vector-victor/tests/ops.rs

149 lines
4.9 KiB
Rust
Raw Normal View History

2022-08-19 04:07:05 +00:00
use generic_parameterize::parameterize;
use num_traits::real::Real;
use num_traits::Zero;
2022-08-19 04:07:05 +00:00
use std::fmt::Debug;
2022-12-05 04:24:57 +00:00
use std::iter::{zip, Product, Sum};
2022-08-19 04:07:05 +00:00
use std::ops;
use vector_victor::{LUSolve, Matrix, Vector};
2022-08-19 04:07:05 +00:00
2022-12-05 04:24:57 +00:00
macro_rules! scalar_eq {
($left:expr, $right:expr $(,)?) => {
match (&$left, &$right) {
(_left_val, _right_val) => {
scalar_eq!($left, $right, "Difference is less than epsilon")
}
}
};
($left:expr, $right:expr, $($arg:tt)+) => {
match (&$left, &$right) {
(left_val, right_val) => {
let epsilon = f32::epsilon() as f64;
let lf : f64 = (*left_val).into();
let rf : f64 = (*right_val).into();
let diff : f64 = (lf - rf).abs();
if diff >= epsilon {
assert_eq!(left_val, right_val, $($arg)+) // done this way to get nice errors
}
}
}
};
}
macro_rules! matrix_eq {
($left:expr, $right:expr $(,)?) => {
match (&$left, &$right) {
(_left_val, _right_val) => {
matrix_eq!($left, $right, "Difference is less than epsilon")
}
}
};
($left:expr, $right:expr, $($arg:tt)+) => {
match (&$left, &$right) {
(left_val, right_val) => {
let epsilon = f32::epsilon() as f64;
for (l, r) in zip(left_val.elements(), right_val.elements()) {
let lf : f64 = (*l).into();
let rf : f64 = (*r).into();
let diff : f64 = (lf - rf).abs();
if diff >= epsilon {
assert_eq!($left, $right, $($arg)+) // done this way to get nice errors
}
}
}
}
};
}
2022-08-19 04:07:05 +00:00
#[parameterize(S = (i32, f32, u32), M = [1,4], N = [1,4])]
#[test]
fn test_add<S: Copy + From<u16> + PartialEq + Debug, const M: usize, const N: usize>()
2022-08-19 04:07:05 +00:00
where
Matrix<S, M, N>: ops::Add<Output = Matrix<S, M, N>>,
{
let a = Matrix::<S, M, N>::fill(S::from(1));
let b = Matrix::<S, M, N>::fill(S::from(3));
let c: Matrix<S, M, N> = a + b;
for (i, ci) in c.elements().enumerate() {
assert_eq!(*ci, S::from(4));
}
}
#[parameterize(S = (f32, f64), M = [1,2,3,4])]
#[test]
2022-12-05 04:24:57 +00:00
fn test_lu_identity<S: Default + Real + Debug + Product + Sum + Into<f64>, const M: usize>() {
// let a: Matrix<f32, 3, 3> = Matrix::<f32, 3, 3>::identity();
let i = Matrix::<S, M, M>::identity();
let ones = Vector::<S, M>::fill(S::one());
let decomp = i.lu().expect("Singular matrix encountered");
let (lu, idx, d) = decomp;
assert_eq!(lu, i, "Incorrect LU decomposition");
assert!(
(0..M).eq(idx.elements().cloned()),
"Incorrect permutation matrix",
);
2022-12-05 04:24:57 +00:00
scalar_eq!(d, S::one(), "Incorrect permutation parity");
scalar_eq!(i.det(), S::one());
assert_eq!(i.inverse(), Some(i));
assert_eq!(i.solve(&ones), Some(ones));
assert_eq!(decomp.separate(), (i, i));
}
#[parameterize(S = (f32, f64), M = [2,3,4])]
#[test]
fn test_lu_singular<S: Default + Real + Debug + Product + Sum, const M: usize>() {
// let a: Matrix<f32, 3, 3> = Matrix::<f32, 3, 3>::identity();
let mut a = Matrix::<S, M, M>::zero();
let ones = Vector::<S, M>::fill(S::one());
a.set_row(0, &ones);
assert_eq!(a.lu(), None, "Matrix should be singular");
assert_eq!(a.det(), S::zero());
assert_eq!(a.inverse(), None);
assert_eq!(a.solve(&ones), None)
}
#[test]
fn test_lu_2x2() {
let a = Matrix::new([[1.0, 2.0], [3.0, 0.0]]);
let decomp = a.lu().expect("Singular matrix encountered");
2022-12-05 04:24:57 +00:00
let (_lu, idx, _d) = decomp;
// the decomposition is non-unique, due to the combination of lu and idx.
// Instead of checking the exact value, we only check the results.
// Also check if they produce the same results with both methods, since the
// Matrix<> methods use shortcuts the decomposition methods don't
let (l, u) = decomp.separate();
2022-12-05 04:24:57 +00:00
matrix_eq!(l.mmul(&u), a.permute_rows(&idx));
scalar_eq!(a.det(), -6.0);
scalar_eq!(a.det(), decomp.det());
matrix_eq!(
a.inverse().unwrap(),
Matrix::new([[0.0, 2.0], [3.0, -1.0]]) * (1.0 / 6.0)
);
matrix_eq!(a.inverse().unwrap(), decomp.inverse());
matrix_eq!(a.inverse().unwrap().inverse().unwrap(), a)
}
#[test]
fn test_lu_3x3() {
let a = Matrix::new([[1.0, -5.0, 8.0], [1.0, -2.0, 1.0], [2.0, -1.0, -4.0]]);
let decomp = a.lu().expect("Singular matrix encountered");
let (_lu, idx, _d) = decomp;
let (l, u) = decomp.separate();
matrix_eq!(l.mmul(&u), a.permute_rows(&idx));
2022-12-05 04:24:57 +00:00
scalar_eq!(a.det(), 3.0);
scalar_eq!(a.det(), decomp.det());
2022-12-05 04:24:57 +00:00
matrix_eq!(
a.inverse().unwrap(),
Matrix::new([[9.0, -28.0, 11.0], [6.0, -20.0, 7.0], [3.0, -9.0, 3.0]]) * (1.0 / 3.0)
);
2022-12-05 04:24:57 +00:00
matrix_eq!(a.inverse().unwrap(), decomp.inverse());
matrix_eq!(a.inverse().unwrap().inverse().unwrap(), a)
}