mirror of
https://github.com/drewcassidy/vector-victor.git
synced 2024-09-01 14:58:35 +00:00
149 lines
4.9 KiB
Rust
149 lines
4.9 KiB
Rust
use generic_parameterize::parameterize;
|
|
use num_traits::real::Real;
|
|
use num_traits::Zero;
|
|
use std::fmt::Debug;
|
|
use std::iter::{zip, Product, Sum};
|
|
use std::ops;
|
|
use vector_victor::{LUSolve, Matrix, Vector};
|
|
|
|
macro_rules! scalar_eq {
|
|
($left:expr, $right:expr $(,)?) => {
|
|
match (&$left, &$right) {
|
|
(_left_val, _right_val) => {
|
|
scalar_eq!($left, $right, "Difference is less than epsilon")
|
|
}
|
|
}
|
|
};
|
|
($left:expr, $right:expr, $($arg:tt)+) => {
|
|
match (&$left, &$right) {
|
|
(left_val, right_val) => {
|
|
let epsilon = f32::epsilon() as f64;
|
|
let lf : f64 = (*left_val).into();
|
|
let rf : f64 = (*right_val).into();
|
|
let diff : f64 = (lf - rf).abs();
|
|
if diff >= epsilon {
|
|
assert_eq!(left_val, right_val, $($arg)+) // done this way to get nice errors
|
|
}
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
macro_rules! matrix_eq {
|
|
($left:expr, $right:expr $(,)?) => {
|
|
match (&$left, &$right) {
|
|
(_left_val, _right_val) => {
|
|
matrix_eq!($left, $right, "Difference is less than epsilon")
|
|
}
|
|
}
|
|
};
|
|
($left:expr, $right:expr, $($arg:tt)+) => {
|
|
match (&$left, &$right) {
|
|
(left_val, right_val) => {
|
|
let epsilon = f32::epsilon() as f64;
|
|
for (l, r) in zip(left_val.elements(), right_val.elements()) {
|
|
let lf : f64 = (*l).into();
|
|
let rf : f64 = (*r).into();
|
|
let diff : f64 = (lf - rf).abs();
|
|
if diff >= epsilon {
|
|
assert_eq!($left, $right, $($arg)+) // done this way to get nice errors
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
#[parameterize(S = (i32, f32, u32), M = [1,4], N = [1,4])]
|
|
#[test]
|
|
fn test_add<S: Copy + From<u16> + PartialEq + Debug, const M: usize, const N: usize>()
|
|
where
|
|
Matrix<S, M, N>: ops::Add<Output = Matrix<S, M, N>>,
|
|
{
|
|
let a = Matrix::<S, M, N>::fill(S::from(1));
|
|
let b = Matrix::<S, M, N>::fill(S::from(3));
|
|
let c: Matrix<S, M, N> = a + b;
|
|
for (i, ci) in c.elements().enumerate() {
|
|
assert_eq!(*ci, S::from(4));
|
|
}
|
|
}
|
|
|
|
#[parameterize(S = (f32, f64), M = [1,2,3,4])]
|
|
#[test]
|
|
fn test_lu_identity<S: Default + Real + Debug + Product + Sum + Into<f64>, const M: usize>() {
|
|
// let a: Matrix<f32, 3, 3> = Matrix::<f32, 3, 3>::identity();
|
|
let i = Matrix::<S, M, M>::identity();
|
|
let ones = Vector::<S, M>::fill(S::one());
|
|
let decomp = i.lu().expect("Singular matrix encountered");
|
|
let (lu, idx, d) = decomp;
|
|
assert_eq!(lu, i, "Incorrect LU decomposition");
|
|
assert!(
|
|
(0..M).eq(idx.elements().cloned()),
|
|
"Incorrect permutation matrix",
|
|
);
|
|
scalar_eq!(d, S::one(), "Incorrect permutation parity");
|
|
scalar_eq!(i.det(), S::one());
|
|
assert_eq!(i.inverse(), Some(i));
|
|
assert_eq!(i.solve(&ones), Some(ones));
|
|
assert_eq!(decomp.separate(), (i, i));
|
|
}
|
|
|
|
#[parameterize(S = (f32, f64), M = [2,3,4])]
|
|
#[test]
|
|
fn test_lu_singular<S: Default + Real + Debug + Product + Sum, const M: usize>() {
|
|
// let a: Matrix<f32, 3, 3> = Matrix::<f32, 3, 3>::identity();
|
|
let mut a = Matrix::<S, M, M>::zero();
|
|
let ones = Vector::<S, M>::fill(S::one());
|
|
a.set_row(0, &ones);
|
|
|
|
assert_eq!(a.lu(), None, "Matrix should be singular");
|
|
assert_eq!(a.det(), S::zero());
|
|
assert_eq!(a.inverse(), None);
|
|
assert_eq!(a.solve(&ones), None)
|
|
}
|
|
|
|
#[test]
|
|
fn test_lu_2x2() {
|
|
let a = Matrix::new([[1.0, 2.0], [3.0, 0.0]]);
|
|
let decomp = a.lu().expect("Singular matrix encountered");
|
|
let (_lu, idx, _d) = decomp;
|
|
// the decomposition is non-unique, due to the combination of lu and idx.
|
|
// Instead of checking the exact value, we only check the results.
|
|
// Also check if they produce the same results with both methods, since the
|
|
// Matrix<> methods use shortcuts the decomposition methods don't
|
|
|
|
let (l, u) = decomp.separate();
|
|
matrix_eq!(l.mmul(&u), a.permute_rows(&idx));
|
|
|
|
scalar_eq!(a.det(), -6.0);
|
|
scalar_eq!(a.det(), decomp.det());
|
|
|
|
matrix_eq!(
|
|
a.inverse().unwrap(),
|
|
Matrix::new([[0.0, 2.0], [3.0, -1.0]]) * (1.0 / 6.0)
|
|
);
|
|
matrix_eq!(a.inverse().unwrap(), decomp.inverse());
|
|
matrix_eq!(a.inverse().unwrap().inverse().unwrap(), a)
|
|
}
|
|
|
|
#[test]
|
|
fn test_lu_3x3() {
|
|
let a = Matrix::new([[1.0, -5.0, 8.0], [1.0, -2.0, 1.0], [2.0, -1.0, -4.0]]);
|
|
let decomp = a.lu().expect("Singular matrix encountered");
|
|
let (_lu, idx, _d) = decomp;
|
|
|
|
let (l, u) = decomp.separate();
|
|
matrix_eq!(l.mmul(&u), a.permute_rows(&idx));
|
|
|
|
scalar_eq!(a.det(), 3.0);
|
|
scalar_eq!(a.det(), decomp.det());
|
|
|
|
matrix_eq!(
|
|
a.inverse().unwrap(),
|
|
Matrix::new([[9.0, -28.0, 11.0], [6.0, -20.0, 7.0], [3.0, -9.0, 3.0]]) * (1.0 / 3.0)
|
|
);
|
|
matrix_eq!(a.inverse().unwrap(), decomp.inverse());
|
|
matrix_eq!(a.inverse().unwrap().inverse().unwrap(), a)
|
|
}
|