Ported over James Arvo's SVD code from ZOH. It's a good deal slower than the eigensolver, and no better in RMSE - so didn't use it, but left the code in place for future reference.
Also replaced doubles with floats in the eigensolver code. Speeds up BC6 another 5%. No change to RMSE in test suite.
This commit is contained in:
parent
474239c784
commit
f2fa0517b5
@ -7,6 +7,7 @@
|
||||
#include "nvcore/Utils.h" // max, swap
|
||||
|
||||
#include <float.h> // FLT_MAX
|
||||
#include <vector>
|
||||
|
||||
using namespace nv;
|
||||
|
||||
@ -187,6 +188,29 @@ Vector3 nv::Fit::computePrincipalComponent_EigenSolver(int n, const Vector3 *__r
|
||||
return firstEigenVector_EigenSolver(matrix);
|
||||
}
|
||||
|
||||
void ArvoSVD(int rows, int cols, float * Q, float * diag, float * R);
|
||||
|
||||
Vector3 nv::Fit::computePrincipalComponent_SVD(int n, const Vector3 *__restrict points)
|
||||
{
|
||||
// Store the points in an n x n matrix
|
||||
std::vector<float> Q(n*n, 0.0f);
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
Q[i*n+0] = points[i].x;
|
||||
Q[i*n+1] = points[i].y;
|
||||
Q[i*n+2] = points[i].z;
|
||||
}
|
||||
|
||||
// Alloc space for the SVD outputs
|
||||
std::vector<float> diag(n, 0.0f);
|
||||
std::vector<float> R(n*n, 0.0f);
|
||||
|
||||
ArvoSVD(n, n, &Q[0], &diag[0], &R[0]);
|
||||
|
||||
// Get the principal component
|
||||
return Vector3(R[0], R[1], R[2]);
|
||||
}
|
||||
|
||||
|
||||
|
||||
Plane nv::Fit::bestPlane(int n, const Vector3 *__restrict points)
|
||||
@ -232,16 +256,16 @@ bool nv::Fit::isPlanar(int n, const Vector3 * points, float epsilon/*=NV_EPSILON
|
||||
// Householder transforms followed by QL decomposition.
|
||||
// Seems to be based on the code from Numerical Recipes in C.
|
||||
|
||||
static void EigenSolver_Tridiagonal(double mat[3][3],double * diag,double * subd);
|
||||
static bool EigenSolver_QLAlgorithm(double mat[3][3],double * diag,double * subd);
|
||||
static void EigenSolver_Tridiagonal(float mat[3][3],float * diag,float * subd);
|
||||
static bool EigenSolver_QLAlgorithm(float mat[3][3],float * diag,float * subd);
|
||||
|
||||
bool nv::Fit::eigenSolveSymmetric(const float matrix[6], float eigenValues[3], Vector3 eigenVectors[3])
|
||||
{
|
||||
nvDebugCheck(matrix != NULL && eigenValues != NULL && eigenVectors != NULL);
|
||||
|
||||
double subd[3];
|
||||
double diag[3];
|
||||
double work[3][3];
|
||||
float subd[3];
|
||||
float diag[3];
|
||||
float work[3][3];
|
||||
|
||||
work[0][0] = matrix[0];
|
||||
work[0][1] = work[1][0] = matrix[1];
|
||||
@ -297,7 +321,7 @@ bool nv::Fit::eigenSolveSymmetric(const float matrix[6], float eigenValues[3], V
|
||||
return true;
|
||||
}
|
||||
|
||||
static void EigenSolver_Tridiagonal(double mat[3][3],double * diag,double * subd)
|
||||
static void EigenSolver_Tridiagonal(float mat[3][3],float * diag,float * subd)
|
||||
{
|
||||
// Householder reduction T = Q^t M Q
|
||||
// Input:
|
||||
@ -306,23 +330,23 @@ static void EigenSolver_Tridiagonal(double mat[3][3],double * diag,double * subd
|
||||
// mat, orthogonal matrix Q
|
||||
// diag, diagonal entries of T
|
||||
// subd, subdiagonal entries of T (T is symmetric)
|
||||
const double epsilon = 1e-08f;
|
||||
const float epsilon = 1e-08f;
|
||||
|
||||
double a = mat[0][0];
|
||||
double b = mat[0][1];
|
||||
double c = mat[0][2];
|
||||
double d = mat[1][1];
|
||||
double e = mat[1][2];
|
||||
double f = mat[2][2];
|
||||
float a = mat[0][0];
|
||||
float b = mat[0][1];
|
||||
float c = mat[0][2];
|
||||
float d = mat[1][1];
|
||||
float e = mat[1][2];
|
||||
float f = mat[2][2];
|
||||
|
||||
diag[0] = a;
|
||||
subd[2] = 0.f;
|
||||
if ( fabs(c) >= epsilon )
|
||||
{
|
||||
const double ell = sqrt(b*b+c*c);
|
||||
const float ell = sqrtf(b*b+c*c);
|
||||
b /= ell;
|
||||
c /= ell;
|
||||
const double q = 2*b*e+c*(f-d);
|
||||
const float q = 2*b*e+c*(f-d);
|
||||
diag[1] = d+c*q;
|
||||
diag[2] = f-c*q;
|
||||
subd[0] = ell;
|
||||
@ -343,7 +367,7 @@ static void EigenSolver_Tridiagonal(double mat[3][3],double * diag,double * subd
|
||||
}
|
||||
}
|
||||
|
||||
static bool EigenSolver_QLAlgorithm(double mat[3][3],double * diag,double * subd)
|
||||
static bool EigenSolver_QLAlgorithm(float mat[3][3],float * diag,float * subd)
|
||||
{
|
||||
// QL iteration with implicit shifting to reduce matrix from tridiagonal
|
||||
// to diagonal
|
||||
@ -357,34 +381,34 @@ static bool EigenSolver_QLAlgorithm(double mat[3][3],double * diag,double * subd
|
||||
int m;
|
||||
for (m = ell; m <= 1; m++)
|
||||
{
|
||||
double dd = fabs(diag[m]) + fabs(diag[m+1]);
|
||||
float dd = fabs(diag[m]) + fabs(diag[m+1]);
|
||||
if ( fabs(subd[m]) + dd == dd )
|
||||
break;
|
||||
}
|
||||
if ( m == ell )
|
||||
break;
|
||||
|
||||
double g = (diag[ell+1]-diag[ell])/(2*subd[ell]);
|
||||
double r = sqrt(g*g+1);
|
||||
float g = (diag[ell+1]-diag[ell])/(2*subd[ell]);
|
||||
float r = sqrtf(g*g+1);
|
||||
if ( g < 0 )
|
||||
g = diag[m]-diag[ell]+subd[ell]/(g-r);
|
||||
else
|
||||
g = diag[m]-diag[ell]+subd[ell]/(g+r);
|
||||
double s = 1, c = 1, p = 0;
|
||||
float s = 1, c = 1, p = 0;
|
||||
for (int i = m-1; i >= ell; i--)
|
||||
{
|
||||
double f = s*subd[i], b = c*subd[i];
|
||||
float f = s*subd[i], b = c*subd[i];
|
||||
if ( fabs(f) >= fabs(g) )
|
||||
{
|
||||
c = g/f;
|
||||
r = sqrt(c*c+1);
|
||||
r = sqrtf(c*c+1);
|
||||
subd[i+1] = f*r;
|
||||
c *= (s = 1/r);
|
||||
}
|
||||
else
|
||||
{
|
||||
s = f/g;
|
||||
r = sqrt(s*s+1);
|
||||
r = sqrtf(s*s+1);
|
||||
subd[i+1] = g*r;
|
||||
s *= (c = 1/r);
|
||||
}
|
||||
@ -504,3 +528,300 @@ int nv::Fit::compute4Means(int n, const Vector3 *__restrict points, const float
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Adaptation of James Arvo's SVD code, as found in ZOH.
|
||||
|
||||
inline float Sqr(float x) { return x*x; }
|
||||
|
||||
inline float svd_pythag( float a, float b )
|
||||
{
|
||||
float at = fabsf(a);
|
||||
float bt = fabsf(b);
|
||||
if( at > bt )
|
||||
return at * sqrtf( 1.0f + Sqr( bt / at ) );
|
||||
else if( bt > 0.0f )
|
||||
return bt * sqrtf( 1.0f + Sqr( at / bt ) );
|
||||
else return 0.0f;
|
||||
}
|
||||
|
||||
inline float SameSign( float a, float b )
|
||||
{
|
||||
float t;
|
||||
if( b >= 0.0f ) t = fabsf( a );
|
||||
else t = -fabsf( a );
|
||||
return t;
|
||||
}
|
||||
|
||||
void ArvoSVD(int rows, int cols, float * Q, float * diag, float * R)
|
||||
{
|
||||
static const int MaxIterations = 30;
|
||||
|
||||
int i, j, k, l, p, q, iter;
|
||||
float c, f, h, s, x, y, z;
|
||||
float norm = 0.0f;
|
||||
float g = 0.0f;
|
||||
float scale = 0.0f;
|
||||
|
||||
std::vector<float> temp(cols, 0.0f);
|
||||
|
||||
for( i = 0; i < cols; i++ )
|
||||
{
|
||||
temp[i] = scale * g;
|
||||
scale = 0.0f;
|
||||
g = 0.0f;
|
||||
s = 0.0f;
|
||||
l = i + 1;
|
||||
|
||||
if( i < rows )
|
||||
{
|
||||
for( k = i; k < rows; k++ ) scale += fabsf( Q[k*cols+i] );
|
||||
if( scale != 0.0f )
|
||||
{
|
||||
for( k = i; k < rows; k++ )
|
||||
{
|
||||
Q[k*cols+i] /= scale;
|
||||
s += Sqr( Q[k*cols+i] );
|
||||
}
|
||||
f = Q[i*cols+i];
|
||||
g = -SameSign( sqrtf(s), f );
|
||||
h = f * g - s;
|
||||
Q[i*cols+i] = f - g;
|
||||
if( i != cols - 1 )
|
||||
{
|
||||
for( j = l; j < cols; j++ )
|
||||
{
|
||||
s = 0.0f;
|
||||
for( k = i; k < rows; k++ ) s += Q[k*cols+i] * Q[k*cols+j];
|
||||
f = s / h;
|
||||
for( k = i; k < rows; k++ ) Q[k*cols+j] += f * Q[k*cols+i];
|
||||
}
|
||||
}
|
||||
for( k = i; k < rows; k++ ) Q[k*cols+i] *= scale;
|
||||
}
|
||||
}
|
||||
|
||||
diag[i] = scale * g;
|
||||
g = 0.0f;
|
||||
s = 0.0f;
|
||||
scale = 0.0f;
|
||||
|
||||
if( i < rows && i != cols - 1 )
|
||||
{
|
||||
for( k = l; k < cols; k++ ) scale += fabsf( Q[i*cols+k] );
|
||||
if( scale != 0.0f )
|
||||
{
|
||||
for( k = l; k < cols; k++ )
|
||||
{
|
||||
Q[i*cols+k] /= scale;
|
||||
s += Sqr( Q[i*cols+k] );
|
||||
}
|
||||
f = Q[i*cols+l];
|
||||
g = -SameSign( sqrtf(s), f );
|
||||
h = f * g - s;
|
||||
Q[i*cols+l] = f - g;
|
||||
for( k = l; k < cols; k++ ) temp[k] = Q[i*cols+k] / h;
|
||||
if( i != rows - 1 )
|
||||
{
|
||||
for( j = l; j < rows; j++ )
|
||||
{
|
||||
s = 0.0f;
|
||||
for( k = l; k < cols; k++ ) s += Q[j*cols+k] * Q[i*cols+k];
|
||||
for( k = l; k < cols; k++ ) Q[j*cols+k] += s * temp[k];
|
||||
}
|
||||
}
|
||||
for( k = l; k < cols; k++ ) Q[i*cols+k] *= scale;
|
||||
}
|
||||
}
|
||||
norm = max( norm, fabsf( diag[i] ) + fabsf( temp[i] ) );
|
||||
}
|
||||
|
||||
|
||||
for( i = cols - 1; i >= 0; i-- )
|
||||
{
|
||||
if( i < cols - 1 )
|
||||
{
|
||||
if( g != 0.0f )
|
||||
{
|
||||
for( j = l; j < cols; j++ ) R[i*cols+j] = ( Q[i*cols+j] / Q[i*cols+l] ) / g;
|
||||
for( j = l; j < cols; j++ )
|
||||
{
|
||||
s = 0.0f;
|
||||
for( k = l; k < cols; k++ ) s += Q[i*cols+k] * R[j*cols+k];
|
||||
for( k = l; k < cols; k++ ) R[j*cols+k] += s * R[i*cols+k];
|
||||
}
|
||||
}
|
||||
for( j = l; j < cols; j++ )
|
||||
{
|
||||
R[i*cols+j] = 0.0f;
|
||||
R[j*cols+i] = 0.0f;
|
||||
}
|
||||
}
|
||||
R[i*cols+i] = 1.0f;
|
||||
g = temp[i];
|
||||
l = i;
|
||||
}
|
||||
|
||||
|
||||
for( i = cols - 1; i >= 0; i-- )
|
||||
{
|
||||
l = i + 1;
|
||||
g = diag[i];
|
||||
if( i < cols - 1 ) for( j = l; j < cols; j++ ) Q[i*cols+j] = 0.0f;
|
||||
if( g != 0.0f )
|
||||
{
|
||||
g = 1.0f / g;
|
||||
if( i != cols - 1 )
|
||||
{
|
||||
for( j = l; j < cols; j++ )
|
||||
{
|
||||
s = 0.0f;
|
||||
for( k = l; k < rows; k++ ) s += Q[k*cols+i] * Q[k*cols+j];
|
||||
f = ( s / Q[i*cols+i] ) * g;
|
||||
for( k = i; k < rows; k++ ) Q[k*cols+j] += f * Q[k*cols+i];
|
||||
}
|
||||
}
|
||||
for( j = i; j < rows; j++ ) Q[j*cols+i] *= g;
|
||||
}
|
||||
else
|
||||
{
|
||||
for( j = i; j < rows; j++ ) Q[j*cols+i] = 0.0f;
|
||||
}
|
||||
Q[i*cols+i] += 1.0f;
|
||||
}
|
||||
|
||||
|
||||
for( k = cols - 1; k >= 0; k-- )
|
||||
{
|
||||
for( iter = 1; iter <= MaxIterations; iter++ )
|
||||
{
|
||||
int jump;
|
||||
|
||||
for( l = k; l >= 0; l-- )
|
||||
{
|
||||
q = l - 1;
|
||||
if( fabsf( temp[l] ) + norm == norm ) { jump = 1; break; }
|
||||
if( fabsf( diag[q] ) + norm == norm ) { jump = 0; break; }
|
||||
}
|
||||
|
||||
if( !jump )
|
||||
{
|
||||
c = 0.0f;
|
||||
s = 1.0f;
|
||||
for( i = l; i <= k; i++ )
|
||||
{
|
||||
f = s * temp[i];
|
||||
temp[i] *= c;
|
||||
if( fabsf( f ) + norm == norm ) break;
|
||||
g = diag[i];
|
||||
h = svd_pythag( f, g );
|
||||
diag[i] = h;
|
||||
h = 1.0f / h;
|
||||
c = g * h;
|
||||
s = -f * h;
|
||||
for( j = 0; j < rows; j++ )
|
||||
{
|
||||
y = Q[j*cols+q];
|
||||
z = Q[j*cols+i];
|
||||
Q[j*cols+q] = y * c + z * s;
|
||||
Q[j*cols+i] = z * c - y * s;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
z = diag[k];
|
||||
if( l == k )
|
||||
{
|
||||
if( z < 0.0f )
|
||||
{
|
||||
diag[k] = -z;
|
||||
for( j = 0; j < cols; j++ ) R[k*cols+j] *= -1.0f;
|
||||
}
|
||||
break;
|
||||
}
|
||||
if( iter >= MaxIterations ) return;
|
||||
x = diag[l];
|
||||
q = k - 1;
|
||||
y = diag[q];
|
||||
g = temp[q];
|
||||
h = temp[k];
|
||||
f = ( ( y - z ) * ( y + z ) + ( g - h ) * ( g + h ) ) / ( 2.0f * h * y );
|
||||
g = svd_pythag( f, 1.0f );
|
||||
f = ( ( x - z ) * ( x + z ) + h * ( ( y / ( f + SameSign( g, f ) ) ) - h ) ) / x;
|
||||
c = 1.0f;
|
||||
s = 1.0f;
|
||||
for( j = l; j <= q; j++ )
|
||||
{
|
||||
i = j + 1;
|
||||
g = temp[i];
|
||||
y = diag[i];
|
||||
h = s * g;
|
||||
g = c * g;
|
||||
z = svd_pythag( f, h );
|
||||
temp[j] = z;
|
||||
c = f / z;
|
||||
s = h / z;
|
||||
f = x * c + g * s;
|
||||
g = g * c - x * s;
|
||||
h = y * s;
|
||||
y = y * c;
|
||||
for( p = 0; p < cols; p++ )
|
||||
{
|
||||
x = R[j*cols+p];
|
||||
z = R[i*cols+p];
|
||||
R[j*cols+p] = x * c + z * s;
|
||||
R[i*cols+p] = z * c - x * s;
|
||||
}
|
||||
z = svd_pythag( f, h );
|
||||
diag[j] = z;
|
||||
if( z != 0.0f )
|
||||
{
|
||||
z = 1.0f / z;
|
||||
c = f * z;
|
||||
s = h * z;
|
||||
}
|
||||
f = c * g + s * y;
|
||||
x = c * y - s * g;
|
||||
for( p = 0; p < rows; p++ )
|
||||
{
|
||||
y = Q[p*cols+j];
|
||||
z = Q[p*cols+i];
|
||||
Q[p*cols+j] = y * c + z * s;
|
||||
Q[p*cols+i] = z * c - y * s;
|
||||
}
|
||||
}
|
||||
temp[l] = 0.0f;
|
||||
temp[k] = f;
|
||||
diag[k] = x;
|
||||
}
|
||||
}
|
||||
|
||||
// Sort the singular values into descending order.
|
||||
|
||||
for( i = 0; i < cols - 1; i++ )
|
||||
{
|
||||
float biggest = diag[i]; // Biggest singular value so far.
|
||||
int bindex = i; // The row/col it occurred in.
|
||||
for( j = i + 1; j < cols; j++ )
|
||||
{
|
||||
if( diag[j] > biggest )
|
||||
{
|
||||
biggest = diag[j];
|
||||
bindex = j;
|
||||
}
|
||||
}
|
||||
if( bindex != i ) // Need to swap rows and columns.
|
||||
{
|
||||
// Swap columns in Q.
|
||||
for (int j = 0; j < rows; ++j)
|
||||
swap(Q[j*cols+i], Q[j*cols+bindex]);
|
||||
|
||||
// Swap rows in R.
|
||||
for (int j = 0; j < rows; ++j)
|
||||
swap(R[i*cols+j], R[bindex*cols+j]);
|
||||
|
||||
// Swap elements in diag.
|
||||
swap(diag[i], diag[bindex]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -23,6 +23,8 @@ namespace nv
|
||||
Vector3 computePrincipalComponent_EigenSolver(int n, const Vector3 * points);
|
||||
Vector3 computePrincipalComponent_EigenSolver(int n, const Vector3 * points, const float * weights, const Vector3 & metric);
|
||||
|
||||
Vector3 computePrincipalComponent_SVD(int n, const Vector3 * points);
|
||||
|
||||
Plane bestPlane(int n, const Vector3 * points);
|
||||
bool isPlanar(int n, const Vector3 * points, float epsilon = NV_EPSILON);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user