
|
||||||
|
I: Index2D,
|
||||||
|
T: Copy,
|
||||||
|
{
|
||||||
|
type Output = T;
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn index(&self, index: I) -> &Self::Output {
|
||||||
|
self.get(index).expect(&*format!(
|
||||||
|
"index {:?} out of range for {}x{} Matrix",
|
||||||
|
index, M, N
|
||||||
|
))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// IndexMut
|
||||||
|
impl<I, T, const M: usize, const N: usize> IndexMut<I> for Matrix<T, M, N>
|
||||||
|
where
|
||||||
|
I: Index2D,
|
||||||
|
T: Copy,
|
||||||
|
{
|
||||||
|
#[inline(always)]
|
||||||
|
fn index_mut(&mut self, index: I) -> &mut Self::Output {
|
||||||
|
self.get_mut(index).expect(&*format!(
|
||||||
|
"index {:?} out of range for {}x{} Matrix",
|
||||||
|
index, M, N
|
||||||
|
))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// CONVERSIONS
|
||||||
|
|
||||||
|
// Convert from 2D Array (equivalent to new)
|
||||||
|
impl<T: Copy, const M: usize, const N: usize> From<[[T; N]; M]> for Matrix<T, M, N> {
|
||||||
|
fn from(data: [[T; N]; M]) -> Self {
|
||||||
|
Self::mat(data)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Convert from 1D Array (equivalent to vec)
|
||||||
|
impl<T: Copy, const M: usize> From<[T; M]> for Vector<T, M> {
|
||||||
|
fn from(data: [T; M]) -> Self {
|
||||||
|
Self::vec(data)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Convert from scalar (equivalent to fill)
|
||||||
|
impl<T: Copy, const M: usize, const N: usize> From<T> for Matrix<T, M, N> {
|
||||||
|
fn from(scalar: T) -> Self {
|
||||||
|
Self::fill(scalar)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// IntoIter
|
||||||
|
impl<T: Copy, const M: usize, const N: usize> IntoIterator for Matrix<T, M, N> {
|
||||||
|
type Item = T;
|
||||||
|
type IntoIter = Flatten<std::array::IntoIter<[T; N], M>>;
|
||||||
|
|
||||||
|
fn into_iter(self) -> Self::IntoIter {
|
||||||
|
self.data.into_iter().flatten()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// FromIterator
|
||||||
|
impl<T: Copy, const M: usize, const N: usize> FromIterator<T> for Matrix<T, M, N>
|
||||||
|
where
|
||||||
|
Self: Default,
|
||||||
|
{
|
||||||
|
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
|
||||||
|
let mut result: Self = Default::default();
|
||||||
|
for (l, r) in zip(result.elements_mut(), iter) {
|
||||||
|
*l = r;
|
||||||
|
}
|
||||||
|
result
|
||||||
|
}
|
||||||
|
}
|
||||||
|
182
src/math.rs
Normal file
182
src/math.rs
Normal file
@ -0,0 +1,182 @@
|
|||||||
|
use crate::{Matrix, Vector};
|
||||||
|
use num_traits::real::Real;
|
||||||
|
use num_traits::{Inv, Num, NumOps, One, Pow, Signed, Zero};
|
||||||
|
use std::iter::{zip, Product, Sum};
|
||||||
|
use std::ops::{Add, Mul};
|
||||||
|
|
||||||
|
/// Operations for column vectors
|
||||||
|
impl<T: Copy, const N: usize> Vector<T, N> {
|
||||||
|
/// Compute the dot product of two vectors, otherwise known as the scalar product.
|
||||||
|
/// This is the sum of the elementwise product, or in math terms
|
||||||
|
///
|
||||||
|
/// $vec(a) * vec(b) = sum_(i=1)^n a_i b_i = a_1 b_1 + a_2 b_2 + ... + a_n b_n$
|
||||||
|
///
|
||||||
|
/// for example, $[[1],[2],[3]] * [[4],[5],[6]] = (1 * 4) + (2 * 5) + (3 * 6) = 32$
|
||||||
|
///
|
||||||
|
/// For vectors in euclidean space, this has the property that it is equal to the magnitudes of
|
||||||
|
/// the vectors times the cosine of the angle between them.
|
||||||
|
///
|
||||||
|
/// $vec(a) * vec(b) = |vec(a)| |vec(b)| cos(theta)$
|
||||||
|
///
|
||||||
|
/// this also gives it the special property that the dot product of a vector and itself is the
|
||||||
|
/// square of its magnitude. You may recognize the 2D version as the
|
||||||
|
/// [pythagorean theorem](https://en.wikipedia.org/wiki/Pythagorean_theorem).
|
||||||
|
///
|
||||||
|
/// see [dot product](https://en.wikipedia.org/wiki/Dot_product) on Wikipedia for more
|
||||||
|
/// information.
|
||||||
|
pub fn dot<R>(&self, rhs: &R) -> T
|
||||||
|
where
|
||||||
|
for<'s> &'s Self: Mul<&'s R, Output = Self>,
|
||||||
|
T: Sum<T>,
|
||||||
|
{
|
||||||
|
(self * rhs).elements().cloned().sum()
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn sqrmag(&self) -> T
|
||||||
|
where
|
||||||
|
for<'s> &'s Self: Mul<&'s Self, Output = Self>,
|
||||||
|
T: Sum<T>,
|
||||||
|
{
|
||||||
|
self.dot(self)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn mag(&self) -> T
|
||||||
|
where
|
||||||
|
T: Sum<T> + Mul<T> + Real,
|
||||||
|
{
|
||||||
|
self.sqrmag().sqrt()
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn normalized(&self) -> Option<Self>
|
||||||
|
where
|
||||||
|
T: Sum<T> + Mul<T> + Real,
|
||||||
|
{
|
||||||
|
match self.mag() {
|
||||||
|
mag if mag.abs() < T::epsilon() => None,
|
||||||
|
mag => Some(self / mag),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Cross product operations for column vectors in $RR^3$
|
||||||
|
impl<T: Copy> Vector<T, 3> {
|
||||||
|
pub fn cross_r<R: Copy>(&self, rhs: &Vector<R, 3>) -> Self
|
||||||
|
where
|
||||||
|
T: NumOps<R> + NumOps,
|
||||||
|
{
|
||||||
|
Self::vec([
|
||||||
|
(self[1] * rhs[2]) - (self[2] * rhs[1]),
|
||||||
|
(self[2] * rhs[0]) - (self[0] * rhs[2]),
|
||||||
|
(self[0] * rhs[1]) - (self[1] * rhs[0]),
|
||||||
|
])
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn cross_l<R: Copy>(&self, rhs: &Vector<R, 3>) -> Vector<R, 3>
|
||||||
|
where
|
||||||
|
R: NumOps<T> + NumOps,
|
||||||
|
{
|
||||||
|
rhs.cross_r(self)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Operations for Matrices
|
||||||
|
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||||
|
pub fn mmul<R: Copy, const P: usize>(&self, rhs: &Matrix<R, N, P>) -> Matrix<T, M, P>
|
||||||
|
where
|
||||||
|
T: Default + NumOps<R> + Sum,
|
||||||
|
{
|
||||||
|
let mut result: Matrix<T, M, P> = Default::default();
|
||||||
|
|
||||||
|
for (m, a) in self.rows().enumerate() {
|
||||||
|
for (n, b) in rhs.cols().enumerate() {
|
||||||
|
result[(m, n)] = a.dot(&b)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Computes the absolute value of each element of the matrix
|
||||||
|
pub fn abs(&self) -> Self
|
||||||
|
where
|
||||||
|
T: Signed + Default,
|
||||||
|
{
|
||||||
|
self.elements().map(|&x| x.abs()).collect()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Computes the sign of each element of the matrix
|
||||||
|
pub fn signum(&self) -> Self
|
||||||
|
where
|
||||||
|
T: Signed + Default,
|
||||||
|
{
|
||||||
|
self.elements().map(|&x| x.signum()).collect()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Raises every element to the power of rhs, where rhs is either a scalar or a matrix of exponents
|
||||||
|
pub fn pow<R, O>(self, rhs: R) -> O
|
||||||
|
where
|
||||||
|
Self: Pow<R, Output = O>,
|
||||||
|
{
|
||||||
|
Pow::pow(self, rhs)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Sum up matrices
|
||||||
|
impl<T: Copy, const M: usize, const N: usize> Sum for Matrix<T, M, N>
|
||||||
|
where
|
||||||
|
Self: Zero + Add<Output = Self>,
|
||||||
|
{
|
||||||
|
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
|
||||||
|
iter.fold(Self::zero(), Self::add)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Product of matrices
|
||||||
|
impl<T: Copy, const M: usize, const N: usize> Product for Matrix<T, M, N>
|
||||||
|
where
|
||||||
|
Self: One + Mul<Output = Self>,
|
||||||
|
{
|
||||||
|
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
|
||||||
|
iter.fold(Self::one(), Self::mul)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Inverse trait. Note that this is the elementwise inverse, not the matrix inverse.
|
||||||
|
/// For the inverse matrix see [`LUDecomposable::inv()`](crate::decompose::LUDecompose::inv())
|
||||||
|
impl<T: Copy + Inv<Output = T> + Default, const M: usize, const N: usize> Inv for Matrix<T, M, N> {
|
||||||
|
type Output = Self;
|
||||||
|
|
||||||
|
fn inv(self) -> Self::Output {
|
||||||
|
self.elements().map(|t| t.inv()).collect()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Pow for $Matrix^{scalar}$
|
||||||
|
impl<T, R, O, const M: usize, const N: usize> Pow<R> for Matrix<T, M, N>
|
||||||
|
where
|
||||||
|
T: Copy + Pow<R, Output = O>,
|
||||||
|
R: Copy + Num,
|
||||||
|
O: Copy + Default,
|
||||||
|
{
|
||||||
|
type Output = Matrix<O, M, N>;
|
||||||
|
|
||||||
|
fn pow(self, rhs: R) -> Self::Output {
|
||||||
|
self.elements().map(|&x| x.pow(rhs)).collect()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Pow for $Matrix^{Matrix}$
|
||||||
|
impl<T, R, O, const M: usize, const N: usize> Pow<Matrix<R, M, N>> for Matrix<T, M, N>
|
||||||
|
where
|
||||||
|
T: Copy + Pow<R, Output = O>,
|
||||||
|
R: Copy,
|
||||||
|
O: Copy + Default,
|
||||||
|
{
|
||||||
|
type Output = Matrix<O, M, N>;
|
||||||
|
|
||||||
|
fn pow(self, rhs: Matrix<R, M, N>) -> Self::Output {
|
||||||
|
zip(self.elements(), rhs.elements())
|
||||||
|
.map(|(x, &r)| x.pow(r))
|
||||||
|
.collect()
|
||||||
|
}
|
||||||
|
}
|
@ -1,533 +0,0 @@
|
|||||||
use index::Index2D;
|
|
||||||
|
|
||||||
use num_traits::{NumOps, One, Zero};
|
|
||||||
use std::fmt::Debug;
|
|
||||||
use std::iter::{zip, Flatten, Product, Sum};
|
|
||||||
|
|
||||||
use std::ops::{Add, AddAssign, Deref, DerefMut, Index, IndexMut, Mul, MulAssign, Neg};
|
|
||||||
|
|
||||||
pub mod ops;
|
|
||||||
mod index;
|
|
||||||
|
|
||||||
/// A 2D array of values which can be operated upon.
|
|
||||||
///
|
|
||||||
/// Matrices have a fixed size known at compile time
|
|
||||||
#[derive(Debug, Copy, Clone, PartialEq)]
|
|
||||||
pub struct Matrix<T, const M: usize, const N: usize>
|
|
||||||
where
|
|
||||||
T: Copy,
|
|
||||||
{
|
|
||||||
data: [[T; N]; M], // Row-Major order
|
|
||||||
}
|
|
||||||
|
|
||||||
/// An alias for a [Matrix] with a single column
|
|
||||||
pub type Vector<T, const N: usize> = Matrix<T, N, 1>;
|
|
||||||
|
|
||||||
// Simple access functions that only require T be copyable
|
|
||||||
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|
||||||
/// Generate a new matrix from a 2D Array
|
|
||||||
///
|
|
||||||
/// # Arguments
|
|
||||||
///
|
|
||||||
/// * `data`: A 2D array of elements to copy into the new matrix
|
|
||||||
///
|
|
||||||
/// returns: Matrix<T, M, N>
|
|
||||||
///
|
|
||||||
/// # Examples
|
|
||||||
///
|
|
||||||
/// ```
|
|
||||||
/// # use vector_victor::Matrix;
|
|
||||||
/// let a = Matrix::new([[1,2,3,4];4]);
|
|
||||||
/// ```
|
|
||||||
#[must_use]
|
|
||||||
pub fn new(data: [[T; N]; M]) -> Self {
|
|
||||||
assert!(M > 0, "Matrix must have at least 1 row");
|
|
||||||
assert!(N > 0, "Matrix must have at least 1 column");
|
|
||||||
Matrix::<T, M, N> { data }
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Generate a new matrix from a single scalar
|
|
||||||
///
|
|
||||||
/// # Arguments
|
|
||||||
///
|
|
||||||
/// * `scalar`: Scalar value to copy into the new matrix.
|
|
||||||
///
|
|
||||||
/// returns: Matrix<T, M, N>
|
|
||||||
///
|
|
||||||
/// # Examples
|
|
||||||
///
|
|
||||||
/// ```
|
|
||||||
/// # use vector_victor::Matrix;
|
|
||||||
/// let my_matrix = Matrix::<i32,4,4>::fill(5);
|
|
||||||
/// // is equivalent to
|
|
||||||
/// assert_eq!(my_matrix, Matrix::new([[5;4];4]))
|
|
||||||
/// ```
|
|
||||||
#[must_use]
|
|
||||||
pub fn fill(scalar: T) -> Matrix<T, M, N> {
|
|
||||||
assert!(M > 0, "Matrix must have at least 1 row");
|
|
||||||
assert!(N > 0, "Matrix must have at least 1 column");
|
|
||||||
Matrix::<T, M, N> {
|
|
||||||
data: [[scalar; N]; M],
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create a matrix from an iterator of vectors
|
|
||||||
///
|
|
||||||
/// # Arguments
|
|
||||||
///
|
|
||||||
/// * `iter`: iterator of vectors to copy into rows
|
|
||||||
///
|
|
||||||
/// returns: Matrix<T, M, N>
|
|
||||||
///
|
|
||||||
/// # Examples
|
|
||||||
///
|
|
||||||
/// ```
|
|
||||||
/// # use vector_victor::Matrix;
|
|
||||||
/// let my_matrix = Matrix::new([[1,2,3],[4,5,6]]);
|
|
||||||
/// let transpose : Matrix<_,3,2>= Matrix::from_rows(my_matrix.cols());
|
|
||||||
/// assert_eq!(transpose, Matrix::new([[1,4],[2,5],[3,6]]))
|
|
||||||
/// ```
|
|
||||||
#[must_use]
|
|
||||||
pub fn from_rows<I>(iter: I) -> Self
|
|
||||||
where
|
|
||||||
I: IntoIterator<Item = Vector<T, N>>,
|
|
||||||
Self: Default,
|
|
||||||
{
|
|
||||||
let mut result = Self::default();
|
|
||||||
for (m, row) in iter.into_iter().enumerate().take(M) {
|
|
||||||
result.set_row(m, &row)
|
|
||||||
}
|
|
||||||
result
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Create a matrix from an iterator of vectors
|
|
||||||
///
|
|
||||||
/// # Arguments
|
|
||||||
///
|
|
||||||
/// * `iter`: iterator of vectors to copy into columns
|
|
||||||
///
|
|
||||||
/// returns: Matrix<T, M, N>
|
|
||||||
///
|
|
||||||
/// # Examples
|
|
||||||
///
|
|
||||||
/// ```
|
|
||||||
/// # use vector_victor::Matrix;
|
|
||||||
/// let my_matrix = Matrix::new([[1,2,3],[4,5,6]]);
|
|
||||||
/// let transpose : Matrix<_,3,2>= Matrix::from_cols(my_matrix.rows());
|
|
||||||
/// assert_eq!(transpose, Matrix::new([[1,4],[2,5],[3,6]]))
|
|
||||||
/// ```
|
|
||||||
#[must_use]
|
|
||||||
pub fn from_cols<I>(iter: I) -> Self
|
|
||||||
where
|
|
||||||
I: IntoIterator<Item = Vector<T, M>>,
|
|
||||||
Self: Default,
|
|
||||||
{
|
|
||||||
let mut result = Self::default();
|
|
||||||
for (n, col) in iter.into_iter().enumerate().take(N) {
|
|
||||||
result.set_col(n, &col)
|
|
||||||
}
|
|
||||||
result
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns an iterator over the elements of the matrix in row-major order.
|
|
||||||
///
|
|
||||||
/// # Examples
|
|
||||||
/// ```
|
|
||||||
/// # use vector_victor::Matrix;
|
|
||||||
/// let my_matrix = Matrix::new([[1,2],[3,4]]);
|
|
||||||
/// assert!(vec![1,2,3,4].iter().eq(my_matrix.elements()))
|
|
||||||
/// ```
|
|
||||||
#[must_use]
|
|
||||||
pub fn elements<'a>(&'a self) -> impl Iterator<Item = &'a T> + 'a {
|
|
||||||
self.data.iter().flatten()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns a mutable iterator over the elements of the matrix in row-major order.
|
|
||||||
#[must_use]
|
|
||||||
pub fn elements_mut<'a>(&'a mut self) -> impl Iterator<Item = &'a mut T> + 'a {
|
|
||||||
self.data.iter_mut().flatten()
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns a reference to the element at that position in the matrix, or `None` if out of bounds.
|
|
||||||
///
|
|
||||||
/// # Examples
|
|
||||||
///
|
|
||||||
/// ```
|
|
||||||
/// # use vector_victor::Matrix;
|
|
||||||
/// let my_matrix = Matrix::new([[1,2],[3,4]]);
|
|
||||||
///
|
|
||||||
/// // element at index 2 is the same as the element at (row 1, column 0).
|
|
||||||
/// assert_eq!(my_matrix.get(2), my_matrix.get((1,0)));
|
|
||||||
///
|
|
||||||
/// // my_matrix.get() is equivalent to my_matrix[],
|
|
||||||
/// // but returns an Option instead of panicking
|
|
||||||
/// assert_eq!(my_matrix.get(2), Some(&my_matrix[2]));
|
|
||||||
///
|
|
||||||
/// // index 4 is out of range, so get(4) returns None.
|
|
||||||
/// assert_eq!(my_matrix.get(4), None);
|
|
||||||
/// ```
|
|
||||||
#[inline]
|
|
||||||
#[must_use]
|
|
||||||
pub fn get(&self, index: impl Index2D) -> Option<&T> {
|
|
||||||
let (m, n) = index.to_2d(M, N)?;
|
|
||||||
Some(&self.data[m][n])
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns a mutable reference to the element at that position in the matrix, or `None` if out of bounds.
|
|
||||||
#[inline]
|
|
||||||
#[must_use]
|
|
||||||
pub fn get_mut(&mut self, index: impl Index2D) -> Option<&mut T> {
|
|
||||||
let (m, n) = index.to_2d(M, N)?;
|
|
||||||
Some(&mut self.data[m][n])
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns a row of the matrix. or [None] if index is out of bounds
|
|
||||||
///
|
|
||||||
/// # Examples
|
|
||||||
///
|
|
||||||
/// ```
|
|
||||||
/// # use vector_victor::{Matrix, Vector};
|
|
||||||
/// let my_matrix = Matrix::new([[1,2],[3,4]]);
|
|
||||||
///
|
|
||||||
/// // row at index 1
|
|
||||||
/// assert_eq!(my_matrix.row(1), Vector::vec([3,4]));
|
|
||||||
/// ```
|
|
||||||
#[inline]
|
|
||||||
#[must_use]
|
|
||||||
pub fn row(&self, m: usize) -> Vector<T, N> {
|
|
||||||
assert!(
|
|
||||||
m < M,
|
|
||||||
"Row index {} out of bounds for {}x{} matrix",
|
|
||||||
m,
|
|
||||||
M,
|
|
||||||
N
|
|
||||||
);
|
|
||||||
Vector::<T, N>::vec(self.data[m])
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
pub fn set_row(&mut self, m: usize, val: &Vector<T, N>) {
|
|
||||||
assert!(
|
|
||||||
m < M,
|
|
||||||
"Row index {} out of bounds for {}x{} matrix",
|
|
||||||
m,
|
|
||||||
M,
|
|
||||||
N
|
|
||||||
);
|
|
||||||
for n in 0..N {
|
|
||||||
self.data[m][n] = val.data[n][0];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn pivot_row(&mut self, m1: usize, m2: usize) {
|
|
||||||
let tmp = self.row(m2);
|
|
||||||
self.set_row(m2, &self.row(m1));
|
|
||||||
self.set_row(m1, &tmp);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
#[must_use]
|
|
||||||
pub fn col(&self, n: usize) -> Vector<T, M> {
|
|
||||||
assert!(
|
|
||||||
n < N,
|
|
||||||
"Column index {} out of bounds for {}x{} matrix",
|
|
||||||
n,
|
|
||||||
M,
|
|
||||||
N
|
|
||||||
);
|
|
||||||
Vector::<T, M>::vec(self.data.map(|r| r[n]))
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline]
|
|
||||||
pub fn set_col(&mut self, n: usize, val: &Vector<T, M>) {
|
|
||||||
assert!(
|
|
||||||
n < N,
|
|
||||||
"Column index {} out of bounds for {}x{} matrix",
|
|
||||||
n,
|
|
||||||
M,
|
|
||||||
N
|
|
||||||
);
|
|
||||||
|
|
||||||
for m in 0..M {
|
|
||||||
self.data[m][n] = val.data[m][0];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn pivot_col(&mut self, n1: usize, n2: usize) {
|
|
||||||
let tmp = self.col(n2);
|
|
||||||
self.set_col(n2, &self.col(n1));
|
|
||||||
self.set_col(n1, &tmp);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[must_use]
|
|
||||||
pub fn rows<'a>(&'a self) -> impl Iterator<Item = Vector<T, N>> + 'a {
|
|
||||||
(0..M).map(|m| self.row(m))
|
|
||||||
}
|
|
||||||
|
|
||||||
#[must_use]
|
|
||||||
pub fn cols<'a>(&'a self) -> impl Iterator<Item = Vector<T, M>> + 'a {
|
|
||||||
(0..N).map(|n| self.col(n))
|
|
||||||
}
|
|
||||||
|
|
||||||
#[must_use]
|
|
||||||
pub fn permute_rows(&self, ms: &Vector<usize, M>) -> Self
|
|
||||||
where
|
|
||||||
T: Default,
|
|
||||||
{
|
|
||||||
Self::from_rows(ms.elements().map(|&m| self.row(m)))
|
|
||||||
}
|
|
||||||
|
|
||||||
#[must_use]
|
|
||||||
pub fn permute_cols(&self, ns: &Vector<usize, N>) -> Self
|
|
||||||
where
|
|
||||||
T: Default,
|
|
||||||
{
|
|
||||||
Self::from_cols(ns.elements().map(|&n| self.col(n)))
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn transpose(&self) -> Matrix<T, N, M>
|
|
||||||
where
|
|
||||||
Matrix<T, N, M>: Default,
|
|
||||||
{
|
|
||||||
Matrix::<T, N, M>::from_rows(self.cols())
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn abs(&self) -> Self
|
|
||||||
where
|
|
||||||
T: Default + PartialOrd + Zero + Neg<Output = T>,
|
|
||||||
{
|
|
||||||
self.elements()
|
|
||||||
.map(|&x| match x > T::zero() {
|
|
||||||
true => x,
|
|
||||||
false => -x,
|
|
||||||
})
|
|
||||||
.collect()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// 1D vector implementations
|
|
||||||
impl<T: Copy, const N: usize> Vector<T, N> {
|
|
||||||
/// Create a vector from a 1D array.
|
|
||||||
/// Note that vectors are always column vectors unless explicitly instantiated as row vectors
|
|
||||||
///
|
|
||||||
/// # Examples
|
|
||||||
/// ```
|
|
||||||
/// # use vector_victor::{Matrix, Vector};
|
|
||||||
/// let my_vector = Vector::vec([1,2,3,4]);
|
|
||||||
/// // is equivalent to
|
|
||||||
/// assert_eq!(my_vector, Matrix::new([[1],[2],[3],[4]]));
|
|
||||||
/// ```
|
|
||||||
pub fn vec(data: [T; N]) -> Self {
|
|
||||||
assert!(N > 0, "Vector must have at least 1 element");
|
|
||||||
return Vector::<T, N> {
|
|
||||||
data: data.map(|e| [e]),
|
|
||||||
};
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn dot<R>(&self, rhs: &R) -> T
|
|
||||||
where
|
|
||||||
for<'s> &'s Self: Mul<&'s R, Output = Self>,
|
|
||||||
T: Sum<T>,
|
|
||||||
{
|
|
||||||
(self * rhs).elements().cloned().sum()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Cross Product
|
|
||||||
impl<T: Copy> Vector<T, 3> {
|
|
||||||
pub fn cross_r<R: Copy>(&self, rhs: &Vector<R, 3>) -> Self
|
|
||||||
where
|
|
||||||
T: NumOps<R> + NumOps,
|
|
||||||
{
|
|
||||||
Self::vec([
|
|
||||||
(self[1] * rhs[2]) - (self[2] * rhs[1]),
|
|
||||||
(self[2] * rhs[0]) - (self[0] * rhs[2]),
|
|
||||||
(self[0] * rhs[1]) - (self[1] * rhs[0]),
|
|
||||||
])
|
|
||||||
}
|
|
||||||
|
|
||||||
pub fn cross_l<R: Copy>(&self, rhs: &Vector<R, 3>) -> Vector<R, 3>
|
|
||||||
where
|
|
||||||
R: NumOps<T> + NumOps,
|
|
||||||
{
|
|
||||||
rhs.cross_r(self)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
//Matrix Multiplication
|
|
||||||
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|
||||||
pub fn mmul<R: Copy, const P: usize>(&self, rhs: &Matrix<R, N, P>) -> Matrix<T, M, P>
|
|
||||||
where
|
|
||||||
T: Default + NumOps<R> + Sum,
|
|
||||||
{
|
|
||||||
let mut result: Matrix<T, M, P> = Default::default();
|
|
||||||
|
|
||||||
for (m, a) in self.rows().enumerate() {
|
|
||||||
for (n, b) in rhs.cols().enumerate() {
|
|
||||||
result[(m, n)] = a.dot(&b)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Square matrix implementations
|
|
||||||
impl<T: Copy, const N: usize> Matrix<T, N, N> {
|
|
||||||
/// Create an identity matrix
|
|
||||||
#[must_use]
|
|
||||||
pub fn identity() -> Self
|
|
||||||
where
|
|
||||||
T: Zero + One,
|
|
||||||
{
|
|
||||||
let mut result = Self::zero();
|
|
||||||
for i in 0..N {
|
|
||||||
result[(i, i)] = T::one();
|
|
||||||
}
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// returns an iterator over the elements along the diagonal of a square matrix
|
|
||||||
#[must_use]
|
|
||||||
pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
|
|
||||||
(0..N).map(|n| self[(n, n)])
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns an iterator over the elements directly below the diagonal of a square matrix
|
|
||||||
#[must_use]
|
|
||||||
pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
|
|
||||||
(0..N - 1).map(|n| self[(n, n + 1)])
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Index
|
|
||||||
impl<I, T, const M: usize, const N: usize> Index<I> for Matrix<T, M, N>
|
|
||||||
where
|
|
||||||
I: Index2D,
|
|
||||||
T: Copy,
|
|
||||||
{
|
|
||||||
type Output = T;
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
fn index(&self, index: I) -> &Self::Output {
|
|
||||||
self.get(index).expect(&*format!(
|
|
||||||
"index {:?} out of range for {}x{} Matrix",
|
|
||||||
index, M, N
|
|
||||||
))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// IndexMut
|
|
||||||
impl<I, T, const M: usize, const N: usize> IndexMut<I> for Matrix<T, M, N>
|
|
||||||
where
|
|
||||||
I: Index2D,
|
|
||||||
T: Copy,
|
|
||||||
{
|
|
||||||
#[inline(always)]
|
|
||||||
fn index_mut(&mut self, index: I) -> &mut Self::Output {
|
|
||||||
self.get_mut(index).expect(&*format!(
|
|
||||||
"index {:?} out of range for {}x{} Matrix",
|
|
||||||
index, M, N
|
|
||||||
))
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Default
|
|
||||||
impl<T: Copy + Default, const M: usize, const N: usize> Default for Matrix<T, M, N> {
|
|
||||||
fn default() -> Self {
|
|
||||||
Matrix::fill(T::default())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Zero
|
|
||||||
impl<T: Copy + Zero, const M: usize, const N: usize> Zero for Matrix<T, M, N> {
|
|
||||||
fn zero() -> Self {
|
|
||||||
Matrix::fill(T::zero())
|
|
||||||
}
|
|
||||||
|
|
||||||
fn is_zero(&self) -> bool {
|
|
||||||
self.elements().all(|e| e.is_zero())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// One
|
|
||||||
impl<T: Copy + One, const M: usize, const N: usize> One for Matrix<T, M, N> {
|
|
||||||
fn one() -> Self {
|
|
||||||
Matrix::fill(T::one())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<T: Copy, const M: usize, const N: usize> From<[[T; N]; M]> for Matrix<T, M, N> {
|
|
||||||
fn from(data: [[T; N]; M]) -> Self {
|
|
||||||
Self::new(data)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<T: Copy, const M: usize> From<[T; M]> for Vector<T, M> {
|
|
||||||
fn from(data: [T; M]) -> Self {
|
|
||||||
Self::vec(data)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<T: Copy, const M: usize, const N: usize> From<T> for Matrix<T, M, N> {
|
|
||||||
fn from(scalar: T) -> Self {
|
|
||||||
Self::fill(scalar)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// deref 1x1 matrices to a scalar automatically
|
|
||||||
impl<T: Copy> Deref for Matrix<T, 1, 1> {
|
|
||||||
type Target = T;
|
|
||||||
|
|
||||||
fn deref(&self) -> &Self::Target {
|
|
||||||
&self.data[0][0]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// deref 1x1 matrices to a mutable scalar automatically
|
|
||||||
impl<T: Copy> DerefMut for Matrix<T, 1, 1> {
|
|
||||||
fn deref_mut(&mut self) -> &mut Self::Target {
|
|
||||||
&mut self.data[0][0]
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// IntoIter
|
|
||||||
impl<T: Copy, const M: usize, const N: usize> IntoIterator for Matrix<T, M, N> {
|
|
||||||
type Item = T;
|
|
||||||
type IntoIter = Flatten<std::array::IntoIter<[T; N], M>>;
|
|
||||||
|
|
||||||
fn into_iter(self) -> Self::IntoIter {
|
|
||||||
self.data.into_iter().flatten()
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// FromIterator
|
|
||||||
impl<T: Copy, const M: usize, const N: usize> FromIterator<T> for Matrix<T, M, N>
|
|
||||||
where
|
|
||||||
Self: Default,
|
|
||||||
{
|
|
||||||
fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
|
|
||||||
let mut result: Self = Default::default();
|
|
||||||
for (l, r) in zip(result.elements_mut(), iter) {
|
|
||||||
*l = r;
|
|
||||||
}
|
|
||||||
result
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<T: Copy + AddAssign, const M: usize, const N: usize> Sum for Matrix<T, M, N>
|
|
||||||
where
|
|
||||||
Self: Zero + Add<Output = Self>,
|
|
||||||
{
|
|
||||||
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
|
|
||||||
iter.fold(Self::zero(), Self::add)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<T: Copy + MulAssign, const M: usize, const N: usize> Product for Matrix<T, M, N>
|
|
||||||
where
|
|
||||||
Self: One + Mul<Output = Self>,
|
|
||||||
{
|
|
||||||
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
|
|
||||||
iter.fold(Self::one(), Self::mul)
|
|
||||||
}
|
|
||||||
}
|
|
1
src/mod.rs
Normal file
1
src/mod.rs
Normal file
@ -0,0 +1 @@
|
|||||||
|
|
@ -1,4 +1,4 @@
|
|||||||
use crate::matrix::Matrix;
|
use crate::Matrix;
|
||||||
use num_traits::Num;
|
use num_traits::Num;
|
||||||
|
|
||||||
// borrowed from the auto_ops crate
|
// borrowed from the auto_ops crate
|
@ -4,9 +4,8 @@ mod common;
|
|||||||
use common::Approx;
|
use common::Approx;
|
||||||
use generic_parameterize::parameterize;
|
use generic_parameterize::parameterize;
|
||||||
use num_traits::real::Real;
|
use num_traits::real::Real;
|
||||||
use num_traits::{Float, One, Signed, Zero};
|
use num_traits::Zero;
|
||||||
use std::fmt::Debug;
|
use std::fmt::Debug;
|
||||||
use std::iter::{Product, Sum};
|
|
||||||
use vector_victor::decompose::{LUDecompose, LUDecomposition, Parity};
|
use vector_victor::decompose::{LUDecompose, LUDecomposition, Parity};
|
||||||
use vector_victor::{Matrix, Vector};
|
use vector_victor::{Matrix, Vector};
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user