Fixed error in CompressRGB, as reported by jonsoh in issue 49.

Added support for RGBA pixel format dithering. Fixes issue 50 and issue 51.
Add PixelFormat.h to vc8 project.
2.0
castano 16 years ago
parent f95d09d1e9
commit 5fbeb8d34b

@ -355,6 +355,10 @@
RelativePath="..\..\..\src\nvimage\nvimage.h"
>
</File>
<File
RelativePath="..\..\..\src\nvimage\PixelFormat.h"
>
</File>
<File
RelativePath="..\..\..\src\nvimage\PsdFile.h"
>

@ -16,6 +16,7 @@ http://www.efg2.com/Lab/Library/ImageProcessing/DHALF.TXT
#include <nvimage/Image.h>
#include <nvimage/Quantize.h>
#include <nvimage/PixelFormat.h>
using namespace nv;
@ -47,94 +48,20 @@ void nv::Quantize::BinaryAlpha( Image * image, int alpha_threshold /*= 127*/ )
// Simple quantization.
void nv::Quantize::RGB16( Image * image )
{
nvCheck(image != NULL);
const uint w = image->width();
const uint h = image->height();
for(uint y = 0; y < h; y++) {
for(uint x = 0; x < w; x++) {
Color32 pixel32 = image->pixel(x, y);
// Convert to 16 bit and back to 32 using regular bit expansion.
Color32 pixel16 = toColor32( toColor16(pixel32) );
// Store color.
image->pixel(x, y) = pixel16;
}
}
Truncate(image, 5, 6, 5, 8);
}
// Alpha quantization.
void nv::Quantize::Alpha4( Image * image )
{
nvCheck(image != NULL);
const uint w = image->width();
const uint h = image->height();
for(uint y = 0; y < h; y++) {
for(uint x = 0; x < w; x++) {
Color32 pixel = image->pixel(x, y);
// Convert to 4 bit using regular bit expansion.
pixel.a = (pixel.a & 0xF0) | ((pixel.a & 0xF0) >> 4);
// Store color.
image->pixel(x, y) = pixel;
}
}
Truncate(image, 8, 8, 8, 4);
}
// Error diffusion. Floyd Steinberg.
void nv::Quantize::FloydSteinberg_RGB16( Image * image )
{
nvCheck(image != NULL);
const uint w = image->width();
const uint h = image->height();
// @@ Use fixed point?
Vector3 * row0 = new Vector3[w+2];
Vector3 * row1 = new Vector3[w+2];
memset(row0, 0, sizeof(Vector3)*(w+2));
memset(row1, 0, sizeof(Vector3)*(w+2));
for(uint y = 0; y < h; y++) {
for(uint x = 0; x < w; x++) {
Color32 pixel32 = image->pixel(x, y);
// Add error. // @@ We shouldn't clamp here!
pixel32.r = clamp(int(pixel32.r) + int(row0[1+x].x()), 0, 255);
pixel32.g = clamp(int(pixel32.g) + int(row0[1+x].y()), 0, 255);
pixel32.b = clamp(int(pixel32.b) + int(row0[1+x].z()), 0, 255);
// Convert to 16 bit. @@ Use regular clamp?
Color32 pixel16 = toColor32( toColor16(pixel32) );
// Store color.
image->pixel(x, y) = pixel16;
// Compute new error.
Vector3 diff(float(pixel32.r - pixel16.r), float(pixel32.g - pixel16.g), float(pixel32.b - pixel16.b));
// Propagate new error.
row0[1+x+1] += 7.0f / 16.0f * diff;
row1[1+x-1] += 3.0f / 16.0f * diff;
row1[1+x+0] += 5.0f / 16.0f * diff;
row1[1+x+1] += 1.0f / 16.0f * diff;
}
swap(row0, row1);
memset(row1, 0, sizeof(Vector3)*(w+2));
}
delete [] row0;
delete [] row1;
FloydSteinberg(image, 5, 6, 5, 8);
}
@ -188,47 +115,102 @@ void nv::Quantize::FloydSteinberg_BinaryAlpha( Image * image, int alpha_threshol
// Error diffusion. Floyd Steinberg.
void nv::Quantize::FloydSteinberg_Alpha4( Image * image )
{
FloydSteinberg(image, 8, 8, 8, 4);
}
void nv::Quantize::Truncate(Image * image, uint rsize, uint gsize, uint bsize, uint asize)
{
nvCheck(image != NULL);
const uint w = image->width();
const uint h = image->height();
// @@ Use fixed point?
float * row0 = new float[(w+2)];
float * row1 = new float[(w+2)];
memset(row0, 0, sizeof(float)*(w+2));
memset(row1, 0, sizeof(float)*(w+2));
for(uint y = 0; y < h; y++) {
for(uint x = 0; x < w; x++) {
Color32 pixel = image->pixel(x, y);
// Add error.
int alpha = int(pixel.a) + int(row0[1+x]);
// Convert to 4 bit using regular bit expansion.
pixel.a = (pixel.a & 0xF0) | ((pixel.a & 0xF0) >> 4);
// Convert to our desired size, and reconstruct.
pixel.r = PixelFormat::convert(pixel.r, 8, rsize);
pixel.r = PixelFormat::convert(pixel.r, rsize, 8);
pixel.g = PixelFormat::convert(pixel.g, 8, gsize);
pixel.g = PixelFormat::convert(pixel.g, gsize, 8);
pixel.b = PixelFormat::convert(pixel.b, 8, bsize);
pixel.b = PixelFormat::convert(pixel.b, bsize, 8);
pixel.a = PixelFormat::convert(pixel.a, 8, asize);
pixel.a = PixelFormat::convert(pixel.a, asize, 8);
// Store color.
image->pixel(x, y) = pixel;
// Compute new error.
float diff = float(alpha - pixel.a);
// Propagate new error.
row0[1+x+1] += 7.0f / 16.0f * diff;
row1[1+x-1] += 3.0f / 16.0f * diff;
row1[1+x+0] += 5.0f / 16.0f * diff;
row1[1+x+1] += 1.0f / 16.0f * diff;
}
swap(row0, row1);
memset(row1, 0, sizeof(float)*(w+2));
}
delete [] row0;
delete [] row1;
}
// Error diffusion. Floyd Steinberg.
void nv::Quantize::FloydSteinberg(Image * image, uint rsize, uint gsize, uint bsize, uint asize)
{
nvCheck(image != NULL);
const uint w = image->width();
const uint h = image->height();
Vector4 * row0 = new Vector4[w+2];
Vector4 * row1 = new Vector4[w+2];
memset(row0, 0, sizeof(Vector4)*(w+2));
memset(row1, 0, sizeof(Vector4)*(w+2));
for (uint y = 0; y < h; y++) {
for (uint x = 0; x < w; x++) {
Color32 pixel = image->pixel(x, y);
// Add error.
pixel.r = clamp(int(pixel.r) + int(row0[1+x].x()), 0, 255);
pixel.g = clamp(int(pixel.g) + int(row0[1+x].y()), 0, 255);
pixel.b = clamp(int(pixel.b) + int(row0[1+x].z()), 0, 255);
pixel.a = clamp(int(pixel.a) + int(row0[1+x].w()), 0, 255);
int r = pixel.r;
int g = pixel.g;
int b = pixel.b;
int a = pixel.a;
// Convert to our desired size, and reconstruct.
r = PixelFormat::convert(r, 8, rsize);
r = PixelFormat::convert(r, rsize, 8);
g = PixelFormat::convert(g, 8, gsize);
g = PixelFormat::convert(g, gsize, 8);
b = PixelFormat::convert(b, 8, bsize);
b = PixelFormat::convert(b, bsize, 8);
a = PixelFormat::convert(a, 8, asize);
a = PixelFormat::convert(a, asize, 8);
// Store color.
image->pixel(x, y) = Color32(r, g, b, a);
// Compute new error.
Vector4 diff(float(int(pixel.r) - r), float(int(pixel.g) - g), float(int(pixel.b) - b), float(int(pixel.a) - a));
// Propagate new error.
row0[1+x+1] += 7.0f / 16.0f * diff;
row1[1+x-1] += 3.0f / 16.0f * diff;
row1[1+x+0] += 5.0f / 16.0f * diff;
row1[1+x+1] += 1.0f / 16.0f * diff;
}
swap(row0, row1);
memset(row1, 0, sizeof(Vector4)*(w+2));
}
delete [] row0;
delete [] row1;
}

@ -17,6 +17,9 @@ namespace nv
void FloydSteinberg_BinaryAlpha(Image * img, int alpha_threshold = 127);
void FloydSteinberg_Alpha4(Image * img);
void Truncate(Image * image, uint rsize, uint gsize, uint bsize, uint asize);
void FloydSteinberg(Image * image, uint rsize, uint gsize, uint bsize, uint asize);
// @@ Add palette quantization algorithms!
}
}

@ -123,7 +123,7 @@ void nv::compressRGB(const Image * image, const OutputOptions::Private & outputO
}
// Zero padding.
for (uint x = w; x < pitch; x++)
for (uint x = w * byteCount; x < pitch; x++)
{
*(dst + x) = 0;
}

@ -34,6 +34,7 @@
#include <nvimage/Filter.h>
#include <nvimage/Quantize.h>
#include <nvimage/NormalMap.h>
#include <nvimage/PixelFormat.h>
#include "Compressor.h"
#include "InputOptions.h"
@ -617,13 +618,6 @@ void Compressor::Private::quantizeMipmap(Mipmap & mipmap, const CompressionOptio
{
nvDebugCheck(mipmap.asFixedImage() != NULL);
if (compressionOptions.enableColorDithering)
{
if (compressionOptions.format >= Format_DXT1 && compressionOptions.format <= Format_DXT5)
{
Quantize::FloydSteinberg_RGB16(mipmap.asMutableFixedImage());
}
}
if (compressionOptions.binaryAlpha)
{
if (compressionOptions.enableAlphaDithering)
@ -635,19 +629,50 @@ void Compressor::Private::quantizeMipmap(Mipmap & mipmap, const CompressionOptio
Quantize::BinaryAlpha(mipmap.asMutableFixedImage(), compressionOptions.alphaThreshold);
}
}
else
if (compressionOptions.enableColorDithering || compressionOptions.enableAlphaDithering)
{
uint rsize = 8;
uint gsize = 8;
uint bsize = 8;
uint asize = 8;
if (compressionOptions.enableColorDithering)
{
if (compressionOptions.format >= Format_DXT1 && compressionOptions.format <= Format_DXT5)
{
rsize = 5;
gsize = 6;
bsize = 5;
}
else if (compressionOptions.format == Format_RGB)
{
uint rshift, gshift, bshift;
PixelFormat::maskShiftAndSize(compressionOptions.rmask, &rshift, &rsize);
PixelFormat::maskShiftAndSize(compressionOptions.gmask, &gshift, &gsize);
PixelFormat::maskShiftAndSize(compressionOptions.bmask, &bshift, &bsize);
}
}
if (compressionOptions.enableAlphaDithering)
{
if (compressionOptions.format == Format_DXT3)
{
Quantize::Alpha4(mipmap.asMutableFixedImage());
asize = 4;
}
else if (compressionOptions.format == Format_DXT1a)
else if (compressionOptions.format == Format_RGB)
{
Quantize::BinaryAlpha(mipmap.asMutableFixedImage(), compressionOptions.alphaThreshold);
uint ashift;
PixelFormat::maskShiftAndSize(compressionOptions.amask, &ashift, &asize);
}
}
if (compressionOptions.binaryAlpha)
{
asize = 8; // Already quantized.
}
Quantize::FloydSteinberg(mipmap.asMutableFixedImage(), rsize, gsize, bsize, asize);
}
}

@ -373,7 +373,6 @@ int main(int argc, char *argv[])
inputOptions.setMipmapGeneration(false);
}
nvtt::CompressionOptions compressionOptions;
compressionOptions.setFormat(format);
if (fast)
@ -397,6 +396,21 @@ int main(int argc, char *argv[])
compressionOptions.setExternalCompressor(externalCompressor);
}
if (format == nvtt::Format_RGB)
{
compressionOptions.setQuantization(true, false, false);
//compressionOptions.setPixelFormat(16, 0xF000, 0x0F00, 0x00F0, 0x000F);
compressionOptions.setPixelFormat(16,
0x0F00,
0x00F0,
0x000F,
0xF000);
// 0x003F0000,
// 0x00003F00,
// 0x0000003F,
// 0x3F000000);
}
MyErrorHandler errorHandler;
MyOutputHandler outputHandler(output);

Loading…
Cancel
Save