1 Commits
2.0.5 ... 2.0.0

Author SHA1 Message Date
a1b655d0d5 rename 2.0 tag to 2.0.0 2008-02-28 07:55:19 +00:00
75 changed files with 4745 additions and 4466 deletions

View File

@ -1,4 +1,4 @@
CMAKE_MINIMUM_REQUIRED(VERSION 2.6.0)
CMAKE_MINIMUM_REQUIRED(VERSION 2.4.0)
PROJECT(NV)
ENABLE_TESTING()
@ -16,13 +16,6 @@ MESSAGE(STATUS "Setting optimal options")
MESSAGE(STATUS " Processor: ${NV_SYSTEM_PROCESSOR}")
MESSAGE(STATUS " Compiler Flags: ${CMAKE_CXX_FLAGS}")
IF(NVTT_SHARED)
SET(NVCORE_SHARED TRUE)
SET(NVMATH_SHARED TRUE)
SET(NVIMAGE_SHARED TRUE)
ENDIF(NVTT_SHARED)
ADD_SUBDIRECTORY(src)
IF(WIN32)

View File

@ -1,38 +1,3 @@
NVIDIA Texture Tools version 2.0.5
* Fix error in single color compressor. Fixes issue 66.
* Detect mismatch between CUDA runtime and driver, and disable CUDA in that case.
* Fix cmake files when compiling NVTT as a shared library.
* When linking nvtt dynamically on unix, link all libraries dynamically.
* Select fastest CUDA device.
NVIDIA Texture Tools version 2.0.4
* Fix error in RGB format output; reported by jonsoh. See issue 49.
* Added support RGB format dithering by jonsoh. Fixes issue 50 and 51.
* Prevent infinite loop in indexMirror when width equal 1. Fixes issue 65.
* Implement general scale filter, including upsampling.
NVIDIA Texture Tools version 2.0.3
* More accurate DXT3 compressor. Fixes issue 38.
* Remove legacy compressors. Fix issue 34.
* Check for single color in all compressors. Fixes issue 43.
* Fix error in fast downsample filter, reported by Noel Llopis.
NVIDIA Texture Tools version 2.0.2
* Fix copy ctor error reported by Richard Sim.
* Fix indexMirror error reported by Chris Lambert.
* Fix vc8 post build command, reported by Richard Sim.
* Fix RGBA modes with less than 32 bpp by Viktor Linder.
* Fix alpha decompression by Amorilia. See issue 40.
* Avoid default-initialized constructors for POD types, reported by Jim Tilander.
* Add single color compresor for DXT1a.
* Set swizzle code to ATI2 files. See issue 41.
NVIDIA Texture Tools version 2.0.1
* Fix memory leaks.
* Pre-allocate device memory for CUDA compressor.
* Add single color compressor. Thanks to Amir Ebrahimi.
* Better CUDA error checking.
NVIDIA Texture Tools version 2.0.0
* Fixed PSNR formula in nvimgdiff.
* Added support for arbitrary RGB formats.

View File

@ -2,7 +2,7 @@
--------------------------------------------------------------------------------
NVIDIA Texture Tools
README.txt
Version 2.0
Version 2.0.0
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------

View File

@ -1 +1 @@
2.0.5
2.0.0

View File

@ -46,9 +46,9 @@ FIND_LIBRARY (CUDA_RUNTIME_LIBRARY
DOC "The CUDA runtime library")
IF (CUDA_INCLUDE_PATH AND CUDA_RUNTIME_LIBRARY)
SET (CUDA_FOUND TRUE)
SET (CUDA_FOUND 1 CACHE STRING "Set to 1 if CUDA is found, 0 otherwise")
ELSE (CUDA_INCLUDE_PATH AND CUDA_RUNTIME_LIBRARY)
SET (CUDA_FOUND FALSE)
SET (CUDA_FOUND 0 CACHE STRING "Set to 1 if CUDA is found, 0 otherwise")
ENDIF (CUDA_INCLUDE_PATH AND CUDA_RUNTIME_LIBRARY)
SET (CUDA_LIBRARIES ${CUDA_RUNTIME_LIBRARY})
@ -57,7 +57,7 @@ MARK_AS_ADVANCED (CUDA_FOUND CUDA_COMPILER CUDA_RUNTIME_LIBRARY)
#SET(CUDA_OPTIONS "-ncfe")
SET(CUDA_OPTIONS "--host-compilation=C")
SET(CUDA_OPTIONS "")
IF (CUDA_EMULATION)
SET (CUDA_OPTIONS "${CUDA_OPTIONS} -deviceemu")

2
configure vendored
View File

@ -53,7 +53,7 @@ echo "-- Configuring nvidia-texture-tools "`cat VERSION`
mkdir -p ./build
cd ./build
$CMAKE .. -DNVTT_SHARED=1 -DCMAKE_BUILD_TYPE=$build -DCMAKE_INSTALL_PREFIX=$prefix -G "Unix Makefiles" || exit 1
$CMAKE .. -DCMAKE_BUILD_TYPE=$build -DCMAKE_INSTALL_PREFIX=$prefix -G "Unix Makefiles" || exit 1
cd ..
echo ""

0
gnuwin32/bin/libpng12.dll Executable file → Normal file
View File

View File

@ -278,7 +278,6 @@
AdditionalDependencies="libpng.lib jpeg.lib tiff.lib"
OutputFile="$(SolutionDir)\$(ConfigurationName).$(PlatformName)\bin\$(ProjectName).exe"
AdditionalLibraryDirectories="..\..\..\gnuwin32\lib"
LinkTimeCodeGeneration="1"
TargetMachine="17"
/>
<Tool

View File

@ -281,10 +281,6 @@
RelativePath="..\..\..\src\nvcore\Debug.cpp"
>
</File>
<File
RelativePath="..\..\..\src\nvcore\Library.cpp"
>
</File>
<File
RelativePath="..\..\..\src\nvcore\Memory.cpp"
>
@ -319,10 +315,6 @@
RelativePath="..\..\..\src\nvcore\DefsVcWin32.h"
>
</File>
<File
RelativePath="..\..\..\src\nvcore\Library.h"
>
</File>
<File
RelativePath="..\..\..\src\nvcore\Memory.h"
>
@ -335,10 +327,6 @@
RelativePath="..\..\..\src\nvcore\nvcore.h"
>
</File>
<File
RelativePath="..\..\..\src\nvcore\Ptr.h"
>
</File>
<File
RelativePath="..\..\..\src\nvcore\StrLib.h"
>

View File

@ -277,7 +277,6 @@
AdditionalDependencies="libpng.lib jpeg.lib tiff.lib"
OutputFile="$(SolutionDir)\$(ConfigurationName).$(PlatformName)\bin\$(ProjectName).exe"
AdditionalLibraryDirectories="..\..\..\gnuwin32\lib"
LinkTimeCodeGeneration="1"
TargetMachine="17"
/>
<Tool

View File

@ -355,10 +355,6 @@
RelativePath="..\..\..\src\nvimage\nvimage.h"
>
</File>
<File
RelativePath="..\..\..\src\nvimage\PixelFormat.h"
>
</File>
<File
RelativePath="..\..\..\src\nvimage\PsdFile.h"
>

View File

@ -278,7 +278,11 @@
UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
>
<File
RelativePath="..\..\..\src\nvmath\Plane.cpp"
RelativePath="..\..\..\src\nvmath\Eigen.cpp"
>
</File>
<File
RelativePath="..\..\..\src\nvmath\Fitting.cpp"
>
</File>
</Filter>
@ -296,11 +300,15 @@
>
</File>
<File
RelativePath="..\..\..\src\nvmath\Matrix.h"
RelativePath="..\..\..\src\nvmath\Eigen.h"
>
</File>
<File
RelativePath="..\..\..\src\nvmath\Plane.h"
RelativePath="..\..\..\src\nvmath\Fitting.h"
>
</File>
<File
RelativePath="..\..\..\src\nvmath\Matrix.h"
>
</File>
<File

View File

@ -53,8 +53,8 @@ END
//
VS_VERSION_INFO VERSIONINFO
FILEVERSION 2,0,5,0
PRODUCTVERSION 2,0,5,0
FILEVERSION 2,0,0,0
PRODUCTVERSION 2,0,0,0
FILEFLAGSMASK 0x17L
#ifdef _DEBUG
FILEFLAGS 0x1L
@ -71,12 +71,12 @@ BEGIN
BEGIN
VALUE "CompanyName", "NVIDIA Corporation"
VALUE "FileDescription", "NVIDIA Texture Tools Dynamic Link Library"
VALUE "FileVersion", "2, 0, 5, 0"
VALUE "FileVersion", "2, 0, 0, 0"
VALUE "InternalName", "nvtt"
VALUE "LegalCopyright", "Copyright (C) 2007"
VALUE "OriginalFilename", "nvtt.dll"
VALUE "ProductName", "NVIDIA Texture Tools Dynamic Link Library"
VALUE "ProductVersion", "2, 0, 5, 0"
VALUE "ProductVersion", "2, 0, 0, 0"
END
END
BLOCK "VarFileInfo"

View File

@ -96,8 +96,6 @@
/>
<Tool
Name="VCPostBuildEventTool"
Description="Copying header files..."
CommandLine="xcopy /y /f /i &quot;$(SolutionDir)\..\..\src\nvtt\nvtt*.h&quot; &quot;$(SolutionDir)\$(ConfigurationName).$(PlatformName)\include\nvtt\&quot;"
/>
</Configuration>
<Configuration
@ -260,8 +258,6 @@
/>
<Tool
Name="VCPostBuildEventTool"
Description="Copying header files..."
CommandLine="xcopy /y /f /i &quot;$(SolutionDir)\..\..\src\nvtt\nvtt*.h&quot; &quot;$(SolutionDir)\$(ConfigurationName).$(PlatformName)\include\nvtt\&quot;"
/>
</Configuration>
<Configuration
@ -424,8 +420,6 @@
/>
<Tool
Name="VCPostBuildEventTool"
Description="Copying header files..."
CommandLine="xcopy /y /f /i &quot;$(SolutionDir)\..\..\src\nvtt\nvtt*.h&quot; &quot;$(SolutionDir)\$(ConfigurationName).$(PlatformName)\include\nvtt\&quot;"
/>
</Configuration>
<Configuration
@ -584,8 +578,6 @@
/>
<Tool
Name="VCPostBuildEventTool"
Description="Copying header files..."
CommandLine="xcopy /y /f /i &quot;$(SolutionDir)\..\..\src\nvtt\nvtt*.h&quot; &quot;$(SolutionDir)\$(ConfigurationName).$(PlatformName)\include\nvtt\&quot;"
/>
</Configuration>
<Configuration
@ -691,7 +683,7 @@
>
<Tool
Name="VCCustomBuildTool"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -m32 -ccbin &quot;$(VCInstallDir)bin&quot; -c -D_DEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/Od,/Zi,/RTC1,/MDd -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -keep -ccbin &quot;$(VCInstallDir)bin&quot; -c -D_DEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/Od,/Zi,/RTC1,/MDd -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
AdditionalDependencies="CudaMath.h"
Outputs="$(IntDir)\$(InputName).obj"
/>
@ -701,7 +693,7 @@
>
<Tool
Name="VCCustomBuildTool"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -m64 -ccbin &quot;$(VCInstallDir)bin&quot; -c -D_DEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/Od,/Zi,/RTC1,/MDd -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -keep -ccbin &quot;$(VCInstallDir)bin&quot; -c -D_DEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/Od,/Zi,/RTC1,/MDd -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
AdditionalDependencies="CudaMath.h"
Outputs="$(IntDir)\$(InputName).obj"
/>
@ -711,7 +703,7 @@
>
<Tool
Name="VCCustomBuildTool"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -m32 -ccbin &quot;$(VCInstallDir)bin&quot; -c -DNDEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MD -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -keep -ccbin &quot;$(VCInstallDir)bin&quot; -c -DNDEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MD -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
AdditionalDependencies="CudaMath.h"
Outputs="$(IntDir)\$(InputName).obj"
/>
@ -721,7 +713,7 @@
>
<Tool
Name="VCCustomBuildTool"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -m64 -ccbin &quot;$(VCInstallDir)bin&quot; -c -DNDEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MD -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -keep -ccbin &quot;$(VCInstallDir)bin&quot; -c -DNDEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MD -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
AdditionalDependencies="CudaMath.h"
Outputs="$(IntDir)\$(InputName).obj"
/>
@ -849,6 +841,10 @@
RelativePath="..\..\..\src\nvtt\cuda\CudaUtils.cpp"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\FastCompressDXT.cpp"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\InputOptions.cpp"
>
@ -861,10 +857,6 @@
RelativePath="..\..\..\src\nvtt\nvtt_wrapper.cpp"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\OptimalCompressDXT.cpp"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\OutputOptions.cpp"
>
@ -911,6 +903,10 @@
RelativePath="..\..\..\src\nvtt\cuda\CudaUtils.h"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\FastCompressDXT.h"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\InputOptions.h"
>
@ -923,10 +919,6 @@
RelativePath="..\..\..\src\nvtt\nvtt_wrapper.h"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\OptimalCompressDXT.h"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\OutputOptions.h"
>

View File

@ -50,7 +50,6 @@ ENDIF(CG_FOUND)
# CUDA
INCLUDE(${NV_CMAKE_DIR}/FindCUDA.cmake)
IF(CUDA_FOUND)
SET(HAVE_CUDA ${CUDA_FOUND} CACHE BOOL "Set to TRUE if CUDA is found, FALSE otherwise")
MESSAGE(STATUS "Looking for CUDA - found")
ELSE(CUDA_FOUND)
MESSAGE(STATUS "Looking for CUDA - not found")
@ -59,7 +58,7 @@ ENDIF(CUDA_FOUND)
# Maya
INCLUDE(${NV_CMAKE_DIR}/FindMaya.cmake)
IF(MAYA_FOUND)
SET(HAVE_MAYA ${MAYA_FOUND} CACHE BOOL "Set to TRUE if Maya is found, FALSE otherwise")
SET(HAVE_MAYA MAYA_FOUND)
MESSAGE(STATUS "Looking for Maya - found")
ELSE(MAYA_FOUND)
MESSAGE(STATUS "Looking for Maya - not found")
@ -68,7 +67,7 @@ ENDIF(MAYA_FOUND)
# JPEG
INCLUDE(FindJPEG)
IF(JPEG_FOUND)
SET(HAVE_JPEG ${JPEG_FOUND} CACHE BOOL "Set to TRUE if JPEG is found, FALSE otherwise")
SET(HAVE_JPEG JPEG_FOUND)
MESSAGE(STATUS "Looking for JPEG - found")
ELSE(JPEG_FOUND)
MESSAGE(STATUS "Looking for JPEG - not found")
@ -77,7 +76,7 @@ ENDIF(JPEG_FOUND)
# PNG
INCLUDE(FindPNG)
IF(PNG_FOUND)
SET(HAVE_PNG ${PNG_FOUND} CACHE BOOL "Set to TRUE if PNG is found, FALSE otherwise")
SET(HAVE_PNG PNG_FOUND)
MESSAGE(STATUS "Looking for PNG - found")
ELSE(PNG_FOUND)
MESSAGE(STATUS "Looking for PNG - not found")
@ -86,7 +85,7 @@ ENDIF(PNG_FOUND)
# TIFF
INCLUDE(FindTIFF)
IF(TIFF_FOUND)
SET(HAVE_TIFF ${TIFF_FOUND} CACHE BOOL "Set to TRUE if TIFF is found, FALSE otherwise")
SET(HAVE_TIFF TIFF_FOUND)
MESSAGE(STATUS "Looking for TIFF - found")
ELSE(TIFF_FOUND)
MESSAGE(STATUS "Looking for TIFF - not found")
@ -95,7 +94,7 @@ ENDIF(TIFF_FOUND)
# OpenEXR
INCLUDE(${NV_CMAKE_DIR}/FindOpenEXR.cmake)
IF(OPENEXR_FOUND)
SET(HAVE_OPENEXR ${OPENEXR_FOUND} CACHE BOOL "Set to TRUE if OpenEXR is found, FALSE otherwise")
SET(HAVE_OPENEXR OPENEXR_FOUND)
MESSAGE(STATUS "Looking for OpenEXR - found")
ELSE(OPENEXR_FOUND)
MESSAGE(STATUS "Looking for OpenEXR - not found")

View File

@ -18,20 +18,16 @@ SET(CORE_SRCS
TextReader.cpp
TextWriter.h
TextWriter.cpp
Tokenizer.h
Tokenizer.cpp
Radix.h
Radix.cpp
Library.h
Library.cpp)
Radix.cpp)
INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})
# targets
ADD_DEFINITIONS(-DNVCORE_EXPORTS)
IF(UNIX)
SET(LIBS ${LIBS} ${CMAKE_DL_LIBS})
ENDIF(UNIX)
IF(NVCORE_SHARED)
ADD_LIBRARY(nvcore SHARED ${CORE_SRCS})
ELSE(NVCORE_SHARED)

View File

@ -446,7 +446,7 @@ namespace nv
// Call default constructors
for( i = old_size; i < new_size; i++ ) {
new(m_buffer+i) T; // placement new
new(m_buffer+i) T(); // placement new
}
}

View File

@ -28,7 +28,7 @@
#endif
#if NV_OS_LINUX && defined(HAVE_EXECINFO_H)
# include <execinfo.h> // backtrace
# include <execinfo.h>
# if NV_CC_GNUC // defined(HAVE_CXXABI_H)
# include <cxxabi.h>
# endif
@ -39,13 +39,6 @@
# include <sys/types.h>
# include <sys/sysctl.h> // sysctl
# include <ucontext.h>
# undef HAVE_EXECINFO_H
# if defined(HAVE_EXECINFO_H) // only after OSX 10.5
# include <execinfo.h> // backtrace
# if NV_CC_GNUC // defined(HAVE_CXXABI_H)
# include <cxxabi.h>
# endif
# endif
#endif
#include <stdexcept> // std::runtime_error
@ -81,9 +74,7 @@ namespace
// TODO write minidump
static LONG WINAPI nvTopLevelFilter( struct _EXCEPTION_POINTERS * pExceptionInfo)
{
NV_UNUSED(pExceptionInfo);
static LONG WINAPI nvTopLevelFilter( struct _EXCEPTION_POINTERS *pExceptionInfo ) {
/* BOOL (WINAPI * Dump) (HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION, PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION );
AutoString dbghelp_path(512);
@ -135,10 +126,6 @@ namespace
#if defined(HAVE_EXECINFO_H) // NV_OS_LINUX
static bool nvHasStackTrace() {
return backtrace != NULL;
}
static void nvPrintStackTrace(void * trace[], int size, int start=0) {
char ** string_array = backtrace_symbols(trace, size);
@ -177,26 +164,13 @@ namespace
static void * callerAddress(void * secret)
{
# if NV_OS_DARWIN
# if defined(_STRUCT_MCONTEXT)
# if NV_CPU_PPC
ucontext_t * ucp = (ucontext_t *)secret;
return (void *) ucp->uc_mcontext->__ss.__srr0;
# elif NV_CPU_X86
ucontext_t * ucp = (ucontext_t *)secret;
return (void *) ucp->uc_mcontext->__ss.__eip;
# endif
# else
# if NV_CPU_PPC
# if NV_OS_DARWIN && NV_CPU_PPC
ucontext_t * ucp = (ucontext_t *)secret;
return (void *) ucp->uc_mcontext->ss.srr0;
# elif NV_CPU_X86
# elif NV_OS_DARWIN && NV_CPU_X86
ucontext_t * ucp = (ucontext_t *)secret;
return (void *) ucp->uc_mcontext->ss.eip;
# endif
# endif
# else
# if NV_CPU_X86_64
# elif NV_CPU_X86_64
// #define REG_RIP REG_INDEX(rip) // seems to be 16
ucontext_t * ucp = (ucontext_t *)secret;
return (void *)ucp->uc_mcontext.gregs[REG_RIP];
@ -206,7 +180,8 @@ namespace
# elif NV_CPU_PPC
ucontext_t * ucp = (ucontext_t *)secret;
return (void *) ucp->uc_mcontext.regs->nip;
# endif
# else
return NULL;
# endif
// How to obtain the instruction pointers in different platforms, from mlton's source code.
@ -251,8 +226,7 @@ namespace
}
# if defined(HAVE_EXECINFO_H)
if (nvHasStackTrace()) // in case of weak linking
{
void * trace[64];
int size = backtrace(trace, 64);
@ -262,7 +236,7 @@ namespace
}
nvPrintStackTrace(trace, size, 1);
}
# endif // defined(HAVE_EXECINFO_H)
exit(0);
@ -397,12 +371,9 @@ namespace
# endif
# if defined(HAVE_EXECINFO_H)
if (nvHasStackTrace())
{
void * trace[64];
int size = backtrace(trace, 64);
nvPrintStackTrace(trace, size, 3);
}
# endif
// Exit cleanly.
@ -449,12 +420,9 @@ void NV_CDECL nvDebug(const char *msg, ...)
void debug::dumpInfo()
{
#if !NV_OS_WIN32 && defined(HAVE_SIGNAL_H) && defined(HAVE_EXECINFO_H)
if (nvHasStackTrace())
{
void * trace[64];
int size = backtrace(trace, 64);
nvPrintStackTrace(trace, size, 1);
}
#endif
}

View File

@ -2,7 +2,8 @@
#error "Do not include this file directly."
#endif
#include <stdint.h> // uint8_t, int8_t, ...
#include <stdlib.h> // uint8_t, int8_t, ...
// Function linkage
#define DLL_IMPORT

View File

@ -19,9 +19,7 @@
// Set standard function names.
#define snprintf _snprintf
#if _MSC_VER < 1500
# define vsnprintf _vsnprintf
#endif
#define vsnprintf _vsnprintf
#define vsscanf _vsscanf
#define chdir _chdir
#define getcwd _getcwd

View File

@ -1,41 +0,0 @@
#include "Library.h"
#include "Debug.h"
#if NV_OS_WIN32
#define WIN32_LEAN_AND_MEAN
#define VC_EXTRALEAN
#include <windows.h>
#else
#include <dlfcn.h>
#endif
void * nvLoadLibrary(const char * name)
{
#if NV_OS_WIN32
return (void *)LoadLibraryExA( name, NULL, 0 );
#else
return dlopen(name, RTLD_LAZY);
#endif
}
void nvUnloadLibrary(void * handle)
{
nvDebugCheck(handle != NULL);
#if NV_OS_WIN32
FreeLibrary((HMODULE)handle);
#else
dlclose(handle);
#endif
}
void * nvBindSymbol(void * handle, const char * symbol)
{
#if NV_OS_WIN32
return (void *)GetProcAddress((HMODULE)handle, symbol);
#else
return (void *)dlsym(handle, symbol);
#endif
}

View File

@ -1,50 +0,0 @@
// This code is in the public domain -- castano@gmail.com
#ifndef NV_CORE_LIBRARY_H
#define NV_CORE_LIBRARY_H
#include <nvcore/nvcore.h>
#if NV_OS_WIN32
#define LIBRARY_NAME(name) #name ".dll"
#elif NV_OS_DARWIN
#define NV_LIBRARY_NAME(name) "lib" #name ".dylib"
#else
#define NV_LIBRARY_NAME(name) "lib" #name ".so"
#endif
NVCORE_API void * nvLoadLibrary(const char * name);
NVCORE_API void nvUnloadLibrary(void * lib);
NVCORE_API void * nvBindSymbol(void * lib, const char * symbol);
class NVCORE_CLASS Library
{
public:
Library(const char * name)
{
handle = nvLoadLibrary(name);
}
~Library()
{
if (isValid())
{
nvUnloadLibrary(handle);
}
}
bool isValid() const
{
return handle != NULL;
}
void * bindSymbol(const char * symbol)
{
return nvBindSymbol(handle, symbol);
}
private:
void * handle;
};
#endif // NV_CORE_LIBRARY_H

View File

@ -18,8 +18,6 @@ void * nv::mem::malloc(size_t size)
void * nv::mem::malloc(size_t size, const char * file, int line)
{
NV_UNUSED(file);
NV_UNUSED(line);
return ::malloc(size);
}

View File

@ -24,7 +24,7 @@ __forceinline void nvPrefetch(const void * mem)
#else // NV_CC_MSVC
// do nothing in other case.
#define nvPrefetch(ptr)
#define piPrefetch(ptr)
#endif // NV_CC_MSVC

View File

@ -43,12 +43,9 @@ public:
/** Delete owned pointer and assign new one. */
void operator=( T * p ) {
if (p != m_ptr)
{
delete m_ptr;
m_ptr = p;
}
}
/** Member access. */
T * operator -> () const {
@ -252,14 +249,14 @@ public:
/** -> operator. */
BaseClass * operator -> () const
{
nvCheck( m_ptr != NULL );
piCheck( m_ptr != NULL );
return m_ptr;
}
/** * operator. */
BaseClass & operator*() const
{
nvCheck( m_ptr != NULL );
piCheck( m_ptr != NULL );
return *m_ptr;
}

View File

@ -14,7 +14,7 @@ namespace nv
uint strHash(const char * str, uint h) NV_PURE;
/// String hash based on Bernstein's hash.
/// String hash vased on Bernstein's hash.
inline uint strHash(const char * data, uint h = 5381)
{
uint i;
@ -212,13 +212,10 @@ namespace nv
/// Implement value semantics.
String & operator=( const String & str )
{
if (str.data != data)
{
release();
data = str.data;
addRef();
}
return *this;
}

View File

@ -110,19 +110,6 @@ void ColorBlock::splatY()
}
}
/// Returns true if the block has a single color.
bool ColorBlock::isSingleColor() const
{
for(int i = 1; i < 16; i++)
{
if (m_color[0] != m_color[i])
{
return false;
}
}
return true;
}
/// Count number of unique colors in this color block.
uint ColorBlock::countUniqueColors() const
@ -307,6 +294,15 @@ void ColorBlock::boundsRangeAlpha(Color32 * start, Color32 * end) const
}
void ColorBlock::bestFitRange(Color32 * start, Color32 * end) const
{
nvDebugCheck(start != NULL);
nvDebugCheck(end != NULL);
Vector3 axis = bestFitLine().direction();
computeRange(axis, start, end);
}
/// Sort colors by abosolute value in their 16 bit representation.
void ColorBlock::sortColorsByAbsoluteValue()
{
@ -384,6 +380,19 @@ void ColorBlock::sortColors(const Vector3 & axis)
}
/// Get least squares line that best approxiamtes the points of the color block.
Line3 ColorBlock::bestFitLine() const
{
Array<Vector3> pointArray(16);
for(int i = 0; i < 16; i++) {
pointArray.append(Vector3(m_color[i].r, m_color[i].g, m_color[i].b));
}
return Fit::bestLine(pointArray);
}
/// Get the volume of the color block.
float ColorBlock::volume() const
{

View File

@ -4,6 +4,7 @@
#define NV_IMAGE_COLORBLOCK_H
#include <nvmath/Color.h>
#include <nvmath/Fitting.h> // Line3
namespace nv
{
@ -23,7 +24,6 @@ namespace nv
void splatX();
void splatY();
bool isSingleColor() const;
uint countUniqueColors() const;
Color32 averageColor() const;
bool hasAlpha() const;
@ -32,13 +32,16 @@ namespace nv
void luminanceRange(Color32 * start, Color32 * end) const;
void boundsRange(Color32 * start, Color32 * end) const;
void boundsRangeAlpha(Color32 * start, Color32 * end) const;
void bestFitRange(Color32 * start, Color32 * end) const;
void sortColorsByAbsoluteValue();
void computeRange(const Vector3 & axis, Color32 * start, Color32 * end) const;
void sortColors(const Vector3 & axis);
Line3 bestFitLine() const;
float volume() const;
Line3 diameterLine() const;
// Accessors
const Color32 * colors() const;

View File

@ -54,10 +54,6 @@ namespace
static const uint FOURCC_ATI1 = MAKEFOURCC('A', 'T', 'I', '1');
static const uint FOURCC_ATI2 = MAKEFOURCC('A', 'T', 'I', '2');
static const uint FOURCC_A2XY = MAKEFOURCC('A', '2', 'X', 'Y');
static const uint FOURCC_DX10 = MAKEFOURCC('D', 'X', '1', '0');
// 32 bit RGB formats.
static const uint D3DFMT_R8G8B8 = 20;
static const uint D3DFMT_A8R8G8B8 = 21;
@ -257,144 +253,6 @@ namespace
D3D10_RESOURCE_DIMENSION_TEXTURE3D = 4,
};
const char * getDxgiFormatString(DXGI_FORMAT dxgiFormat)
{
#define CASE(format) case DXGI_FORMAT_##format: return #format
switch(dxgiFormat)
{
CASE(UNKNOWN);
CASE(R32G32B32A32_TYPELESS);
CASE(R32G32B32A32_FLOAT);
CASE(R32G32B32A32_UINT);
CASE(R32G32B32A32_SINT);
CASE(R32G32B32_TYPELESS);
CASE(R32G32B32_FLOAT);
CASE(R32G32B32_UINT);
CASE(R32G32B32_SINT);
CASE(R16G16B16A16_TYPELESS);
CASE(R16G16B16A16_FLOAT);
CASE(R16G16B16A16_UNORM);
CASE(R16G16B16A16_UINT);
CASE(R16G16B16A16_SNORM);
CASE(R16G16B16A16_SINT);
CASE(R32G32_TYPELESS);
CASE(R32G32_FLOAT);
CASE(R32G32_UINT);
CASE(R32G32_SINT);
CASE(R32G8X24_TYPELESS);
CASE(D32_FLOAT_S8X24_UINT);
CASE(R32_FLOAT_X8X24_TYPELESS);
CASE(X32_TYPELESS_G8X24_UINT);
CASE(R10G10B10A2_TYPELESS);
CASE(R10G10B10A2_UNORM);
CASE(R10G10B10A2_UINT);
CASE(R11G11B10_FLOAT);
CASE(R8G8B8A8_TYPELESS);
CASE(R8G8B8A8_UNORM);
CASE(R8G8B8A8_UNORM_SRGB);
CASE(R8G8B8A8_UINT);
CASE(R8G8B8A8_SNORM);
CASE(R8G8B8A8_SINT);
CASE(R16G16_TYPELESS);
CASE(R16G16_FLOAT);
CASE(R16G16_UNORM);
CASE(R16G16_UINT);
CASE(R16G16_SNORM);
CASE(R16G16_SINT);
CASE(R32_TYPELESS);
CASE(D32_FLOAT);
CASE(R32_FLOAT);
CASE(R32_UINT);
CASE(R32_SINT);
CASE(R24G8_TYPELESS);
CASE(D24_UNORM_S8_UINT);
CASE(R24_UNORM_X8_TYPELESS);
CASE(X24_TYPELESS_G8_UINT);
CASE(R8G8_TYPELESS);
CASE(R8G8_UNORM);
CASE(R8G8_UINT);
CASE(R8G8_SNORM);
CASE(R8G8_SINT);
CASE(R16_TYPELESS);
CASE(R16_FLOAT);
CASE(D16_UNORM);
CASE(R16_UNORM);
CASE(R16_UINT);
CASE(R16_SNORM);
CASE(R16_SINT);
CASE(R8_TYPELESS);
CASE(R8_UNORM);
CASE(R8_UINT);
CASE(R8_SNORM);
CASE(R8_SINT);
CASE(A8_UNORM);
CASE(R1_UNORM);
CASE(R9G9B9E5_SHAREDEXP);
CASE(R8G8_B8G8_UNORM);
CASE(G8R8_G8B8_UNORM);
CASE(BC1_TYPELESS);
CASE(BC1_UNORM);
CASE(BC1_UNORM_SRGB);
CASE(BC2_TYPELESS);
CASE(BC2_UNORM);
CASE(BC2_UNORM_SRGB);
CASE(BC3_TYPELESS);
CASE(BC3_UNORM);
CASE(BC3_UNORM_SRGB);
CASE(BC4_TYPELESS);
CASE(BC4_UNORM);
CASE(BC4_SNORM);
CASE(BC5_TYPELESS);
CASE(BC5_UNORM);
CASE(BC5_SNORM);
CASE(B5G6R5_UNORM);
CASE(B5G5R5A1_UNORM);
CASE(B8G8R8A8_UNORM);
CASE(B8G8R8X8_UNORM);
default:
return "UNKNOWN";
}
#undef CASE
}
const char * getD3d10ResourceDimensionString(D3D10_RESOURCE_DIMENSION resourceDimension)
{
switch(resourceDimension)
{
default:
case D3D10_RESOURCE_DIMENSION_UNKNOWN: return "UNKNOWN";
case D3D10_RESOURCE_DIMENSION_BUFFER: return "BUFFER";
case D3D10_RESOURCE_DIMENSION_TEXTURE1D: return "TEXTURE1D";
case D3D10_RESOURCE_DIMENSION_TEXTURE2D: return "TEXTURE2D";
case D3D10_RESOURCE_DIMENSION_TEXTURE3D: return "TEXTURE3D";
}
}
} // namespace
namespace nv
@ -532,7 +390,7 @@ DDSHeader::DDSHeader()
// Store version information on the reserved header attributes.
this->reserved[9] = MAKEFOURCC('N', 'V', 'T', 'T');
this->reserved[10] = (2 << 16) | (0 << 8) | (5); // major.minor.revision
this->reserved[10] = (0 << 16) | (9 << 8) | (5); // major.minor.revision
this->pf.size = 32;
this->pf.flags = 0;
@ -636,16 +494,7 @@ void DDSHeader::setFourCC(uint8 c0, uint8 c1, uint8 c2, uint8 c3)
// set fourcc pixel format.
this->pf.flags = DDPF_FOURCC;
this->pf.fourcc = MAKEFOURCC(c0, c1, c2, c3);
if (this->pf.fourcc == FOURCC_ATI2)
{
this->pf.bitcount = FOURCC_A2XY;
}
else
{
this->pf.bitcount = 0;
}
this->pf.rmask = 0;
this->pf.gmask = 0;
this->pf.bmask = 0;
@ -681,9 +530,9 @@ void DDSHeader::setPixelFormat(uint bitcount, uint rmask, uint gmask, uint bmask
nvCheck(bitcount > 0 && bitcount <= 32);
// Align to 8.
if (bitcount <= 8) bitcount = 8;
else if (bitcount <= 16) bitcount = 16;
else if (bitcount <= 24) bitcount = 24;
if (bitcount < 8) bitcount = 8;
else if (bitcount < 16) bitcount = 16;
else if (bitcount < 24) bitcount = 24;
else bitcount = 32;
this->pf.fourcc = 0; //findD3D9Format(bitcount, rmask, gmask, bmask, amask);
@ -696,8 +545,7 @@ void DDSHeader::setPixelFormat(uint bitcount, uint rmask, uint gmask, uint bmask
void DDSHeader::setDX10Format(uint format)
{
//this->pf.flags = 0;
this->pf.fourcc = FOURCC_DX10;
this->pf.flags = 0;
this->header10.dxgiFormat = format;
}
@ -745,8 +593,7 @@ void DDSHeader::swapBytes()
bool DDSHeader::hasDX10Header() const
{
return this->pf.fourcc == FOURCC_DX10; // @@ This is according to AMD
//return this->pf.flags == 0; // @@ This is according to MS
return this->pf.flags == 0;
}
@ -776,7 +623,7 @@ bool DirectDrawSurface::isValid() const
return false;
}
const uint required = (DDSD_WIDTH|DDSD_HEIGHT/*|DDSD_CAPS|DDSD_PIXELFORMAT*/);
const uint required = (DDSD_WIDTH|DDSD_HEIGHT|DDSD_CAPS|DDSD_PIXELFORMAT);
if( (header.flags & required) != required ) {
return false;
}
@ -796,11 +643,6 @@ bool DirectDrawSurface::isSupported() const
{
nvDebugCheck(isValid());
if (header.hasDX10Header())
{
}
else
{
if (header.pf.flags & DDPF_FOURCC)
{
if (header.pf.fourcc != FOURCC_DXT1 &&
@ -836,7 +678,6 @@ bool DirectDrawSurface::isSupported() const
// @@ 3D textures not supported yet.
return false;
}
}
return true;
}
@ -871,40 +712,16 @@ uint DirectDrawSurface::depth() const
else return 1;
}
bool DirectDrawSurface::isTexture1D() const
{
nvDebugCheck(isValid());
if (header.hasDX10Header())
{
return header.header10.resourceDimension == D3D10_RESOURCE_DIMENSION_TEXTURE1D;
}
return false;
}
bool DirectDrawSurface::isTexture2D() const
{
nvDebugCheck(isValid());
if (header.hasDX10Header())
{
return header.header10.resourceDimension == D3D10_RESOURCE_DIMENSION_TEXTURE2D;
}
else
{
return !isTexture3D() && !isTextureCube();
}
}
bool DirectDrawSurface::isTexture3D() const
{
nvDebugCheck(isValid());
if (header.hasDX10Header())
{
return header.header10.resourceDimension == D3D10_RESOURCE_DIMENSION_TEXTURE3D;
}
else
{
return (header.caps.caps2 & DDSCAPS2_VOLUME) != 0;
}
}
bool DirectDrawSurface::isTextureCube() const
@ -913,12 +730,6 @@ bool DirectDrawSurface::isTextureCube() const
return (header.caps.caps2 & DDSCAPS2_CUBEMAP) != 0;
}
void DirectDrawSurface::setNormalFlag(bool b)
{
nvDebugCheck(isValid());
header.setNormalFlag(b);
}
void DirectDrawSurface::mipmap(Image * img, uint face, uint mipmap)
{
nvDebugCheck(isValid());
@ -969,13 +780,7 @@ void DirectDrawSurface::readLinearImage(Image * img)
uint byteCount = (header.pf.bitcount + 7) / 8;
// set image format: RGB or ARGB
// alpha channel exists if and only if the alpha mask is non-zero
if (header.pf.amask == 0)
{
img->setFormat(Image::Format_RGB);
}
else
if (header.pf.amask != 0)
{
img->setFormat(Image::Format_ARGB);
}
@ -1004,19 +809,6 @@ void DirectDrawSurface::readBlockImage(Image * img)
nvDebugCheck(stream != NULL);
nvDebugCheck(img != NULL);
// set image format: RGB or ARGB
if (header.pf.fourcc == FOURCC_RXGB ||
header.pf.fourcc == FOURCC_ATI1 ||
header.pf.fourcc == FOURCC_ATI2 ||
header.pf.flags & DDPF_NORMAL)
{
img->setFormat(Image::Format_RGB);
}
else
{
img->setFormat(Image::Format_ARGB);
}
const uint w = img->width();
const uint h = img->height();
@ -1252,23 +1044,8 @@ void DirectDrawSurface::printInfo() const
if (header.pf.flags & DDPF_ALPHAPREMULT) printf("\t\tDDPF_ALPHAPREMULT\n");
if (header.pf.flags & DDPF_NORMAL) printf("\t\tDDPF_NORMAL\n");
printf("\tFourCC: '%c%c%c%c'\n",
((header.pf.fourcc >> 0) & 0xFF),
((header.pf.fourcc >> 8) & 0xFF),
((header.pf.fourcc >> 16) & 0xFF),
((header.pf.fourcc >> 24) & 0xFF));
if ((header.pf.fourcc & DDPF_FOURCC) && (header.pf.bitcount != 0))
{
printf("\tSwizzle: '%c%c%c%c'\n",
(header.pf.bitcount >> 0) & 0xFF,
(header.pf.bitcount >> 8) & 0xFF,
(header.pf.bitcount >> 16) & 0xFF,
(header.pf.bitcount >> 24) & 0xFF);
}
else
{
printf("\tFourCC: '%c%c%c%c'\n", ((header.pf.fourcc >> 0) & 0xFF), ((header.pf.fourcc >> 8) & 0xFF), ((header.pf.fourcc >> 16) & 0xFF), ((header.pf.fourcc >> 24) & 0xFF));
printf("\tBit count: %d\n", header.pf.bitcount);
}
printf("\tRed mask: 0x%.8X\n", header.pf.rmask);
printf("\tGreen mask: 0x%.8X\n", header.pf.gmask);
printf("\tBlue mask: 0x%.8X\n", header.pf.bmask);
@ -1299,11 +1076,11 @@ void DirectDrawSurface::printInfo() const
printf("\tCaps 3: 0x%.8X\n", header.caps.caps3);
printf("\tCaps 4: 0x%.8X\n", header.caps.caps4);
if (header.hasDX10Header())
if (header.pf.flags == 0)
{
printf("DX10 Header:\n");
printf("\tDXGI Format: %u (%s)\n", header.header10.dxgiFormat, getDxgiFormatString((DXGI_FORMAT)header.header10.dxgiFormat));
printf("\tResource dimension: %u (%s)\n", header.header10.resourceDimension, getD3d10ResourceDimensionString((D3D10_RESOURCE_DIMENSION)header.header10.resourceDimension));
printf("\tDXGI Format: %u\n", header.header10.dxgiFormat);
printf("\tResource dimension: %u\n", header.header10.resourceDimension);
printf("\tMisc flag: %u\n", header.header10.miscFlag);
printf("\tArray size: %u\n", header.header10.arraySize);
}

View File

@ -119,13 +119,10 @@ namespace nv
uint width() const;
uint height() const;
uint depth() const;
bool isTexture1D() const;
bool isTexture2D() const;
bool isTexture3D() const;
bool isTextureCube() const;
void setNormalFlag(bool b);
void mipmap(Image * img, uint f, uint m);
// void mipmap(FloatImage * img, uint f, uint m);

View File

@ -244,7 +244,7 @@ SincFilter::SincFilter(float w) : Filter(w) {}
float SincFilter::evaluate(float x) const
{
return sincf(PI * x);
return 0.0f;
}
@ -541,17 +541,12 @@ void Kernel2::initBlendedSobel(const Vector4 & scale)
PolyphaseKernel::PolyphaseKernel(const Filter & f, uint srcLength, uint dstLength, int samples/*= 32*/)
{
nvCheck(srcLength >= dstLength); // @@ Upsampling not implemented!
nvDebugCheck(samples > 0);
float scale = float(dstLength) / float(srcLength);
const float scale = float(dstLength) / float(srcLength);
const float iscale = 1.0f / scale;
if (scale > 1) {
// Upsampling.
samples = 1;
scale = 1;
}
m_length = dstLength;
m_width = f.width() * iscale;
m_windowSize = (int)ceilf(m_width * 2) + 1;
@ -582,7 +577,6 @@ PolyphaseKernel::PolyphaseKernel(const Filter & f, uint srcLength, uint dstLengt
m_data[i * m_windowSize + j] /= total;
}
}
}
PolyphaseKernel::~PolyphaseKernel()

View File

@ -376,7 +376,7 @@ FloatImage * FloatImage::fastDownSample() const
{
const uint n = w * h;
if ((m_width * m_height) & 1)
if (n & 1)
{
const float scale = 1.0f / (2 * n + 1);
@ -540,18 +540,73 @@ FloatImage * FloatImage::fastDownSample() const
return dst_image.release();
}
/*
/// Downsample applying a 1D kernel separately in each dimension.
FloatImage * FloatImage::downSample(const Kernel1 & kernel, WrapMode wm) const
{
const uint w = max(1, m_width / 2);
const uint h = max(1, m_height / 2);
return downSample(kernel, w, h, wm);
}
/// Downsample applying a 1D kernel separately in each dimension.
FloatImage * FloatImage::downSample(const Kernel1 & kernel, uint w, uint h, WrapMode wm) const
{
nvCheck(!(kernel.windowSize() & 1)); // Make sure that kernel m_width is even.
AutoPtr<FloatImage> tmp_image( new FloatImage() );
tmp_image->allocate(m_componentNum, w, m_height);
AutoPtr<FloatImage> dst_image( new FloatImage() );
dst_image->allocate(m_componentNum, w, h);
const float xscale = float(m_width) / float(w);
const float yscale = float(m_height) / float(h);
for(uint c = 0; c < m_componentNum; c++) {
float * tmp_channel = tmp_image->channel(c);
for(uint y = 0; y < m_height; y++) {
for(uint x = 0; x < w; x++) {
float sum = this->applyKernelHorizontal(&kernel, uint(x*xscale), y, c, wm);
const uint tmp_index = tmp_image->index(x, y);
tmp_channel[tmp_index] = sum;
}
}
float * dst_channel = dst_image->channel(c);
for(uint y = 0; y < h; y++) {
for(uint x = 0; x < w; x++) {
float sum = tmp_image->applyKernelVertical(&kernel, uint(x*xscale), uint(y*yscale), c, wm);
const uint dst_index = dst_image->index(x, y);
dst_channel[dst_index] = sum;
}
}
}
return dst_image.release();
}
*/
/// Downsample applying a 1D kernel separately in each dimension.
FloatImage * FloatImage::downSample(const Filter & filter, WrapMode wm) const
{
const uint w = max(1, m_width / 2);
const uint h = max(1, m_height / 2);
return resize(filter, w, h, wm);
return downSample(filter, w, h, wm);
}
/// Downsample applying a 1D kernel separately in each dimension.
FloatImage * FloatImage::resize(const Filter & filter, uint w, uint h, WrapMode wm) const
FloatImage * FloatImage::downSample(const Filter & filter, uint w, uint h, WrapMode wm) const
{
// @@ Use monophase filters when frac(m_width / w) == 0

View File

@ -63,7 +63,7 @@ public:
NVIMAGE_API FloatImage * fastDownSample() const;
NVIMAGE_API FloatImage * downSample(const Filter & filter, WrapMode wm) const;
NVIMAGE_API FloatImage * resize(const Filter & filter, uint w, uint h, WrapMode wm) const;
NVIMAGE_API FloatImage * downSample(const Filter & filter, uint w, uint h, WrapMode wm) const;
//NVIMAGE_API FloatImage * downSample(const Kernel1 & filter, WrapMode wm) const;
//NVIMAGE_API FloatImage * downSample(const Kernel1 & filter, uint w, uint h, WrapMode wm) const;
@ -226,18 +226,14 @@ inline uint FloatImage::indexRepeat(int x, int y) const
inline uint FloatImage::indexMirror(int x, int y) const
{
if (m_width == 1) x = 0;
x = abs(x);
while (x >= m_width) {
x = abs(m_width + m_width - x - 2);
x = m_width + m_width - x - 2;
}
if (m_height == 1) y = 0;
y = abs(y);
while (y >= m_height) {
y = abs(m_height + m_height - y - 2);
y = m_height + m_height - y - 2;
}
return index(x, y);

View File

@ -296,7 +296,7 @@ static bool downsample(const FloatImage * src, const BitMap * srcMask, const Flo
return true;
}
// This is the filter used in the Lumigraph paper.
// This is the filter used in the Lumigraph paper. The Unreal engine uses something similar.
void nv::fillPullPush(FloatImage * img, const BitMap * bmap)
{
nvCheck(img != NULL);
@ -644,8 +644,8 @@ struct LocalPixels
// This is a quadratic extrapolation filter from Charles Bloom (DoPixelSeamFix). Used with his permission.
void nv::fillQuadraticExtrapolate(int passCount, FloatImage * img, BitMap * bmap, int coverageIndex /*= -1*/)
// This is a cubic extrapolation filter from Charles Bloom (DoPixelSeamFix).
void nv::fillCubicExtrapolate(int passCount, FloatImage * img, BitMap * bmap, int coverageIndex /*= -1*/)
{
nvCheck(passCount > 0);
nvCheck(img != NULL);

View File

@ -89,7 +89,7 @@ namespace nv
NVIMAGE_API void fillPullPush(FloatImage * img, const BitMap * bmap);
NVIMAGE_API void fillExtrapolate(int passCount, FloatImage * img, BitMap * bmap);
NVIMAGE_API void fillQuadraticExtrapolate(int passCount, FloatImage * img, BitMap * bmap, int coverageIndex = -1);
NVIMAGE_API void fillCubicExtrapolate(int passCount, FloatImage * img, BitMap * bmap, int coverageIndex = -1);
} // nv namespace

View File

@ -15,7 +15,7 @@ Image::Image() : m_width(0), m_height(0), m_format(Format_RGB), m_data(NULL)
{
}
Image::Image(const Image & img) : m_data(NULL)
Image::Image(const Image & img)
{
allocate(img.m_width, img.m_height);
m_format = img.m_format;

View File

@ -16,7 +16,6 @@ http://www.efg2.com/Lab/Library/ImageProcessing/DHALF.TXT
#include <nvimage/Image.h>
#include <nvimage/Quantize.h>
#include <nvimage/PixelFormat.h>
using namespace nv;
@ -48,20 +47,94 @@ void nv::Quantize::BinaryAlpha( Image * image, int alpha_threshold /*= 127*/ )
// Simple quantization.
void nv::Quantize::RGB16( Image * image )
{
Truncate(image, 5, 6, 5, 8);
nvCheck(image != NULL);
const uint w = image->width();
const uint h = image->height();
for(uint y = 0; y < h; y++) {
for(uint x = 0; x < w; x++) {
Color32 pixel32 = image->pixel(x, y);
// Convert to 16 bit and back to 32 using regular bit expansion.
Color32 pixel16 = toColor32( toColor16(pixel32) );
// Store color.
image->pixel(x, y) = pixel16;
}
}
}
// Alpha quantization.
void nv::Quantize::Alpha4( Image * image )
{
Truncate(image, 8, 8, 8, 4);
nvCheck(image != NULL);
const uint w = image->width();
const uint h = image->height();
for(uint y = 0; y < h; y++) {
for(uint x = 0; x < w; x++) {
Color32 pixel = image->pixel(x, y);
// Convert to 4 bit using regular bit expansion.
pixel.a = (pixel.a & 0xF0) | ((pixel.a & 0xF0) >> 4);
// Store color.
image->pixel(x, y) = pixel;
}
}
}
// Error diffusion. Floyd Steinberg.
void nv::Quantize::FloydSteinberg_RGB16( Image * image )
{
FloydSteinberg(image, 5, 6, 5, 8);
nvCheck(image != NULL);
const uint w = image->width();
const uint h = image->height();
// @@ Use fixed point?
Vector3 * row0 = new Vector3[w+2];
Vector3 * row1 = new Vector3[w+2];
memset(row0, 0, sizeof(Vector3)*(w+2));
memset(row1, 0, sizeof(Vector3)*(w+2));
for(uint y = 0; y < h; y++) {
for(uint x = 0; x < w; x++) {
Color32 pixel32 = image->pixel(x, y);
// Add error. // @@ We shouldn't clamp here!
pixel32.r = clamp(int(pixel32.r) + int(row0[1+x].x()), 0, 255);
pixel32.g = clamp(int(pixel32.g) + int(row0[1+x].y()), 0, 255);
pixel32.b = clamp(int(pixel32.b) + int(row0[1+x].z()), 0, 255);
// Convert to 16 bit. @@ Use regular clamp?
Color32 pixel16 = toColor32( toColor16(pixel32) );
// Store color.
image->pixel(x, y) = pixel16;
// Compute new error.
Vector3 diff(float(pixel32.r - pixel16.r), float(pixel32.g - pixel16.g), float(pixel32.b - pixel16.b));
// Propagate new error.
row0[1+x+1] += 7.0f / 16.0f * diff;
row1[1+x-1] += 3.0f / 16.0f * diff;
row1[1+x+0] += 5.0f / 16.0f * diff;
row1[1+x+1] += 1.0f / 16.0f * diff;
}
swap(row0, row1);
memset(row1, 0, sizeof(Vector3)*(w+2));
}
delete [] row0;
delete [] row1;
}
@ -115,90 +188,34 @@ void nv::Quantize::FloydSteinberg_BinaryAlpha( Image * image, int alpha_threshol
// Error diffusion. Floyd Steinberg.
void nv::Quantize::FloydSteinberg_Alpha4( Image * image )
{
FloydSteinberg(image, 8, 8, 8, 4);
}
void nv::Quantize::Truncate(Image * image, uint rsize, uint gsize, uint bsize, uint asize)
{
nvCheck(image != NULL);
const uint w = image->width();
const uint h = image->height();
// @@ Use fixed point?
float * row0 = new float[(w+2)];
float * row1 = new float[(w+2)];
memset(row0, 0, sizeof(float)*(w+2));
memset(row1, 0, sizeof(float)*(w+2));
for(uint y = 0; y < h; y++) {
for(uint x = 0; x < w; x++) {
Color32 pixel = image->pixel(x, y);
// Convert to our desired size, and reconstruct.
pixel.r = PixelFormat::convert(pixel.r, 8, rsize);
pixel.r = PixelFormat::convert(pixel.r, rsize, 8);
// Add error.
int alpha = int(pixel.a) + int(row0[1+x]);
pixel.g = PixelFormat::convert(pixel.g, 8, gsize);
pixel.g = PixelFormat::convert(pixel.g, gsize, 8);
pixel.b = PixelFormat::convert(pixel.b, 8, bsize);
pixel.b = PixelFormat::convert(pixel.b, bsize, 8);
pixel.a = PixelFormat::convert(pixel.a, 8, asize);
pixel.a = PixelFormat::convert(pixel.a, asize, 8);
// Convert to 4 bit using regular bit expansion.
pixel.a = (pixel.a & 0xF0) | ((pixel.a & 0xF0) >> 4);
// Store color.
image->pixel(x, y) = pixel;
}
}
}
// Error diffusion. Floyd Steinberg.
void nv::Quantize::FloydSteinberg(Image * image, uint rsize, uint gsize, uint bsize, uint asize)
{
nvCheck(image != NULL);
const uint w = image->width();
const uint h = image->height();
Vector4 * row0 = new Vector4[w+2];
Vector4 * row1 = new Vector4[w+2];
memset(row0, 0, sizeof(Vector4)*(w+2));
memset(row1, 0, sizeof(Vector4)*(w+2));
for (uint y = 0; y < h; y++) {
for (uint x = 0; x < w; x++) {
Color32 pixel = image->pixel(x, y);
// Add error.
pixel.r = clamp(int(pixel.r) + int(row0[1+x].x()), 0, 255);
pixel.g = clamp(int(pixel.g) + int(row0[1+x].y()), 0, 255);
pixel.b = clamp(int(pixel.b) + int(row0[1+x].z()), 0, 255);
pixel.a = clamp(int(pixel.a) + int(row0[1+x].w()), 0, 255);
int r = pixel.r;
int g = pixel.g;
int b = pixel.b;
int a = pixel.a;
// Convert to our desired size, and reconstruct.
r = PixelFormat::convert(r, 8, rsize);
r = PixelFormat::convert(r, rsize, 8);
g = PixelFormat::convert(g, 8, gsize);
g = PixelFormat::convert(g, gsize, 8);
b = PixelFormat::convert(b, 8, bsize);
b = PixelFormat::convert(b, bsize, 8);
a = PixelFormat::convert(a, 8, asize);
a = PixelFormat::convert(a, asize, 8);
// Store color.
image->pixel(x, y) = Color32(r, g, b, a);
// Compute new error.
Vector4 diff(float(int(pixel.r) - r), float(int(pixel.g) - g), float(int(pixel.b) - b), float(int(pixel.a) - a));
float diff = float(alpha - pixel.a);
// Propagate new error.
row0[1+x+1] += 7.0f / 16.0f * diff;
@ -208,9 +225,10 @@ void nv::Quantize::FloydSteinberg(Image * image, uint rsize, uint gsize, uint bs
}
swap(row0, row1);
memset(row1, 0, sizeof(Vector4)*(w+2));
memset(row1, 0, sizeof(float)*(w+2));
}
delete [] row0;
delete [] row1;
}

View File

@ -17,9 +17,6 @@ namespace nv
void FloydSteinberg_BinaryAlpha(Image * img, int alpha_threshold = 127);
void FloydSteinberg_Alpha4(Image * img);
void Truncate(Image * image, uint rsize, uint gsize, uint bsize, uint asize);
void FloydSteinberg(Image * image, uint rsize, uint gsize, uint bsize, uint asize);
// @@ Add palette quantization algorithms!
}
}

View File

@ -108,7 +108,7 @@ public:
float area() const
{
const Vector3 d = extents();
return 8.0f * (d.x()*d.y() + d.x()*d.z() + d.y()*d.z());
return 4.0f * (d.x()*d.y() + d.x()*d.z() + d.y()*d.z());
}
/// Get the volume of the box.
@ -118,14 +118,6 @@ public:
return 8.0f * (d.x() * d.y() * d.z());
}
/// Return true if the box contains the given point.
bool contains(Vector3::Arg p) const
{
return
m_mins.x() < p.x() && m_mins.y() < p.y() && m_mins.z() < p.z() &&
m_maxs.x() > p.x() && m_maxs.y() > p.y() && m_maxs.z() > p.z();
}
private:
Vector3 m_mins;
@ -133,6 +125,15 @@ private:
};
/*
/// Point inside box test.
inline bool pointInsideBox(const Box & b, Vector3::Arg p) const
{
return (m_mins.x() < p.x() && m_mins.y() < p.y() && m_mins.z() < p.z() &&
m_maxs.x() > p.x() && m_maxs.y() > p.y() && m_maxs.z() > p.z());
}
*/
} // nv namespace

View File

@ -7,6 +7,8 @@ SET(MATH_SRCS
Quaternion.h
Box.h
Color.h
Eigen.h Eigen.cpp
Fitting.h Fitting.cpp
Montecarlo.h Montecarlo.cpp
Random.h Random.cpp
SphericalHarmonic.h SphericalHarmonic.cpp

533
src/nvmath/Eigen.cpp Normal file
View File

@ -0,0 +1,533 @@
// This code is in the public domain -- castanyo@yahoo.es
#include "Eigen.h"
using namespace nv;
static const float EPS = 0.00001f;
static const int MAX_ITER = 100;
static void semi_definite_symmetric_eigen(const float *mat, int n, float *eigen_vec, float *eigen_val);
// Use power method to find the first eigenvector.
// http://www.miislita.com/information-retrieval-tutorial/matrix-tutorial-3-eigenvalues-eigenvectors.html
Vector3 nv::firstEigenVector(float matrix[6])
{
// Number of iterations. @@ Use a variable number of iterations.
const int NUM = 8;
Vector3 v(1, 1, 1);
for(int i = 0; i < NUM; i++) {
float x = v.x() * matrix[0] + v.y() * matrix[1] + v.z() * matrix[2];
float y = v.x() * matrix[1] + v.y() * matrix[3] + v.z() * matrix[4];
float z = v.x() * matrix[2] + v.y() * matrix[4] + v.z() * matrix[5];
float norm = max(max(x, y), z);
float iv = 1.0f / norm;
if (norm == 0.0f) {
return Vector3(zero);
}
v.set(x*iv, y*iv, z*iv);
}
return v;
}
/// Solve eigen system.
void Eigen::solve() {
semi_definite_symmetric_eigen(matrix, N, eigen_vec, eigen_val);
}
/// Solve eigen system.
void Eigen3::solve() {
// @@ Use lengyel code that seems to be more optimized.
#if 1
float v[3*3];
semi_definite_symmetric_eigen(matrix, 3, v, eigen_val);
eigen_vec[0].set(v[0], v[1], v[2]);
eigen_vec[1].set(v[3], v[4], v[5]);
eigen_vec[2].set(v[6], v[7], v[8]);
#else
const int maxSweeps = 32;
const float epsilon = 1.0e-10f;
float m11 = matrix[0]; // m(0,0);
float m12 = matrix[1]; // m(0,1);
float m13 = matrix[2]; // m(0,2);
float m22 = matrix[3]; // m(1,1);
float m23 = matrix[4]; // m(1,2);
float m33 = matrix[5]; // m(2,2);
//r.SetIdentity();
eigen_vec[0].set(1, 0, 0);
eigen_vec[1].set(0, 1, 0);
eigen_vec[2].set(0, 0, 1);
for (int a = 0; a < maxSweeps; a++)
{
// Exit if off-diagonal entries small enough
if ((fabs(m12) < epsilon) && (fabs(m13) < epsilon) && (fabs(m23) < epsilon))
{
break;
}
// Annihilate (1,2) entry
if (m12 != 0.0f)
{
float u = (m22 - m11) * 0.5f / m12;
float u2 = u * u;
float u2p1 = u2 + 1.0f;
float t = (u2p1 != u2) ? ((u < 0.0f) ? -1.0f : 1.0f) * (sqrt(u2p1) - fabs(u)) : 0.5f / u;
float c = 1.0f / sqrt(t * t + 1.0f);
float s = c * t;
m11 -= t * m12;
m22 += t * m12;
m12 = 0.0f;
float temp = c * m13 - s * m23;
m23 = s * m13 + c * m23;
m13 = temp;
for (int i = 0; i < 3; i++)
{
float temp = c * eigen_vec[i].x - s * eigen_vec[i].y;
eigen_vec[i].y = s * eigen_vec[i].x + c * eigen_vec[i].y;
eigen_vec[i].x = temp;
}
}
// Annihilate (1,3) entry
if (m13 != 0.0f)
{
float u = (m33 - m11) * 0.5f / m13;
float u2 = u * u;
float u2p1 = u2 + 1.0f;
float t = (u2p1 != u2) ? ((u < 0.0f) ? -1.0f : 1.0f) * (sqrt(u2p1) - fabs(u)) : 0.5f / u;
float c = 1.0f / sqrt(t * t + 1.0f);
float s = c * t;
m11 -= t * m13;
m33 += t * m13;
m13 = 0.0f;
float temp = c * m12 - s * m23;
m23 = s * m12 + c * m23;
m12 = temp;
for (int i = 0; i < 3; i++)
{
float temp = c * eigen_vec[i].x - s * eigen_vec[i].z;
eigen_vec[i].z = s * eigen_vec[i].x + c * eigen_vec[i].z;
eigen_vec[i].x = temp;
}
}
// Annihilate (2,3) entry
if (m23 != 0.0f)
{
float u = (m33 - m22) * 0.5f / m23;
float u2 = u * u;
float u2p1 = u2 + 1.0f;
float t = (u2p1 != u2) ? ((u < 0.0f) ? -1.0f : 1.0f) * (sqrt(u2p1) - fabs(u)) : 0.5f / u;
float c = 1.0f / sqrt(t * t + 1.0f);
float s = c * t;
m22 -= t * m23;
m33 += t * m23;
m23 = 0.0f;
float temp = c * m12 - s * m13;
m13 = s * m12 + c * m13;
m12 = temp;
for (int i = 0; i < 3; i++)
{
float temp = c * eigen_vec[i].y - s * eigen_vec[i].z;
eigen_vec[i].z = s * eigen_vec[i].y + c * eigen_vec[i].z;
eigen_vec[i].y = temp;
}
}
}
eigen_val[0] = m11;
eigen_val[1] = m22;
eigen_val[2] = m33;
#endif
}
/*---------------------------------------------------------------------------
Functions
---------------------------------------------------------------------------*/
/** @@ I don't remember where did I get this function.
* computes the eigen values and eigen vectors
* of a semi definite symmetric matrix
*
* - matrix is stored in column symmetric storage, i.e.
* matrix = { m11, m12, m22, m13, m23, m33, m14, m24, m34, m44 ... }
* size = n(n+1)/2
*
* - eigen_vectors (return) = { v1, v2, v3, ..., vn } where vk = vk0, vk1, ..., vkn
* size = n^2, must be allocated by caller
*
* - eigen_values (return) are in decreasing order
* size = n, must be allocated by caller
*/
void semi_definite_symmetric_eigen(
const float *mat, int n, float *eigen_vec, float *eigen_val
) {
float *a,*v;
float a_norm,a_normEPS,thr,thr_nn;
int nb_iter = 0;
int jj;
int i,j,k,ij,ik,l,m,lm,mq,lq,ll,mm,imv,im,iq,ilv,il,nn;
int *index;
float a_ij,a_lm,a_ll,a_mm,a_im,a_il;
float a_lm_2;
float v_ilv,v_imv;
float x;
float sinx,sinx_2,cosx,cosx_2,sincos;
float delta;
// Number of entries in mat
nn = (n*(n+1))/2;
// Step 1: Copy mat to a
a = new float[nn];
for( ij=0; ij<nn; ij++ ) {
a[ij] = mat[ij];
}
// Ugly Fortran-porting trick: indices for a are between 1 and n
a--;
// Step 2 : Init diagonalization matrix as the unit matrix
v = new float[n*n];
ij = 0;
for( i=0; i<n; i++ ) {
for( j=0; j<n; j++ ) {
if( i==j ) {
v[ij++] = 1.0;
} else {
v[ij++] = 0.0;
}
}
}
// Ugly Fortran-porting trick: indices for v are between 1 and n
v--;
// Step 3 : compute the weight of the non diagonal terms
ij = 1 ;
a_norm = 0.0;
for( i=1; i<=n; i++ ) {
for( j=1; j<=i; j++ ) {
if( i!=j ) {
a_ij = a[ij];
a_norm += a_ij*a_ij;
}
ij++;
}
}
if( a_norm != 0.0 ) {
a_normEPS = a_norm*EPS;
thr = a_norm ;
// Step 4 : rotations
while( thr > a_normEPS && nb_iter < MAX_ITER ) {
nb_iter++;
thr_nn = thr / nn;
for( l=1 ; l< n; l++ ) {
for( m=l+1; m<=n; m++ ) {
// compute sinx and cosx
lq = (l*l-l)/2;
mq = (m*m-m)/2;
lm = l+mq;
a_lm = a[lm];
a_lm_2 = a_lm*a_lm;
if( a_lm_2 < thr_nn ) {
continue ;
}
ll = l+lq;
mm = m+mq;
a_ll = a[ll];
a_mm = a[mm];
delta = a_ll - a_mm;
if( delta == 0.0f ) {
x = - PI/4 ;
} else {
x = - atanf( (a_lm+a_lm) / delta ) / 2.0f ;
}
sinx = sinf(x);
cosx = cosf(x);
sinx_2 = sinx*sinx;
cosx_2 = cosx*cosx;
sincos = sinx*cosx;
// rotate L and M columns
ilv = n*(l-1);
imv = n*(m-1);
for( i=1; i<=n;i++ ) {
if( (i!=l) && (i!=m) ) {
iq = (i*i-i)/2;
if( i<m ) {
im = i + mq;
} else {
im = m + iq;
}
a_im = a[im];
if( i<l ) {
il = i + lq;
} else {
il = l + iq;
}
a_il = a[il];
a[il] = a_il*cosx - a_im*sinx;
a[im] = a_il*sinx + a_im*cosx;
}
ilv++;
imv++;
v_ilv = v[ilv];
v_imv = v[imv];
v[ilv] = cosx*v_ilv - sinx*v_imv;
v[imv] = sinx*v_ilv + cosx*v_imv;
}
x = a_lm*sincos; x+=x;
a[ll] = a_ll*cosx_2 + a_mm*sinx_2 - x;
a[mm] = a_ll*sinx_2 + a_mm*cosx_2 + x;
a[lm] = 0.0;
thr = fabs( thr - a_lm_2 );
}
}
}
}
// Step 5: index conversion and copy eigen values
// back from Fortran to C++
a++;
for( i=0; i<n; i++ ) {
k = i + (i*(i+1))/2;
eigen_val[i] = a[k];
}
delete[] a;
// Step 6: sort the eigen values and eigen vectors
index = new int[n];
for( i=0; i<n; i++ ) {
index[i] = i;
}
for( i=0; i<(n-1); i++ ) {
x = eigen_val[i];
k = i;
for( j=i+1; j<n; j++ ) {
if( x < eigen_val[j] ) {
k = j;
x = eigen_val[j];
}
}
eigen_val[k] = eigen_val[i];
eigen_val[i] = x;
jj = index[k];
index[k] = index[i];
index[i] = jj;
}
// Step 7: save the eigen vectors
v++; // back from Fortran to to C++
ij = 0;
for( k=0; k<n; k++ ) {
ik = index[k]*n;
for( i=0; i<n; i++ ) {
eigen_vec[ij++] = v[ik++];
}
}
delete[] v ;
delete[] index;
return;
}
//_________________________________________________________
// Eric Lengyel code:
// http://www.terathon.com/code/linear.html
#if 0
const float epsilon = 1.0e-10F;
const int maxSweeps = 32;
struct Matrix3D
{
float n[3][3];
float& operator()(int i, int j)
{
return (n[j][i]);
}
const float& operator()(int i, int j) const
{
return (n[j][i]);
}
void SetIdentity(void)
{
n[0][0] = n[1][1] = n[2][2] = 1.0F;
n[0][1] = n[0][2] = n[1][0] = n[1][2] = n[2][0] = n[2][1] = 0.0F;
}
};
void CalculateEigensystem(const Matrix3D& m, float *lambda, Matrix3D& r)
{
float m11 = m(0,0);
float m12 = m(0,1);
float m13 = m(0,2);
float m22 = m(1,1);
float m23 = m(1,2);
float m33 = m(2,2);
r.SetIdentity();
for (int a = 0; a < maxSweeps; a++)
{
// Exit if off-diagonal entries small enough
if ((Fabs(m12) < epsilon) && (Fabs(m13) < epsilon) &&
(Fabs(m23) < epsilon)) break;
// Annihilate (1,2) entry
if (m12 != 0.0F)
{
float u = (m22 - m11) * 0.5F / m12;
float u2 = u * u;
float u2p1 = u2 + 1.0F;
float t = (u2p1 != u2) ?
((u < 0.0F) ? -1.0F : 1.0F) * (sqrt(u2p1) - fabs(u)) : 0.5F / u;
float c = 1.0F / sqrt(t * t + 1.0F);
float s = c * t;
m11 -= t * m12;
m22 += t * m12;
m12 = 0.0F;
float temp = c * m13 - s * m23;
m23 = s * m13 + c * m23;
m13 = temp;
for (int i = 0; i < 3; i++)
{
float temp = c * r(i,0) - s * r(i,1);
r(i,1) = s * r(i,0) + c * r(i,1);
r(i,0) = temp;
}
}
// Annihilate (1,3) entry
if (m13 != 0.0F)
{
float u = (m33 - m11) * 0.5F / m13;
float u2 = u * u;
float u2p1 = u2 + 1.0F;
float t = (u2p1 != u2) ?
((u < 0.0F) ? -1.0F : 1.0F) * (sqrt(u2p1) - fabs(u)) : 0.5F / u;
float c = 1.0F / sqrt(t * t + 1.0F);
float s = c * t;
m11 -= t * m13;
m33 += t * m13;
m13 = 0.0F;
float temp = c * m12 - s * m23;
m23 = s * m12 + c * m23;
m12 = temp;
for (int i = 0; i < 3; i++)
{
float temp = c * r(i,0) - s * r(i,2);
r(i,2) = s * r(i,0) + c * r(i,2);
r(i,0) = temp;
}
}
// Annihilate (2,3) entry
if (m23 != 0.0F)
{
float u = (m33 - m22) * 0.5F / m23;
float u2 = u * u;
float u2p1 = u2 + 1.0F;
float t = (u2p1 != u2) ?
((u < 0.0F) ? -1.0F : 1.0F) * (sqrt(u2p1) - fabs(u)) : 0.5F / u;
float c = 1.0F / sqrt(t * t + 1.0F);
float s = c * t;
m22 -= t * m23;
m33 += t * m23;
m23 = 0.0F;
float temp = c * m12 - s * m13;
m13 = s * m12 + c * m13;
m12 = temp;
for (int i = 0; i < 3; i++)
{
float temp = c * r(i,1) - s * r(i,2);
r(i,2) = s * r(i,1) + c * r(i,2);
r(i,1) = temp;
}
}
}
lambda[0] = m11;
lambda[1] = m22;
lambda[2] = m33;
}
#endif

140
src/nvmath/Eigen.h Normal file
View File

@ -0,0 +1,140 @@
// This code is in the public domain -- castanyo@yahoo.es
#ifndef NV_MATH_EIGEN_H
#define NV_MATH_EIGEN_H
#include <nvcore/Containers.h> // swap
#include <nvmath/nvmath.h>
#include <nvmath/Vector.h>
namespace nv
{
// Compute first eigen vector using the power method.
Vector3 firstEigenVector(float matrix[6]);
/// Generic eigen-solver.
class Eigen
{
public:
/// Ctor.
Eigen(uint n) : N(n)
{
uint size = n * (n + 1) / 2;
matrix = new float[size];
eigen_vec = new float[N*N];
eigen_val = new float[N];
}
/// Dtor.
~Eigen()
{
delete [] matrix;
delete [] eigen_vec;
delete [] eigen_val;
}
NVMATH_API void solve();
/// Matrix accesor.
float & operator()(uint x, uint y)
{
if( x > y ) {
swap(x, y);
}
return matrix[y * (y + 1) / 2 + x];
}
/// Matrix const accessor.
float operator()(uint x, uint y) const
{
if( x > y ) {
swap(x, y);
}
return matrix[y * (y + 1) / 2 + x];
}
Vector3 eigenVector3(uint i) const
{
nvCheck(3 == N);
nvCheck(i < N);
return Vector3(eigen_vec[i*N+0], eigen_vec[i*N+1], eigen_vec[i*N+2]);
}
Vector4 eigenVector4(uint i) const
{
nvCheck(4 == N);
nvCheck(i < N);
return Vector4(eigen_vec[i*N+0], eigen_vec[i*N+1], eigen_vec[i*N+2], eigen_vec[i*N+3]);
}
float eigenValue(uint i) const
{
nvCheck(i < N);
return eigen_val[i];
}
private:
const uint N;
float * matrix;
float * eigen_vec;
float * eigen_val;
};
/// 3x3 eigen-solver.
/// Based on Eric Lengyel's code:
/// http://www.terathon.com/code/linear.html
class Eigen3
{
public:
/** Ctor. */
Eigen3() {}
NVMATH_API void solve();
/// Matrix accesor.
float & operator()(uint x, uint y)
{
nvDebugCheck( x < 3 && y < 3 );
if( x > y ) {
swap(x, y);
}
return matrix[y * (y + 1) / 2 + x];
}
/// Matrix const accessor.
float operator()(uint x, uint y) const
{
nvDebugCheck( x < 3 && y < 3 );
if( x > y ) {
swap(x, y);
}
return matrix[y * (y + 1) / 2 + x];
}
/// Get ith eigen vector.
Vector3 eigenVector(uint i) const
{
nvCheck(i < 3);
return eigen_vec[i];
}
/** Get ith eigen value. */
float eigenValue(uint i) const
{
nvCheck(i < 3);
return eigen_val[i];
}
private:
float matrix[3+2+1];
Vector3 eigen_vec[3];
float eigen_val[3];
};
} // nv namespace
#endif // NV_MATH_EIGEN_H

134
src/nvmath/Fitting.cpp Normal file
View File

@ -0,0 +1,134 @@
// License: Wild Magic License Version 3
// http://geometrictools.com/License/WildMagic3License.pdf
#include "Fitting.h"
#include "Eigen.h"
using namespace nv;
/** Fit a 3d line to the given set of points.
*
* Based on code from:
* http://geometrictools.com/
*/
Line3 Fit::bestLine(const Array<Vector3> & pointArray)
{
nvDebugCheck(pointArray.count() > 0);
Line3 line;
const uint pointCount = pointArray.count();
const float inv_num = 1.0f / pointCount;
// compute the mean of the points
Vector3 center(zero);
for(uint i = 0; i < pointCount; i++) {
center += pointArray[i];
}
line.setOrigin(center * inv_num);
// compute the covariance matrix of the points
float covariance[6] = {0, 0, 0, 0, 0, 0};
for(uint i = 0; i < pointCount; i++) {
Vector3 diff = pointArray[i] - line.origin();
covariance[0] += diff.x() * diff.x();
covariance[1] += diff.x() * diff.y();
covariance[2] += diff.x() * diff.z();
covariance[3] += diff.y() * diff.y();
covariance[4] += diff.y() * diff.z();
covariance[5] += diff.z() * diff.z();
}
line.setDirection(normalizeSafe(firstEigenVector(covariance), Vector3(zero), 0.0f));
// @@ This variant is from David Eberly... I'm not sure how that works.
/*sum_xx *= inv_num;
sum_xy *= inv_num;
sum_xz *= inv_num;
sum_yy *= inv_num;
sum_yz *= inv_num;
sum_zz *= inv_num;
// set up the eigensolver
Eigen3 ES;
ES(0,0) = sum_yy + sum_zz;
ES(0,1) = -sum_xy;
ES(0,2) = -sum_xz;
ES(1,1) = sum_xx + sum_zz;
ES(1,2) = -sum_yz;
ES(2,2) = sum_xx + sum_yy;
// compute eigenstuff, smallest eigenvalue is in last position
ES.solve();
line.setDirection(ES.eigenVector(2));
nvCheck( isNormalized(line.direction()) );
*/
return line;
}
/** Fit a 3d plane to the given set of points.
*
* Based on code from:
* http://geometrictools.com/
*/
Vector4 Fit::bestPlane(const Array<Vector3> & pointArray)
{
Vector3 center(zero);
const uint pointCount = pointArray.count();
const float inv_num = 1.0f / pointCount;
// compute the mean of the points
for(uint i = 0; i < pointCount; i++) {
center += pointArray[i];
}
center *= inv_num;
// compute the covariance matrix of the points
float sum_xx = 0.0f;
float sum_xy = 0.0f;
float sum_xz = 0.0f;
float sum_yy = 0.0f;
float sum_yz = 0.0f;
float sum_zz = 0.0f;
for(uint i = 0; i < pointCount; i++) {
Vector3 diff = pointArray[i] - center;
sum_xx += diff.x() * diff.x();
sum_xy += diff.x() * diff.y();
sum_xz += diff.x() * diff.z();
sum_yy += diff.y() * diff.y();
sum_yz += diff.y() * diff.z();
sum_zz += diff.z() * diff.z();
}
sum_xx *= inv_num;
sum_xy *= inv_num;
sum_xz *= inv_num;
sum_yy *= inv_num;
sum_yz *= inv_num;
sum_zz *= inv_num;
// set up the eigensolver
Eigen3 ES;
ES(0,0) = sum_yy + sum_zz;
ES(0,1) = -sum_xy;
ES(0,2) = -sum_xz;
ES(1,1) = sum_xx + sum_zz;
ES(1,2) = -sum_yz;
ES(2,2) = sum_xx + sum_yy;
// compute eigenstuff, greatest eigenvalue is in first position
ES.solve();
Vector3 normal = ES.eigenVector(0);
nvCheck(isNormalized(normal));
float offset = dot(normal, center);
return Vector4(normal, offset);
}

78
src/nvmath/Fitting.h Normal file
View File

@ -0,0 +1,78 @@
// This code is in the public domain -- castanyo@yahoo.es
#ifndef NV_MATH_FITTING_H
#define NV_MATH_FITTING_H
#include <nvmath/Vector.h>
namespace nv
{
/// 3D Line.
struct Line3
{
/// Ctor.
Line3() : m_origin(zero), m_direction(zero)
{
}
/// Copy ctor.
Line3(const Line3 & l) : m_origin(l.m_origin), m_direction(l.m_direction)
{
}
/// Ctor.
Line3(Vector3::Arg o, Vector3::Arg d) : m_origin(o), m_direction(d)
{
}
/// Normalize the line.
void normalize()
{
m_direction = nv::normalize(m_direction);
}
/// Project a point onto the line.
Vector3 projectPoint(Vector3::Arg point) const
{
nvDebugCheck(isNormalized(m_direction));
Vector3 v = point - m_origin;
return m_origin + m_direction * dot(m_direction, v);
}
/// Compute distance to line.
float distanceToPoint(Vector3::Arg point) const
{
nvDebugCheck(isNormalized(m_direction));
Vector3 v = point - m_origin;
Vector3 l = v - m_direction * dot(m_direction, v);
return length(l);
}
const Vector3 & origin() const { return m_origin; }
void setOrigin(Vector3::Arg value) { m_origin = value; }
const Vector3 & direction() const { return m_direction; }
void setDirection(Vector3::Arg value) { m_direction = value; }
private:
Vector3 m_origin;
Vector3 m_direction;
};
namespace Fit
{
NVMATH_API Line3 bestLine(const Array<Vector3> & pointArray);
NVMATH_API Vector4 bestPlane(const Array<Vector3> & pointArray);
} // Fit namespace
} // nv namespace
#endif // _PI_MATHLIB_FITTING_H_

View File

@ -1,17 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#include "Plane.h"
#include "Matrix.h"
namespace nv
{
Plane transformPlane(const Matrix& m, Plane::Arg p)
{
Vector3 newVec = transformVector(m, p.vector());
Vector3 ptInPlane = p.offset() * p.vector();
ptInPlane = transformPoint(m, ptInPlane);
return Plane(newVec, ptInPlane);
}
}

View File

@ -1,77 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#ifndef NV_MATH_PLANE_H
#define NV_MATH_PLANE_H
#include <nvmath/nvmath.h>
#include <nvmath/Vector.h>
namespace nv
{
class Matrix;
class NVMATH_CLASS Plane
{
public:
typedef Plane const & Arg;
Plane();
Plane(float x, float y, float z, float w);
Plane(Vector4::Arg v);
Plane(Vector3::Arg v, float d);
Plane(Vector3::Arg normal, Vector3::Arg point);
const Plane & operator=(Plane::Arg v);
Vector3 vector() const;
scalar offset() const;
const Vector4 & asVector() const;
Vector4 & asVector();
void operator*=(scalar s);
private:
Vector4 p;
};
inline Plane::Plane() {}
inline Plane::Plane(float x, float y, float z, float w) : p(x, y, z, w) {}
inline Plane::Plane(Vector4::Arg v) : p(v) {}
inline Plane::Plane(Vector3::Arg v, float d) : p(v, d) {}
inline Plane::Plane(Vector3::Arg normal, Vector3::Arg point) : p(normal, dot(normal, point)) {}
inline const Plane & Plane::operator=(Plane::Arg v) { p = v.p; return *this; }
inline Vector3 Plane::vector() const { return p.xyz(); }
inline scalar Plane::offset() const { return p.w(); }
inline const Vector4 & Plane::asVector() const { return p; }
inline Vector4 & Plane::asVector() { return p; }
// Normalize plane.
inline Plane normalize(Plane::Arg plane, float epsilon = NV_EPSILON)
{
const float len = length(plane.vector());
nvDebugCheck(!isZero(len, epsilon));
const float inv = 1.0f / len;
return Plane(plane.asVector() * inv);
}
// Get the distance from the given point to this plane.
inline float distance(Plane::Arg plane, Vector3::Arg point)
{
return dot(plane.vector(), point) - plane.offset();
}
inline void Plane::operator*=(scalar s)
{
scale(p, s);
}
Plane transformPlane(const Matrix&, Plane::Arg);
} // nv namespace
#endif // NV_MATH_PLANE_H

View File

@ -13,10 +13,10 @@ SET(NVTT_SRCS
CompressDXT.cpp
CompressRGB.h
CompressRGB.cpp
FastCompressDXT.h
FastCompressDXT.cpp
QuickCompressDXT.h
QuickCompressDXT.cpp
OptimalCompressDXT.h
OptimalCompressDXT.cpp
SingleColorLookup.h
CompressionOptions.h
CompressionOptions.cpp
@ -44,8 +44,7 @@ INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})
ADD_DEFINITIONS(-DNVTT_EXPORTS)
IF(NVTT_SHARED)
ADD_DEFINITIONS(-DNVTT_SHARED=1)
ADD_LIBRARY(nvtt SHARED ${NVTT_SRCS})
ADD_LIBRARY(nvtt SHARED ${DXT_SRCS})
ELSE(NVTT_SHARED)
ADD_LIBRARY(nvtt ${NVTT_SRCS})
ENDIF(NVTT_SHARED)

View File

@ -29,8 +29,8 @@
#include "nvtt.h"
#include "CompressDXT.h"
#include "FastCompressDXT.h"
#include "QuickCompressDXT.h"
#include "OptimalCompressDXT.h"
#include "CompressionOptions.h"
#include "OutputOptions.h"
@ -57,31 +57,17 @@ using namespace nv;
using namespace nvtt;
nv::FastCompressor::FastCompressor() : m_image(NULL), m_alphaMode(AlphaMode_None)
void nv::fastCompressDXT1(const Image * image, const OutputOptions::Private & outputOptions)
{
}
nv::FastCompressor::~FastCompressor()
{
}
void nv::FastCompressor::setImage(const Image * image, nvtt::AlphaMode alphaMode)
{
m_image = image;
m_alphaMode = alphaMode;
}
void nv::FastCompressor::compressDXT1(const OutputOptions::Private & outputOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
const uint w = image->width();
const uint h = image->height();
ColorBlock rgba;
BlockDXT1 block;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
rgba.init(image, x, y);
QuickCompress::compressDXT1(rgba, &block);
@ -93,17 +79,17 @@ void nv::FastCompressor::compressDXT1(const OutputOptions::Private & outputOptio
}
void nv::FastCompressor::compressDXT1a(const OutputOptions::Private & outputOptions)
void nv::fastCompressDXT1a(const Image * image, const OutputOptions::Private & outputOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
const uint w = image->width();
const uint h = image->height();
ColorBlock rgba;
BlockDXT1 block;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
rgba.init(image, x, y);
QuickCompress::compressDXT1a(rgba, &block);
@ -115,19 +101,18 @@ void nv::FastCompressor::compressDXT1a(const OutputOptions::Private & outputOpti
}
void nv::FastCompressor::compressDXT3(const nvtt::OutputOptions::Private & outputOptions)
void nv::fastCompressDXT3(const Image * image, const nvtt::OutputOptions::Private & outputOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
const uint w = image->width();
const uint h = image->height();
ColorBlock rgba;
BlockDXT3 block;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
QuickCompress::compressDXT3(rgba, &block);
rgba.init(image, x, y);
compressBlock_BoundsRange(rgba, &block);
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
@ -137,19 +122,18 @@ void nv::FastCompressor::compressDXT3(const nvtt::OutputOptions::Private & outpu
}
void nv::FastCompressor::compressDXT5(const nvtt::OutputOptions::Private & outputOptions)
void nv::fastCompressDXT5(const Image * image, const nvtt::OutputOptions::Private & outputOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
const uint w = image->width();
const uint h = image->height();
ColorBlock rgba;
BlockDXT5 block;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
QuickCompress::compressDXT5(rgba, &block, 0);
rgba.init(image, x, y);
compressBlock_BoundsRange(rgba, &block);
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
@ -159,21 +143,22 @@ void nv::FastCompressor::compressDXT5(const nvtt::OutputOptions::Private & outpu
}
void nv::FastCompressor::compressDXT5n(const nvtt::OutputOptions::Private & outputOptions)
void nv::fastCompressDXT5n(const Image * image, const nvtt::OutputOptions::Private & outputOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
const uint w = image->width();
const uint h = image->height();
ColorBlock rgba;
BlockDXT5 block;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
rgba.init(image, x, y);
// copy X coordinate to alpha channel and Y coordinate to green channel.
rgba.swizzleDXT5n();
QuickCompress::compressDXT5(rgba, &block, 0);
compressBlock_BoundsRange(rgba, &block);
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
@ -183,28 +168,42 @@ void nv::FastCompressor::compressDXT5n(const nvtt::OutputOptions::Private & outp
}
nv::SlowCompressor::SlowCompressor() : m_image(NULL), m_alphaMode(AlphaMode_None)
void nv::fastCompressBC4(const Image * image, const nvtt::OutputOptions::Private & outputOptions)
{
// @@ TODO
// compress red channel (X)
}
nv::SlowCompressor::~SlowCompressor()
void nv::fastCompressBC5(const Image * image, const nvtt::OutputOptions::Private & outputOptions)
{
// @@ TODO
// compress red, green channels (X,Y)
}
void nv::SlowCompressor::setImage(const Image * image, nvtt::AlphaMode alphaMode)
void nv::doPrecomputation()
{
m_image = image;
m_alphaMode = alphaMode;
static bool done = false; // @@ Stop using statics for reentrancy.
if (!done)
{
done = true;
squish::FastClusterFit::DoPrecomputation();
}
}
void nv::SlowCompressor::compressDXT1(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
void nv::compressDXT1(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
const uint w = image->width();
const uint h = image->height();
ColorBlock rgba;
BlockDXT1 block;
doPrecomputation();
//squish::WeightedClusterFit fit;
//squish::ClusterFit fit;
squish::FastClusterFit fit;
@ -213,18 +212,12 @@ void nv::SlowCompressor::compressDXT1(const CompressionOptions::Private & compre
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
rgba.init(image, x, y);
if (rgba.isSingleColor())
{
OptimalCompress::compressDXT1(rgba.color(0), &block);
}
else
{
// Compress color.
squish::ColourSet colours((uint8 *)rgba.colors(), 0);
fit.SetColourSet(&colours, squish::kDxt1);
fit.Compress(&block);
}
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
@ -234,10 +227,10 @@ void nv::SlowCompressor::compressDXT1(const CompressionOptions::Private & compre
}
void nv::SlowCompressor::compressDXT1a(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
void nv::compressDXT1a(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
const uint w = image->width();
const uint h = image->height();
ColorBlock rgba;
BlockDXT1 block;
@ -248,27 +241,12 @@ void nv::SlowCompressor::compressDXT1a(const CompressionOptions::Private & compr
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
rgba.init(image, x, y);
bool anyAlpha = false;
bool allAlpha = true;
for (uint i = 0; i < 16; i++)
{
if (rgba.color(i).a < 128) anyAlpha = true;
else allAlpha = false;
}
if ((!anyAlpha && rgba.isSingleColor() || allAlpha))
{
OptimalCompress::compressDXT1a(rgba.color(0), &block);
}
else
{
// Compress color.
squish::ColourSet colours((uint8 *)rgba.colors(), squish::kDxt1|squish::kWeightColourByAlpha);
fit.SetColourSet(&colours, squish::kDxt1);
fit.Compress(&block);
}
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
@ -278,37 +256,29 @@ void nv::SlowCompressor::compressDXT1a(const CompressionOptions::Private & compr
}
void nv::SlowCompressor::compressDXT3(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
void nv::compressDXT3(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
const uint w = image->width();
const uint h = image->height();
ColorBlock rgba;
BlockDXT3 block;
squish::WeightedClusterFit fit;
//squish::FastClusterFit fit;
fit.SetMetric(compressionOptions.colorWeight.x(), compressionOptions.colorWeight.y(), compressionOptions.colorWeight.z());
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
rgba.init(image, x, y);
// Compress explicit alpha.
OptimalCompress::compressDXT3A(rgba, &block.alpha);
compressBlock(rgba, &block.alpha);
// Compress color.
if (rgba.isSingleColor())
{
OptimalCompress::compressDXT1(rgba.color(0), &block.color);
}
else
{
squish::ColourSet colours((uint8 *)rgba.colors(), squish::kWeightColourByAlpha);
fit.SetColourSet(&colours, 0);
fit.Compress(&block.color);
}
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
@ -317,10 +287,10 @@ void nv::SlowCompressor::compressDXT3(const CompressionOptions::Private & compre
}
}
void nv::SlowCompressor::compressDXT5(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
void nv::compressDXT5(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
const uint w = image->width();
const uint h = image->height();
ColorBlock rgba;
BlockDXT5 block;
@ -331,29 +301,23 @@ void nv::SlowCompressor::compressDXT5(const CompressionOptions::Private & compre
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
rgba.init(image, x, y);
// Compress alpha.
uint error;
if (compressionOptions.quality == Quality_Highest)
{
OptimalCompress::compressDXT5A(rgba, &block.alpha);
error = compressBlock_BruteForce(rgba, &block.alpha);
}
else
{
QuickCompress::compressDXT5A(rgba, &block.alpha);
error = compressBlock_Iterative(rgba, &block.alpha);
}
// Compress color.
if (rgba.isSingleColor())
{
OptimalCompress::compressDXT1(rgba.color(0), &block.color);
}
else
{
squish::ColourSet colours((uint8 *)rgba.colors(), squish::kWeightColourByAlpha);
fit.SetColourSet(&colours, 0);
fit.Compress(&block.color);
}
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
@ -363,33 +327,33 @@ void nv::SlowCompressor::compressDXT5(const CompressionOptions::Private & compre
}
void nv::SlowCompressor::compressDXT5n(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
void nv::compressDXT5n(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
const uint w = image->width();
const uint h = image->height();
ColorBlock rgba;
BlockDXT5 block;
doPrecomputation();
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
rgba.init(image, x, y);
// copy X coordinate to green channel and Y coordinate to alpha channel.
rgba.swizzleDXT5n();
// Compress X.
uint error = compressBlock_Iterative(rgba, &block.alpha);
if (compressionOptions.quality == Quality_Highest)
{
OptimalCompress::compressDXT5A(rgba, &block.alpha);
}
else
{
QuickCompress::compressDXT5A(rgba, &block.alpha);
error = compressBlock_BruteForce(rgba, &block.alpha);
}
// Compress Y.
OptimalCompress::compressDXT1G(rgba, &block.color);
QuickCompress::compressDXT1G(rgba, &block.color);
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
@ -399,28 +363,32 @@ void nv::SlowCompressor::compressDXT5n(const CompressionOptions::Private & compr
}
void nv::SlowCompressor::compressBC4(const CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
void nv::compressBC4(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
const uint w = image->width();
const uint h = image->height();
ColorBlock rgba;
AlphaBlockDXT5 block;
uint totalError = 0;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(m_image, x, y);
rgba.init(image, x, y);
//error = compressBlock_BoundsRange(rgba, &block);
uint error = compressBlock_Iterative(rgba, &block);
if (compressionOptions.quality == Quality_Highest)
{
OptimalCompress::compressDXT5A(rgba, &block);
}
else
{
QuickCompress::compressDXT5A(rgba, &block);
// Try brute force algorithm.
error = compressBlock_BruteForce(rgba, &block);
}
totalError += error;
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
}
@ -429,10 +397,10 @@ void nv::SlowCompressor::compressBC4(const CompressionOptions::Private & compres
}
void nv::SlowCompressor::compressBC5(const CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
void nv::compressBC5(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
const uint w = image->width();
const uint h = image->height();
ColorBlock xcolor;
ColorBlock ycolor;
@ -442,21 +410,24 @@ void nv::SlowCompressor::compressBC5(const CompressionOptions::Private & compres
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
xcolor.init(m_image, x, y);
xcolor.init(image, x, y);
xcolor.splatX();
ycolor.init(m_image, x, y);
ycolor.init(image, x, y);
ycolor.splatY();
// @@ Compute normal error, instead of separate xy errors.
uint xerror, yerror;
if (compressionOptions.quality == Quality_Highest)
{
OptimalCompress::compressDXT5A(xcolor, &block.x);
OptimalCompress::compressDXT5A(ycolor, &block.y);
xerror = compressBlock_BruteForce(xcolor, &block.x);
yerror = compressBlock_BruteForce(ycolor, &block.y);
}
else
{
QuickCompress::compressDXT5A(xcolor, &block.x);
QuickCompress::compressDXT5A(ycolor, &block.y);
xerror = compressBlock_Iterative(xcolor, &block.x);
yerror = compressBlock_Iterative(ycolor, &block.y);
}
if (outputOptions.outputHandler != NULL) {

View File

@ -32,45 +32,25 @@ namespace nv
class Image;
class FloatImage;
class FastCompressor
{
public:
FastCompressor();
~FastCompressor();
void doPrecomputation();
void setImage(const Image * image, nvtt::AlphaMode alphaMode);
// Fast compressors.
void fastCompressDXT1(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
void fastCompressDXT1a(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
void fastCompressDXT3(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
void fastCompressDXT5(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
void fastCompressDXT5n(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
void fastCompressBC4(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
void fastCompressBC5(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT1(const nvtt::OutputOptions::Private & outputOptions);
void compressDXT1a(const nvtt::OutputOptions::Private & outputOptions);
void compressDXT3(const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5(const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5n(const nvtt::OutputOptions::Private & outputOptions);
private:
const Image * m_image;
nvtt::AlphaMode m_alphaMode;
};
class SlowCompressor
{
public:
SlowCompressor();
~SlowCompressor();
void setImage(const Image * image, nvtt::AlphaMode alphaMode);
void compressDXT1(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT1a(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT3(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5n(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressBC4(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressBC5(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
private:
const Image * m_image;
nvtt::AlphaMode m_alphaMode;
};
// Normal compressors.
void compressDXT1(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void compressDXT1a(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void compressDXT3(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void compressDXT5(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void compressDXT5n(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void compressBC4(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void compressBC5(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
// External compressors.
#if defined(HAVE_S3QUANT)

View File

@ -115,18 +115,12 @@ void nv::compressRGB(const Image * image, const OutputOptions::Private & outputO
c |= PixelFormat::convert(src[x].b, 8, bsize) << bshift;
c |= PixelFormat::convert(src[x].a, 8, asize) << ashift;
// Output one byte at a time.
// Output one byte at a time. @@ Not tested... Does this work on LE and BE?
for (uint i = 0; i < byteCount; i++)
{
*(dst + x * byteCount + i) = (c >> (i * 8)) & 0xFF;
*(dst + x * byteCount) = (c >> (i * 8)) & 0xFF;
}
}
// Zero padding.
for (uint x = w * byteCount; x < pitch; x++)
{
*(dst + x) = 0;
}
}
if (outputOptions.outputHandler != NULL)

View File

@ -34,7 +34,6 @@
#include <nvimage/Filter.h>
#include <nvimage/Quantize.h>
#include <nvimage/NormalMap.h>
#include <nvimage/PixelFormat.h>
#include "Compressor.h"
#include "InputOptions.h"
@ -42,6 +41,7 @@
#include "OutputOptions.h"
#include "CompressDXT.h"
#include "FastCompressDXT.h"
#include "CompressRGB.h"
#include "cuda/CudaUtils.h"
#include "cuda/CudaCompressDXT.h"
@ -200,34 +200,21 @@ namespace nvtt
AutoPtr<FloatImage> m_floatImage;
};
} // nvtt namespace
}
Compressor::Compressor() : m(*new Compressor::Private())
{
// CUDA initialization.
m.cudaSupported = cuda::isHardwarePresent();
m.cudaEnabled = m.cudaSupported;
if (m.cudaEnabled)
{
// Select fastest CUDA device.
int device = cuda::getFastestDevice();
cuda::setDevice(device);
// @@ Do CUDA initialization here.
m.cuda = new CudaCompressor();
if (!m.cuda->isValid())
{
m.cudaEnabled = false;
m.cuda = NULL;
}
}
}
Compressor::~Compressor()
{
delete &m;
// @@ Free CUDA resources here.
}
@ -238,21 +225,6 @@ void Compressor::enableCudaAcceleration(bool enable)
{
m.cudaEnabled = enable;
}
if (m.cudaEnabled && m.cuda == NULL)
{
// Select fastest CUDA device.
int device = cuda::getFastestDevice();
cuda::setDevice(device);
m.cuda = new CudaCompressor();
if (!m.cuda->isValid())
{
m.cudaEnabled = false;
m.cuda = NULL;
}
}
}
/// Check if CUDA acceleration is enabled.
@ -346,7 +318,7 @@ bool Compressor::Private::outputHeader(const InputOptions::Private & inputOption
if (compressionOptions.format == Format_RGBA)
{
header.setPitch(computePitch(inputOptions.targetWidth, compressionOptions.bitcount));
header.setPitch(4 * inputOptions.targetWidth);
header.setPixelFormat(compressionOptions.bitcount, compressionOptions.rmask, compressionOptions.gmask, compressionOptions.bmask, compressionOptions.amask);
}
else
@ -430,7 +402,7 @@ bool Compressor::Private::compressMipmaps(uint f, const InputOptions::Private &
quantizeMipmap(mipmap, compressionOptions);
compressMipmap(mipmap, inputOptions, compressionOptions, outputOptions);
compressMipmap(mipmap, compressionOptions, outputOptions);
// Compute extents of next mipmap:
w = max(1U, w / 2);
@ -579,7 +551,7 @@ void Compressor::Private::scaleMipmap(Mipmap & mipmap, const InputOptions::Priva
// Resize image.
BoxFilter boxFilter;
mipmap.setImage(mipmap.asFloatImage()->resize(boxFilter, w, h, (FloatImage::WrapMode)inputOptions.wrapMode));
mipmap.setImage(mipmap.asFloatImage()->downSample(boxFilter, w, h, (FloatImage::WrapMode)inputOptions.wrapMode));
}
@ -626,6 +598,13 @@ void Compressor::Private::quantizeMipmap(Mipmap & mipmap, const CompressionOptio
{
nvDebugCheck(mipmap.asFixedImage() != NULL);
if (compressionOptions.enableColorDithering)
{
if (compressionOptions.format >= Format_DXT1 && compressionOptions.format <= Format_DXT5)
{
Quantize::FloydSteinberg_RGB16(mipmap.asMutableFixedImage());
}
}
if (compressionOptions.binaryAlpha)
{
if (compressionOptions.enableAlphaDithering)
@ -637,67 +616,30 @@ void Compressor::Private::quantizeMipmap(Mipmap & mipmap, const CompressionOptio
Quantize::BinaryAlpha(mipmap.asMutableFixedImage(), compressionOptions.alphaThreshold);
}
}
if (compressionOptions.enableColorDithering || compressionOptions.enableAlphaDithering)
else
{
uint rsize = 8;
uint gsize = 8;
uint bsize = 8;
uint asize = 8;
if (compressionOptions.enableColorDithering)
{
if (compressionOptions.format >= Format_DXT1 && compressionOptions.format <= Format_DXT5)
{
rsize = 5;
gsize = 6;
bsize = 5;
}
else if (compressionOptions.format == Format_RGB)
{
uint rshift, gshift, bshift;
PixelFormat::maskShiftAndSize(compressionOptions.rmask, &rshift, &rsize);
PixelFormat::maskShiftAndSize(compressionOptions.gmask, &gshift, &gsize);
PixelFormat::maskShiftAndSize(compressionOptions.bmask, &bshift, &bsize);
}
}
if (compressionOptions.enableAlphaDithering)
{
if (compressionOptions.format == Format_DXT3)
{
asize = 4;
Quantize::Alpha4(mipmap.asMutableFixedImage());
}
else if (compressionOptions.format == Format_RGB)
else if (compressionOptions.format == Format_DXT1a)
{
uint ashift;
PixelFormat::maskShiftAndSize(compressionOptions.amask, &ashift, &asize);
Quantize::BinaryAlpha(mipmap.asMutableFixedImage(), compressionOptions.alphaThreshold);
}
}
if (compressionOptions.binaryAlpha)
{
asize = 8; // Already quantized.
}
Quantize::FloydSteinberg(mipmap.asMutableFixedImage(), rsize, gsize, bsize, asize);
}
}
// Compress the given mipmap.
bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptions::Private & inputOptions, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const
bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const
{
const Image * image = mipmap.asFixedImage();
nvDebugCheck(image != NULL);
FastCompressor fast;
fast.setImage(image, inputOptions.alphaMode);
SlowCompressor slow;
slow.setImage(image, inputOptions.alphaMode);
if (compressionOptions.format == Format_RGBA || compressionOptions.format == Format_RGB)
{
compressRGB(image, outputOptions, compressionOptions);
@ -721,19 +663,18 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
#endif
if (compressionOptions.quality == Quality_Fastest)
{
fast.compressDXT1(outputOptions);
fastCompressDXT1(image, outputOptions);
}
else
{
if (cudaEnabled)
{
nvDebugCheck(cudaSupported);
cuda->setImage(image, inputOptions.alphaMode);
cuda->compressDXT1(compressionOptions, outputOptions);
cudaCompressDXT1(image, outputOptions, compressionOptions);
}
else
{
slow.compressDXT1(compressionOptions, outputOptions);
compressDXT1(image, outputOptions, compressionOptions);
}
}
}
@ -741,18 +682,18 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
{
if (compressionOptions.quality == Quality_Fastest)
{
fast.compressDXT1a(outputOptions);
fastCompressDXT1a(image, outputOptions);
}
else
{
if (cudaEnabled)
{
nvDebugCheck(cudaSupported);
/*cuda*/slow.compressDXT1a(compressionOptions, outputOptions);
/*cuda*/compressDXT1a(image, outputOptions, compressionOptions);
}
else
{
slow.compressDXT1a(compressionOptions, outputOptions);
compressDXT1a(image, outputOptions, compressionOptions);
}
}
}
@ -760,19 +701,18 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
{
if (compressionOptions.quality == Quality_Fastest)
{
fast.compressDXT3(outputOptions);
fastCompressDXT3(image, outputOptions);
}
else
{
if (cudaEnabled)
{
nvDebugCheck(cudaSupported);
cuda->setImage(image, inputOptions.alphaMode);
cuda->compressDXT3(compressionOptions, outputOptions);
cudaCompressDXT3(image, outputOptions, compressionOptions);
}
else
{
slow.compressDXT3(compressionOptions, outputOptions);
compressDXT3(image, outputOptions, compressionOptions);
}
}
}
@ -780,19 +720,18 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
{
if (compressionOptions.quality == Quality_Fastest)
{
fast.compressDXT5(outputOptions);
fastCompressDXT5(image, outputOptions);
}
else
{
if (cudaEnabled)
{
nvDebugCheck(cudaSupported);
cuda->setImage(image, inputOptions.alphaMode);
cuda->compressDXT5(compressionOptions, outputOptions);
cudaCompressDXT5(image, outputOptions, compressionOptions);
}
else
{
slow.compressDXT5(compressionOptions, outputOptions);
compressDXT5(image, outputOptions, compressionOptions);
}
}
}
@ -800,20 +739,20 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
{
if (compressionOptions.quality == Quality_Fastest)
{
fast.compressDXT5n(outputOptions);
fastCompressDXT5n(image, outputOptions);
}
else
{
slow.compressDXT5n(compressionOptions, outputOptions);
compressDXT5n(image, outputOptions, compressionOptions);
}
}
else if (compressionOptions.format == Format_BC4)
{
slow.compressBC4(compressionOptions, outputOptions);
compressBC4(image, outputOptions, compressionOptions);
}
else if (compressionOptions.format == Format_BC5)
{
slow.compressBC5(compressionOptions, outputOptions);
compressBC5(image, outputOptions, compressionOptions);
}
return true;

View File

@ -24,10 +24,6 @@
#ifndef NV_TT_COMPRESSOR_H
#define NV_TT_COMPRESSOR_H
#include <nvcore/Ptr.h>
#include <nvtt/cuda/CudaCompressDXT.h>
#include "nvtt.h"
namespace nv
@ -60,16 +56,13 @@ namespace nvtt
void scaleMipmap(Mipmap & mipmap, const InputOptions::Private & inputOptions, uint w, uint h, uint d) const;
void processInputImage(Mipmap & mipmap, const InputOptions::Private & inputOptions) const;
void quantizeMipmap(Mipmap & mipmap, const CompressionOptions::Private & compressionOptions) const;
bool compressMipmap(const Mipmap & mipmap, const InputOptions::Private & inputOptions, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const;
bool compressMipmap(const Mipmap & mipmap, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const;
public:
bool cudaSupported;
bool cudaEnabled;
nv::AutoPtr<nv::CudaCompressor> cuda;
};
} // nvtt namespace

1444
src/nvtt/FastCompressDXT.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,87 @@
// Copyright NVIDIA Corporation 2007 -- Ignacio Castano <icastano@nvidia.com>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#ifndef NV_TT_FASTCOMPRESSDXT_H
#define NV_TT_FASTCOMPRESSDXT_H
#include <nvimage/nvimage.h>
namespace nv
{
struct ColorBlock;
struct BlockDXT1;
struct BlockDXT3;
struct BlockDXT5;
struct AlphaBlockDXT3;
struct AlphaBlockDXT5;
// Color compression:
// Compressor that uses the extremes of the luminance axis.
void compressBlock_DiameterAxis(const ColorBlock & rgba, BlockDXT1 * block);
// Compressor that uses the extremes of the luminance axis.
void compressBlock_LuminanceAxis(const ColorBlock & rgba, BlockDXT1 * block);
// Compressor that uses bounding box.
void compressBlock_BoundsRange(const ColorBlock & rgba, BlockDXT1 * block);
// Compressor that uses bounding box and takes alpha into account.
void compressBlock_BoundsRangeAlpha(const ColorBlock & rgba, BlockDXT1 * block);
// Compressor that uses the best fit axis.
void compressBlock_BestFitAxis(const ColorBlock & rgba, BlockDXT1 * block);
// Simple, but slow compressor that tests all color pairs.
void compressBlock_TestAllPairs(const ColorBlock & rgba, BlockDXT1 * block);
// Brute force 6d search along the best fit axis.
void compressBlock_AnalyzeBestFitAxis(const ColorBlock & rgba, BlockDXT1 * block);
// Spatial greedy search.
void refineSolution_1dSearch(const ColorBlock & rgba, BlockDXT1 * block);
void refineSolution_3dSearch(const ColorBlock & rgba, BlockDXT1 * block);
void refineSolution_6dSearch(const ColorBlock & rgba, BlockDXT1 * block);
// Brute force compressor for DXT5n
void compressGreenBlock_BruteForce(const ColorBlock & rgba, BlockDXT1 * block);
// Minimize error of the endpoints.
void optimizeEndPoints(const ColorBlock & rgba, BlockDXT1 * block);
uint blockError(const ColorBlock & rgba, const BlockDXT1 & block);
uint blockError(const ColorBlock & rgba, const AlphaBlockDXT5 & block);
// Alpha compression:
void compressBlock(const ColorBlock & rgba, AlphaBlockDXT3 * block);
void compressBlock_BoundsRange(const ColorBlock & rgba, BlockDXT3 * block);
void compressBlock_BoundsRange(const ColorBlock & rgba, BlockDXT5 * block);
uint compressBlock_BoundsRange(const ColorBlock & rgba, AlphaBlockDXT5 * block);
uint compressBlock_BruteForce(const ColorBlock & rgba, AlphaBlockDXT5 * block);
uint compressBlock_Iterative(const ColorBlock & rgba, AlphaBlockDXT5 * block);
} // nv namespace
#endif // NV_TT_FASTCOMPRESSDXT_H

View File

@ -1,368 +0,0 @@
// Copyright NVIDIA Corporation 2007 -- Ignacio Castano <icastano@nvidia.com>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#include <nvcore/Containers.h> // swap
#include <nvmath/Color.h>
#include <nvimage/ColorBlock.h>
#include <nvimage/BlockDXT.h>
#include "OptimalCompressDXT.h"
#include "SingleColorLookup.h"
using namespace nv;
using namespace OptimalCompress;
namespace
{
static int computeGreenError(const ColorBlock & rgba, const BlockDXT1 * block)
{
nvDebugCheck(block != NULL);
int palette[4];
palette[0] = (block->col0.g << 2) | (block->col0.g >> 4);
palette[1] = (block->col1.g << 2) | (block->col1.g >> 4);
palette[2] = (2 * palette[0] + palette[1]) / 3;
palette[3] = (2 * palette[1] + palette[0]) / 3;
int totalError = 0;
for (int i = 0; i < 16; i++)
{
const int green = rgba.color(i).g;
int error = abs(green - palette[0]);
error = min(error, abs(green - palette[1]));
error = min(error, abs(green - palette[2]));
error = min(error, abs(green - palette[3]));
totalError += error;
}
return totalError;
}
static uint computeGreenIndices(const ColorBlock & rgba, const Color32 palette[4])
{
const int color0 = palette[0].g;
const int color1 = palette[1].g;
const int color2 = palette[2].g;
const int color3 = palette[3].g;
uint indices = 0;
for (int i = 0; i < 16; i++)
{
const int color = rgba.color(i).g;
uint d0 = abs(color0 - color);
uint d1 = abs(color1 - color);
uint d2 = abs(color2 - color);
uint d3 = abs(color3 - color);
uint b0 = d0 > d3;
uint b1 = d1 > d2;
uint b2 = d0 > d2;
uint b3 = d1 > d3;
uint b4 = d2 > d3;
uint x0 = b1 & b2;
uint x1 = b0 & b3;
uint x2 = b0 & b4;
indices |= (x2 | ((x0 | x1) << 1)) << (2 * i);
}
return indices;
}
// Choose quantized color that produces less error. Used by DXT3 compressor.
inline static uint quantize4(uint8 a)
{
int q0 = (a >> 4) - 1;
int q1 = (a >> 4);
int q2 = (a >> 4) + 1;
q0 = (q0 << 4) | q0;
q1 = (q1 << 4) | q1;
q2 = (q2 << 4) | q2;
int d0 = abs(q0 - a);
int d1 = abs(q1 - a);
int d2 = abs(q2 - a);
if (d0 < d1 && d0 < d2) return q0 >> 4;
if (d1 < d2) return q1 >> 4;
return q2 >> 4;
}
static uint computeAlphaError(const ColorBlock & rgba, const AlphaBlockDXT5 * block)
{
uint8 alphas[8];
block->evaluatePalette(alphas);
uint totalError = 0;
for (uint i = 0; i < 16; i++)
{
uint8 alpha = rgba.color(i).a;
uint besterror = 256*256;
uint best;
for (uint p = 0; p < 8; p++)
{
int d = alphas[p] - alpha;
uint error = d * d;
if (error < besterror)
{
besterror = error;
best = p;
}
}
totalError += besterror;
}
return totalError;
}
static void computeAlphaIndices(const ColorBlock & rgba, AlphaBlockDXT5 * block)
{
uint8 alphas[8];
block->evaluatePalette(alphas);
for (uint i = 0; i < 16; i++)
{
uint8 alpha = rgba.color(i).a;
uint besterror = 256*256;
uint best = 8;
for(uint p = 0; p < 8; p++)
{
int d = alphas[p] - alpha;
uint error = d * d;
if (error < besterror)
{
besterror = error;
best = p;
}
}
nvDebugCheck(best < 8);
block->setIndex(i, best);
}
}
} // namespace
// Single color compressor, based on:
// https://mollyrocket.com/forums/viewtopic.php?t=392
void OptimalCompress::compressDXT1(Color32 c, BlockDXT1 * dxtBlock)
{
dxtBlock->col0.r = OMatch5[c.r][0];
dxtBlock->col0.g = OMatch6[c.g][0];
dxtBlock->col0.b = OMatch5[c.b][0];
dxtBlock->col1.r = OMatch5[c.r][1];
dxtBlock->col1.g = OMatch6[c.g][1];
dxtBlock->col1.b = OMatch5[c.b][1];
dxtBlock->indices = 0xaaaaaaaa;
if (dxtBlock->col0.u < dxtBlock->col1.u)
{
swap(dxtBlock->col0.u, dxtBlock->col1.u);
dxtBlock->indices ^= 0x55555555;
}
}
void OptimalCompress::compressDXT1a(Color32 rgba, BlockDXT1 * dxtBlock)
{
if (rgba.a < 128)
{
dxtBlock->col0.u = 0;
dxtBlock->col1.u = 0;
dxtBlock->indices = 0xFFFFFFFF;
}
else
{
compressDXT1(rgba, dxtBlock);
}
}
// Brute force green channel compressor
void OptimalCompress::compressDXT1G(const ColorBlock & rgba, BlockDXT1 * block)
{
nvDebugCheck(block != NULL);
uint8 ming = 63;
uint8 maxg = 0;
// Get min/max green.
for (uint i = 0; i < 16; i++)
{
uint8 green = rgba.color(i).g >> 2;
ming = min(ming, green);
maxg = max(maxg, green);
}
block->col0.r = 31;
block->col1.r = 31;
block->col0.g = maxg;
block->col1.g = ming;
block->col0.b = 0;
block->col1.b = 0;
if (maxg - ming > 4)
{
int besterror = computeGreenError(rgba, block);
int bestg0 = maxg;
int bestg1 = ming;
for (int g0 = ming+5; g0 < maxg; g0++)
{
for (int g1 = ming; g1 < g0-4; g1++)
{
if ((maxg-g0) + (g1-ming) > besterror)
continue;
block->col0.g = g0;
block->col1.g = g1;
int error = computeGreenError(rgba, block);
if (error < besterror)
{
besterror = error;
bestg0 = g0;
bestg1 = g1;
}
}
}
block->col0.g = bestg0;
block->col1.g = bestg1;
}
Color32 palette[4];
block->evaluatePalette(palette);
block->indices = computeGreenIndices(rgba, palette);
}
void OptimalCompress::compressDXT3A(const ColorBlock & rgba, AlphaBlockDXT3 * dxtBlock)
{
dxtBlock->alpha0 = quantize4(rgba.color(0).a);
dxtBlock->alpha1 = quantize4(rgba.color(1).a);
dxtBlock->alpha2 = quantize4(rgba.color(2).a);
dxtBlock->alpha3 = quantize4(rgba.color(3).a);
dxtBlock->alpha4 = quantize4(rgba.color(4).a);
dxtBlock->alpha5 = quantize4(rgba.color(5).a);
dxtBlock->alpha6 = quantize4(rgba.color(6).a);
dxtBlock->alpha7 = quantize4(rgba.color(7).a);
dxtBlock->alpha8 = quantize4(rgba.color(8).a);
dxtBlock->alpha9 = quantize4(rgba.color(9).a);
dxtBlock->alphaA = quantize4(rgba.color(10).a);
dxtBlock->alphaB = quantize4(rgba.color(11).a);
dxtBlock->alphaC = quantize4(rgba.color(12).a);
dxtBlock->alphaD = quantize4(rgba.color(13).a);
dxtBlock->alphaE = quantize4(rgba.color(14).a);
dxtBlock->alphaF = quantize4(rgba.color(15).a);
}
void OptimalCompress::compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock)
{
uint8 mina = 255;
uint8 maxa = 0;
// Get min/max alpha.
for (uint i = 0; i < 16; i++)
{
uint8 alpha = rgba.color(i).a;
mina = min(mina, alpha);
maxa = max(maxa, alpha);
}
dxtBlock->alpha0 = maxa;
dxtBlock->alpha1 = mina;
/*int centroidDist = 256;
int centroid;
// Get the closest to the centroid.
for (uint i = 0; i < 16; i++)
{
uint8 alpha = rgba.color(i).a;
int dist = abs(alpha - (maxa + mina) / 2);
if (dist < centroidDist)
{
centroidDist = dist;
centroid = alpha;
}
}*/
if (maxa - mina > 8)
{
int besterror = computeAlphaError(rgba, dxtBlock);
int besta0 = maxa;
int besta1 = mina;
for (int a0 = mina+9; a0 < maxa; a0++)
{
for (int a1 = mina; a1 < a0-8; a1++)
//for (int a1 = mina; a1 < maxa; a1++)
{
//nvCheck(abs(a1-a0) > 8);
//if (abs(a0 - a1) < 8) continue;
//if ((maxa-a0) + (a1-mina) + min(abs(centroid-a0), abs(centroid-a1)) > besterror)
if ((maxa-a0) + (a1-mina) > besterror)
continue;
dxtBlock->alpha0 = a0;
dxtBlock->alpha1 = a1;
int error = computeAlphaError(rgba, dxtBlock);
if (error < besterror)
{
besterror = error;
besta0 = a0;
besta1 = a1;
}
}
}
dxtBlock->alpha0 = besta0;
dxtBlock->alpha1 = besta1;
}
computeAlphaIndices(rgba, dxtBlock);
}

View File

@ -1,49 +0,0 @@
// Copyright NVIDIA Corporation 2008 -- Ignacio Castano <icastano@nvidia.com>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#ifndef NV_TT_OPTIMALCOMPRESSDXT_H
#define NV_TT_OPTIMALCOMPRESSDXT_H
#include <nvimage/nvimage.h>
namespace nv
{
struct ColorBlock;
struct BlockDXT1;
struct BlockDXT3;
struct BlockDXT5;
struct AlphaBlockDXT3;
struct AlphaBlockDXT5;
namespace OptimalCompress
{
void compressDXT1(Color32 rgba, BlockDXT1 * dxtBlock);
void compressDXT1a(Color32 rgba, BlockDXT1 * dxtBlock);
void compressDXT1G(const ColorBlock & rgba, BlockDXT1 * block);
void compressDXT3A(const ColorBlock & rgba, AlphaBlockDXT3 * dxtBlock);
void compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock);
}
} // nv namespace
#endif // NV_TT_OPTIMALCOMPRESSDXT_H

View File

@ -27,7 +27,7 @@
#include <nvimage/BlockDXT.h>
#include "QuickCompressDXT.h"
#include "OptimalCompressDXT.h"
#include "SingleColorLookup.h"
using namespace nv;
@ -288,44 +288,9 @@ static void optimizeEndPoints4(Vector3 block[16], BlockDXT1 * dxtBlock)
dxtBlock->indices = computeIndices3(block, a, b);
}*/
namespace
static void optimizeAlpha8(const ColorBlock & rgba, AlphaBlockDXT5 * block)
{
static uint computeAlphaIndices(const ColorBlock & rgba, AlphaBlockDXT5 * block)
{
uint8 alphas[8];
block->evaluatePalette(alphas);
uint totalError = 0;
for (uint i = 0; i < 16; i++)
{
uint8 alpha = rgba.color(i).a;
uint besterror = 256*256;
uint best = 8;
for(uint p = 0; p < 8; p++)
{
int d = alphas[p] - alpha;
uint error = d * d;
if (error < besterror)
{
besterror = error;
best = p;
}
}
nvDebugCheck(best < 8);
totalError += besterror;
block->setIndex(i, best);
}
return totalError;
}
static void optimizeAlpha8(const ColorBlock & rgba, AlphaBlockDXT5 * block)
{
float alpha2_sum = 0;
float beta2_sum = 0;
float alphabeta_sum = 0;
@ -378,75 +343,26 @@ namespace
block->alpha0 = alpha0;
block->alpha1 = alpha1;
}
/*
static void optimizeAlpha6(const ColorBlock & rgba, AlphaBlockDXT5 * block)
{
float alpha2_sum = 0;
float beta2_sum = 0;
float alphabeta_sum = 0;
float alphax_sum = 0;
float betax_sum = 0;
for (int i = 0; i < 16; i++)
{
uint8 x = rgba.color(i).a;
if (x == 0 || x == 255) continue;
uint bits = block->index(i);
if (bits == 6 || bits == 7) continue;
float alpha;
if (bits == 0) alpha = 1.0f;
else if (bits == 1) alpha = 0.0f;
else alpha = (6.0f - block->index(i)) / 5.0f;
float beta = 1 - alpha;
alpha2_sum += alpha * alpha;
beta2_sum += beta * beta;
alphabeta_sum += alpha * beta;
alphax_sum += alpha * x;
betax_sum += beta * x;
}
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
uint alpha0 = uint(min(max(a, 0.0f), 255.0f));
uint alpha1 = uint(min(max(b, 0.0f), 255.0f));
if (alpha0 > alpha1)
{
swap(alpha0, alpha1);
}
block->alpha0 = alpha0;
block->alpha1 = alpha1;
}
*/
static bool sameIndices(const AlphaBlockDXT5 & block0, const AlphaBlockDXT5 & block1)
{
const uint64 mask = ~uint64(0xFFFF);
return (block0.u | mask) == (block1.u | mask);
}
} // namespace
}
// Single color compressor, based on:
// https://mollyrocket.com/forums/viewtopic.php?t=392
void QuickCompress::compressDXT1(Color32 c, BlockDXT1 * dxtBlock)
{
dxtBlock->col0.r = OMatch5[c.r][0];
dxtBlock->col0.g = OMatch5[c.g][0];
dxtBlock->col0.b = OMatch5[c.b][0];
dxtBlock->col1.r = OMatch5[c.r][1];
dxtBlock->col1.g = OMatch5[c.g][1];
dxtBlock->col1.b = OMatch5[c.b][1];
dxtBlock->indices = 0xaaaaaaaa;
}
void QuickCompress::compressDXT1(const ColorBlock & rgba, BlockDXT1 * dxtBlock)
{
if (rgba.isSingleColor())
{
OptimalCompress::compressDXT1(rgba.color(0), dxtBlock);
}
else
{
// read block
Vector3 block[16];
extractColorBlockRGB(rgba, block);
@ -473,28 +389,15 @@ void QuickCompress::compressDXT1(const ColorBlock & rgba, BlockDXT1 * dxtBlock)
dxtBlock->indices = computeIndices4(block, maxColor, minColor);
optimizeEndPoints4(block, dxtBlock);
}
}
void QuickCompress::compressDXT1a(const ColorBlock & rgba, BlockDXT1 * dxtBlock)
{
bool hasAlpha = false;
for (uint i = 0; i < 16; i++)
{
if (rgba.color(i).a < 128) {
hasAlpha = true;
break;
}
}
if (!hasAlpha)
if (!rgba.hasAlpha())
{
compressDXT1(rgba, dxtBlock);
}
// @@ Handle single RGB, with varying alpha? We need tables for single color compressor in 3 color mode.
//else if (rgba.isSingleColorNoAlpha()) { ... }
else
{
// read block
@ -527,59 +430,160 @@ void QuickCompress::compressDXT1a(const ColorBlock & rgba, BlockDXT1 * dxtBlock)
}
static int computeGreenError(const ColorBlock & rgba, const BlockDXT1 * block)
{
nvDebugCheck(block != NULL);
int palette[4];
palette[0] = (block->col0.g << 2) | (block->col0.g >> 4);
palette[1] = (block->col1.g << 2) | (block->col1.g >> 4);
palette[2] = (2 * palette[0] + palette[1]) / 3;
palette[3] = (2 * palette[1] + palette[0]) / 3;
int totalError = 0;
for (int i = 0; i < 16; i++)
{
const int green = rgba.color(i).g;
int error = abs(green - palette[0]);
error = min(error, abs(green - palette[1]));
error = min(error, abs(green - palette[2]));
error = min(error, abs(green - palette[3]));
totalError += error;
}
return totalError;
}
static uint computeGreenIndices(const ColorBlock & rgba, const Color32 palette[4])
{
const int color0 = palette[0].g;
const int color1 = palette[1].g;
const int color2 = palette[2].g;
const int color3 = palette[3].g;
uint indices = 0;
for (int i = 0; i < 16; i++)
{
const int color = rgba.color(i).g;
uint d0 = abs(color0 - color);
uint d1 = abs(color1 - color);
uint d2 = abs(color2 - color);
uint d3 = abs(color3 - color);
uint b0 = d0 > d3;
uint b1 = d1 > d2;
uint b2 = d0 > d2;
uint b3 = d1 > d3;
uint b4 = d2 > d3;
uint x0 = b1 & b2;
uint x1 = b0 & b3;
uint x2 = b0 & b4;
indices |= (x2 | ((x0 | x1) << 1)) << (2 * i);
}
return indices;
}
// Brute force green channel compressor
void QuickCompress::compressDXT1G(const ColorBlock & rgba, BlockDXT1 * block)
{
nvDebugCheck(block != NULL);
uint8 ming = 63;
uint8 maxg = 0;
// Get min/max green.
for (uint i = 0; i < 16; i++)
{
uint8 green = rgba.color(i).g >> 2;
ming = min(ming, green);
maxg = max(maxg, green);
}
block->col0.r = 31;
block->col1.r = 31;
block->col0.g = maxg;
block->col1.g = ming;
block->col0.b = 0;
block->col1.b = 0;
if (maxg - ming > 4)
{
int besterror = computeGreenError(rgba, block);
int bestg0 = maxg;
int bestg1 = ming;
for (int g0 = ming+5; g0 < maxg; g0++)
{
for (int g1 = ming; g1 < g0-4; g1++)
{
if ((maxg-g0) + (g1-ming) > besterror)
continue;
block->col0.g = g0;
block->col1.g = g1;
int error = computeGreenError(rgba, block);
if (error < besterror)
{
besterror = error;
bestg0 = g0;
bestg1 = g1;
}
}
}
block->col0.g = bestg0;
block->col1.g = bestg1;
}
Color32 palette[4];
block->evaluatePalette(palette);
block->indices = computeGreenIndices(rgba, palette);
}
void QuickCompress::compressDXT3A(const ColorBlock & rgba, AlphaBlockDXT3 * dxtBlock)
{
dxtBlock->alpha0 = rgba.color(0).a >> 4;
dxtBlock->alpha1 = rgba.color(1).a >> 4;
dxtBlock->alpha2 = rgba.color(2).a >> 4;
dxtBlock->alpha3 = rgba.color(3).a >> 4;
dxtBlock->alpha4 = rgba.color(4).a >> 4;
dxtBlock->alpha5 = rgba.color(5).a >> 4;
dxtBlock->alpha6 = rgba.color(6).a >> 4;
dxtBlock->alpha7 = rgba.color(7).a >> 4;
dxtBlock->alpha8 = rgba.color(8).a >> 4;
dxtBlock->alpha9 = rgba.color(9).a >> 4;
dxtBlock->alphaA = rgba.color(10).a >> 4;
dxtBlock->alphaB = rgba.color(11).a >> 4;
dxtBlock->alphaC = rgba.color(12).a >> 4;
dxtBlock->alphaD = rgba.color(13).a >> 4;
dxtBlock->alphaE = rgba.color(14).a >> 4;
dxtBlock->alphaF = rgba.color(15).a >> 4;
}
void QuickCompress::compressDXT3(const ColorBlock & rgba, BlockDXT3 * dxtBlock)
{
compressDXT1(rgba, &dxtBlock->color);
OptimalCompress::compressDXT3A(rgba, &dxtBlock->alpha);
compressDXT3A(rgba, &dxtBlock->alpha);
}
void QuickCompress::compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock, int iterationCount/*=8*/)
void QuickCompress::compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock)
{
uint8 alpha0 = 0;
uint8 alpha1 = 255;
// Get min/max alpha.
for (uint i = 0; i < 16; i++)
{
uint8 alpha = rgba.color(i).a;
alpha0 = max(alpha0, alpha);
alpha1 = min(alpha1, alpha);
}
AlphaBlockDXT5 block;
block.alpha0 = alpha0 - (alpha0 - alpha1) / 34;
block.alpha1 = alpha1 + (alpha0 - alpha1) / 34;
uint besterror = computeAlphaIndices(rgba, &block);
AlphaBlockDXT5 bestblock = block;
for (int i = 0; i < iterationCount; i++)
{
optimizeAlpha8(rgba, &block);
uint error = computeAlphaIndices(rgba, &block);
if (error >= besterror)
{
// No improvement, stop.
break;
}
if (sameIndices(block, bestblock))
{
bestblock = block;
break;
}
besterror = error;
bestblock = block;
};
// Copy best block to result;
*dxtBlock = bestblock;
// @@ TODO
}
void QuickCompress::compressDXT5(const ColorBlock & rgba, BlockDXT5 * dxtBlock, int iterationCount/*=8*/)
void QuickCompress::compressDXT5(const ColorBlock & rgba, BlockDXT5 * dxtBlock)
{
compressDXT1(rgba, &dxtBlock->color);
compressDXT5A(rgba, &dxtBlock->alpha, iterationCount);
compressDXT5A(rgba, &dxtBlock->alpha);
}

View File

@ -37,13 +37,16 @@ namespace nv
namespace QuickCompress
{
void compressDXT1(const Color32 rgba, BlockDXT1 * dxtBlock);
void compressDXT1(const ColorBlock & rgba, BlockDXT1 * dxtBlock);
void compressDXT1a(const ColorBlock & rgba, BlockDXT1 * dxtBlock);
void compressDXT1G(const ColorBlock & rgba, BlockDXT1 * block);
void compressDXT3A(const ColorBlock & rgba, AlphaBlockDXT3 * dxtBlock);
void compressDXT3(const ColorBlock & rgba, BlockDXT3 * dxtBlock);
void compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock, int iterationCount=8);
void compressDXT5(const ColorBlock & rgba, BlockDXT5 * dxtBlock, int iterationCount=8);
void compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock);
void compressDXT5(const ColorBlock & rgba, BlockDXT5 * dxtBlock);
}
} // nv namespace

View File

@ -48,12 +48,7 @@ void initTables()
};
*/
#if __CUDACC__
__constant__ unsigned short
#else
const static uint8
#endif
OMatch5[256][2] =
const static uint8 OMatch5[256][2] =
{
{0x00, 0x00},
{0x00, 0x00},
@ -313,12 +308,7 @@ OMatch5[256][2] =
{0x1F, 0x1F},
};
#if __CUDACC__
__constant__ unsigned short
#else
const static uint8
#endif
OMatch6[256][2] =
const static uint8 OMatch6[256][2] =
{
{0x00, 0x00},
{0x00, 0x01},

View File

@ -122,7 +122,7 @@ static void doPrecomputation()
*/
const static uint s_bitmapTable[992] =
const static uint bitmaps[992] =
{
0x80000000,
0x40000000,

View File

@ -28,8 +28,6 @@
#include "CudaMath.h"
#include "../SingleColorLookup.h"
#define NUM_THREADS 64 // Number of threads per block.
#if __DEVICE_EMULATION__
@ -62,7 +60,6 @@ __device__ void sortColors(const float * values, int * cmp)
{
int tid = threadIdx.x;
#if 1
cmp[tid] = (values[0] < values[tid]);
cmp[tid] += (values[1] < values[tid]);
cmp[tid] += (values[2] < values[tid]);
@ -96,30 +93,13 @@ __device__ void sortColors(const float * values, int * cmp)
if (tid > 12 && cmp[tid] == cmp[12]) ++cmp[tid];
if (tid > 13 && cmp[tid] == cmp[13]) ++cmp[tid];
if (tid > 14 && cmp[tid] == cmp[14]) ++cmp[tid];
#else
cmp[tid] = 0;
#pragma unroll
for (int i = 0; i < 16; i++)
{
cmp[tid] += (values[i] < values[tid]);
}
// Resolve elements with the same index.
#pragma unroll
for (int i = 0; i < 15; i++)
{
if (tid > 0 && cmp[tid] == cmp[i]) ++cmp[tid];
}
#endif
}
////////////////////////////////////////////////////////////////////////////////
// Load color block to shared mem
////////////////////////////////////////////////////////////////////////////////
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], int xrefs[16], int * sameColor)
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], int xrefs[16])
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
@ -144,8 +124,6 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
colorSums(colors, sums);
float3 axis = bestFitLine(colors, sums[0], kColorMetric);
*sameColor = (axis == make_float3(0, 0, 0));
dps[idx] = dot(colors[idx], axis);
#if __DEVICE_EMULATION__
@ -159,7 +137,7 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
}
}
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16], int * sameColor)
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16])
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
@ -189,11 +167,6 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
colorSums(colors, sums);
float3 axis = bestFitLine(colors, sums[0], kColorMetric);
*sameColor = (axis == make_float3(0, 0, 0));
// Single color compressor needs unweighted colors.
if (*sameColor) colors[idx] = rawColors[idx];
dps[idx] = dot(rawColors[idx], axis);
#if __DEVICE_EMULATION__
@ -214,7 +187,7 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
////////////////////////////////////////////////////////////////////////////////
// Round color to RGB565 and expand
////////////////////////////////////////////////////////////////////////////////
inline __device__ float3 roundAndExpand565(float3 v, ushort * w)
inline __device__ float3 roundAndExpand(float3 v, ushort * w)
{
v.x = rintf(__saturatef(v.x) * 31.0f);
v.y = rintf(__saturatef(v.y) * 63.0f);
@ -261,8 +234,8 @@ __device__ float evalPermutation4(const float3 * colors, uint permutation, ushor
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand565(a, start);
b = roundAndExpand565(b, end);
a = roundAndExpand(a, start);
b = roundAndExpand(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
@ -301,8 +274,8 @@ __device__ float evalPermutation3(const float3 * colors, uint permutation, ushor
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand565(a, start);
b = roundAndExpand565(b, end);
a = roundAndExpand(a, start);
b = roundAndExpand(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
@ -342,8 +315,8 @@ __device__ float evalPermutation4(const float3 * colors, float3 color_sum, uint
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand565(a, start);
b = roundAndExpand565(b, end);
a = roundAndExpand(a, start);
b = roundAndExpand(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
@ -378,8 +351,8 @@ __device__ float evalPermutation3(const float3 * colors, float3 color_sum, uint
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand565(a, start);
b = roundAndExpand565(b, end);
a = roundAndExpand(a, start);
b = roundAndExpand(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
@ -418,8 +391,8 @@ __device__ float evalPermutation4(const float3 * colors, const float * weights,
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand565(a, start);
b = roundAndExpand565(b, end);
a = roundAndExpand(a, start);
b = roundAndExpand(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
@ -459,8 +432,8 @@ __device__ float evalPermutation3(const float3 * colors, const float * weights,
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand565(a, start);
b = roundAndExpand565(b, end);
a = roundAndExpand(a, start);
b = roundAndExpand(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
@ -597,40 +570,6 @@ __device__ void evalAllPermutations(const float3 * colors, const float * weights
}
*/
__device__ void evalLevel4Permutations(const float3 * colors, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
{
const int idx = threadIdx.x;
float bestError = FLT_MAX;
for(int i = 0; i < 16; i++)
{
int pidx = idx + NUM_THREADS * i;
if (pidx >= 992) break;
ushort start, end;
uint permutation = permutations[pidx];
float error = evalPermutation4(colors, colorSum, permutation, &start, &end);
if (error < bestError)
{
bestError = error;
bestPermutation = permutation;
bestStart = start;
bestEnd = end;
}
}
if (bestStart < bestEnd)
{
swap(bestEnd, bestStart);
bestPermutation ^= 0x55555555; // Flip indices.
}
errors[idx] = bestError;
}
__device__ void evalLevel4Permutations(const float3 * colors, const float * weights, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
{
const int idx = threadIdx.x;
@ -666,6 +605,7 @@ __device__ void evalLevel4Permutations(const float3 * colors, const float * weig
}
////////////////////////////////////////////////////////////////////////////////
// Find index with minimum error
////////////////////////////////////////////////////////////////////////////////
@ -775,50 +715,22 @@ __device__ void saveBlockDXT1(ushort start, ushort end, uint permutation, int xr
result[bid].y = indices;
}
__device__ void saveSingleColorBlockDXT1(float3 color, uint2 * result)
{
const int bid = blockIdx.x;
int r = color.x * 255;
int g = color.y * 255;
int b = color.z * 255;
ushort color0 = (OMatch5[r][0] << 11) | (OMatch6[g][0] << 5) | OMatch5[b][0];
ushort color1 = (OMatch5[r][1] << 11) | (OMatch6[g][1] << 5) | OMatch5[b][1];
if (color0 < color1)
{
result[bid].x = (color0 << 16) | color1;
result[bid].y = 0xffffffff;
}
else
{
result[bid].x = (color1 << 16) | color0;
result[bid].y = 0xaaaaaaaa;
}
}
////////////////////////////////////////////////////////////////////////////////
// Compress color block
////////////////////////////////////////////////////////////////////////////////
__global__ void compressDXT1(const uint * permutations, const uint * image, uint2 * result)
__global__ void compress(const uint * permutations, const uint * image, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlock(image, colors, sums, xrefs, &sameColor);
loadColorBlock(image, colors, sums, xrefs);
__syncthreads();
if (sameColor)
{
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
return;
}
ushort bestStart, bestEnd;
uint bestPermutation;
@ -836,58 +748,18 @@ __global__ void compressDXT1(const uint * permutations, const uint * image, uint
}
}
__global__ void compressLevel4DXT1(const uint * permutations, const uint * image, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlock(image, colors, sums, xrefs, &sameColor);
__syncthreads();
if (sameColor)
{
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
return;
}
ushort bestStart, bestEnd;
uint bestPermutation;
__shared__ float errors[NUM_THREADS];
evalLevel4Permutations(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
// Use a parallel reduction to find minimum error.
const int minIdx = findMinError(errors);
// Only write the result of the winner thread.
if (threadIdx.x == minIdx)
{
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result);
}
}
__global__ void compressWeightedDXT1(const uint * permutations, const uint * image, uint2 * result)
__global__ void compressWeighted(const uint * permutations, const uint * image, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ float weights[16];
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlock(image, colors, sums, weights, xrefs, &sameColor);
loadColorBlock(image, colors, sums, weights, xrefs);
__syncthreads();
if (sameColor)
{
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
return;
}
ushort bestStart, bestEnd;
uint bestPermutation;
@ -973,8 +845,8 @@ __device__ void optimizeAlpha8(const float alphas[16], uchar & a0, uchar & a1)
float a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
a0 = roundAndExpand8(a);
a1 = roundAndExpand8(b);
a0 = roundAndExpand(a);
a1 = roundAndExpand(b);
}
*/
/*
@ -1106,17 +978,12 @@ extern "C" void setupCompressKernel(const float weights[3])
// Launch kernel
////////////////////////////////////////////////////////////////////////////////
extern "C" void compressKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
extern "C" void compressKernel(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
{
compressDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
compress<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}
extern "C" void compressKernelDXT1_Level4(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
extern "C" void compressWeightedKernel(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
{
compressLevel4DXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}
extern "C" void compressWeightedKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
{
compressWeightedDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
compressWeighted<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}

View File

@ -24,13 +24,13 @@
#include <nvcore/Debug.h>
#include <nvcore/Containers.h>
#include <nvmath/Color.h>
#include <nvmath/Fitting.h>
#include <nvimage/Image.h>
#include <nvimage/ColorBlock.h>
#include <nvimage/BlockDXT.h>
#include <nvtt/CompressionOptions.h>
#include <nvtt/OutputOptions.h>
#include <nvtt/QuickCompressDXT.h>
#include <nvtt/OptimalCompressDXT.h>
#include <nvtt/FastCompressDXT.h>
#include "CudaCompressDXT.h"
#include "CudaUtils.h"
@ -48,15 +48,29 @@ using namespace nvtt;
#if defined HAVE_CUDA
#define MAX_BLOCKS 8192U // 32768, 65535
extern "C" void setupCompressKernel(const float weights[3]);
extern "C" void compressKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressKernelDXT1_Level4(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressWeightedKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressKernel(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
extern "C" void compressWeightedKernel(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps);
#include "Bitmaps.h" // @@ Rename to BitmapTable.h
#include "Bitmaps.h"
// @@ Store this pointer in CompressionOptions. Allocate in ctor, free in dtor.
static uint * d_bitmaps = NULL;
static void doPrecomputation()
{
if (d_bitmaps != NULL) {
return;
}
// Upload bitmaps.
cudaMalloc((void**) &d_bitmaps, 992 * sizeof(uint));
cudaMemcpy(d_bitmaps, bitmaps, 992 * sizeof(uint), cudaMemcpyHostToDevice);
// @@ Check for errors.
// @@ Free allocated memory.
}
// Convert linear image to block linear.
static void convertToBlockLinear(const Image * image, uint * blockLinearImage)
@ -78,85 +92,53 @@ static void convertToBlockLinear(const Image * image, uint * blockLinearImage)
}
}
#endif
CudaCompressor::CudaCompressor() : m_bitmapTable(NULL), m_data(NULL), m_result(NULL)
{
#if defined HAVE_CUDA
// Allocate and upload bitmaps.
cudaMalloc((void**) &m_bitmapTable, 992 * sizeof(uint));
if (m_bitmapTable != NULL)
{
cudaMemcpy(m_bitmapTable, s_bitmapTable, 992 * sizeof(uint), cudaMemcpyHostToDevice);
}
// Allocate scratch buffers.
cudaMalloc((void**) &m_data, MAX_BLOCKS * 64U);
cudaMalloc((void**) &m_result, MAX_BLOCKS * 8U);
#endif
}
CudaCompressor::~CudaCompressor()
{
#if defined HAVE_CUDA
// Free device mem allocations.
cudaFree(m_data);
cudaFree(m_result);
cudaFree(m_bitmapTable);
#endif
}
bool CudaCompressor::isValid() const
{
#if defined HAVE_CUDA
if (cudaGetLastError() != cudaSuccess)
{
return false;
}
#endif
return m_data != NULL && m_result != NULL && m_bitmapTable != NULL;
}
#endif // defined HAVE_CUDA
// @@ This code is very repetitive and needs to be cleaned up.
void CudaCompressor::setImage(const Image * image, nvtt::AlphaMode alphaMode)
{
m_image = image;
m_alphaMode = alphaMode;
}
/// Compress image using CUDA.
void CudaCompressor::compressDXT1(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
void nv::cudaCompressDXT1(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
doPrecomputation();
// Image size in blocks.
const uint w = (m_image->width() + 3) / 4;
const uint h = (m_image->height() + 3) / 4;
const uint w = (image->width() + 3) / 4;
const uint h = (image->height() + 3) / 4;
uint imageSize = w * h * 16 * sizeof(Color32);
uint * blockLinearImage = (uint *) malloc(imageSize);
convertToBlockLinear(m_image, blockLinearImage); // @@ Do this in parallel with the GPU, or in the GPU!
convertToBlockLinear(image, blockLinearImage); // @@ Do this on the GPU!
const uint blockNum = w * h;
const uint compressedSize = blockNum * 8;
const uint blockMax = 32768; // 49152, 65535
clock_t start = clock();
// Allocate image in device memory.
uint * d_data = NULL;
cudaMalloc((void**) &d_data, min(imageSize, blockMax * 64U));
// Allocate result.
uint * d_result = NULL;
cudaMalloc((void**) &d_result, min(compressedSize, blockMax * 8U));
setupCompressKernel(compressionOptions.colorWeight.ptr());
// TODO: Add support for multiple GPUs.
uint bn = 0;
while(bn != blockNum)
{
uint count = min(blockNum - bn, MAX_BLOCKS);
uint count = min(blockNum - bn, blockMax);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
cudaMemcpy(d_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
compressKernelDXT1(count, m_data, m_result, m_bitmapTable);
compressKernel(count, d_data, d_result, d_bitmaps);
// Check for errors.
cudaError_t err = cudaGetLastError();
@ -171,7 +153,7 @@ void CudaCompressor::compressDXT1(const CompressionOptions::Private & compressio
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
cudaMemcpy(blockLinearImage, d_result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
@ -183,9 +165,11 @@ void CudaCompressor::compressDXT1(const CompressionOptions::Private & compressio
}
clock_t end = clock();
//printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
free(blockLinearImage);
cudaFree(d_data);
cudaFree(d_result);
#else
if (outputOptions.errorHandler != NULL)
@ -197,24 +181,35 @@ void CudaCompressor::compressDXT1(const CompressionOptions::Private & compressio
/// Compress image using CUDA.
void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
void nv::cudaCompressDXT3(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
doPrecomputation();
// Image size in blocks.
const uint w = (m_image->width() + 3) / 4;
const uint h = (m_image->height() + 3) / 4;
const uint w = (image->width() + 3) / 4;
const uint h = (image->height() + 3) / 4;
uint imageSize = w * h * 16 * sizeof(Color32);
uint * blockLinearImage = (uint *) malloc(imageSize);
convertToBlockLinear(m_image, blockLinearImage);
convertToBlockLinear(image, blockLinearImage);
const uint blockNum = w * h;
const uint compressedSize = blockNum * 8;
const uint blockMax = 32768; // 49152, 65535
// Allocate image in device memory.
uint * d_data = NULL;
cudaMalloc((void**) &d_data, min(imageSize, blockMax * 64U));
// Allocate result.
uint * d_result = NULL;
cudaMalloc((void**) &d_result, min(compressedSize, blockMax * 8U));
AlphaBlockDXT3 * alphaBlocks = NULL;
alphaBlocks = (AlphaBlockDXT3 *)malloc(min(compressedSize, MAX_BLOCKS * 8U));
alphaBlocks = (AlphaBlockDXT3 *)malloc(min(compressedSize, blockMax * 8U));
setupCompressKernel(compressionOptions.colorWeight.ptr());
@ -223,25 +218,18 @@ void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressio
uint bn = 0;
while(bn != blockNum)
{
uint count = min(blockNum - bn, MAX_BLOCKS);
uint count = min(blockNum - bn, blockMax);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
cudaMemcpy(d_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
if (m_alphaMode == AlphaMode_Transparency)
{
compressWeightedKernelDXT1(count, m_data, m_result, m_bitmapTable);
}
else
{
compressKernelDXT1_Level4(count, m_data, m_result, m_bitmapTable);
}
compressWeightedKernel(count, d_data, d_result, d_bitmaps);
// Compress alpha in parallel with the GPU.
for (uint i = 0; i < count; i++)
{
ColorBlock rgba(blockLinearImage + (bn + i) * 16);
OptimalCompress::compressDXT3A(rgba, alphaBlocks + i);
compressBlock(rgba, alphaBlocks + i);
}
// Check for errors.
@ -257,7 +245,7 @@ void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressio
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
cudaMemcpy(blockLinearImage, d_result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
@ -273,10 +261,12 @@ void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressio
}
clock_t end = clock();
//printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
free(alphaBlocks);
free(blockLinearImage);
cudaFree(d_data);
cudaFree(d_result);
#else
if (outputOptions.errorHandler != NULL)
@ -288,24 +278,35 @@ void CudaCompressor::compressDXT3(const CompressionOptions::Private & compressio
/// Compress image using CUDA.
void CudaCompressor::compressDXT5(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
void nv::cudaCompressDXT5(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
{
nvDebugCheck(cuda::isHardwarePresent());
#if defined HAVE_CUDA
doPrecomputation();
// Image size in blocks.
const uint w = (m_image->width() + 3) / 4;
const uint h = (m_image->height() + 3) / 4;
const uint w = (image->width() + 3) / 4;
const uint h = (image->height() + 3) / 4;
uint imageSize = w * h * 16 * sizeof(Color32);
uint * blockLinearImage = (uint *) malloc(imageSize);
convertToBlockLinear(m_image, blockLinearImage);
convertToBlockLinear(image, blockLinearImage);
const uint blockNum = w * h;
const uint compressedSize = blockNum * 8;
const uint blockMax = 32768; // 49152, 65535
// Allocate image in device memory.
uint * d_data = NULL;
cudaMalloc((void**) &d_data, min(imageSize, blockMax * 64U));
// Allocate result.
uint * d_result = NULL;
cudaMalloc((void**) &d_result, min(compressedSize, blockMax * 8U));
AlphaBlockDXT5 * alphaBlocks = NULL;
alphaBlocks = (AlphaBlockDXT5 *)malloc(min(compressedSize, MAX_BLOCKS * 8U));
alphaBlocks = (AlphaBlockDXT5 *)malloc(min(compressedSize, blockMax * 8U));
setupCompressKernel(compressionOptions.colorWeight.ptr());
@ -314,25 +315,18 @@ void CudaCompressor::compressDXT5(const CompressionOptions::Private & compressio
uint bn = 0;
while(bn != blockNum)
{
uint count = min(blockNum - bn, MAX_BLOCKS);
uint count = min(blockNum - bn, blockMax);
cudaMemcpy(m_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
cudaMemcpy(d_data, blockLinearImage + bn * 16, count * 64, cudaMemcpyHostToDevice);
// Launch kernel.
if (m_alphaMode == AlphaMode_Transparency)
{
compressWeightedKernelDXT1(count, m_data, m_result, m_bitmapTable);
}
else
{
compressKernelDXT1_Level4(count, m_data, m_result, m_bitmapTable);
}
compressWeightedKernel(count, d_data, d_result, d_bitmaps);
// Compress alpha in parallel with the GPU.
for (uint i = 0; i < count; i++)
{
ColorBlock rgba(blockLinearImage + (bn + i) * 16);
QuickCompress::compressDXT5A(rgba, alphaBlocks + i);
compressBlock_Iterative(rgba, alphaBlocks + i);
}
// Check for errors.
@ -348,7 +342,7 @@ void CudaCompressor::compressDXT5(const CompressionOptions::Private & compressio
}
// Copy result to host, overwrite swizzled image.
cudaMemcpy(blockLinearImage, m_result, count * 8, cudaMemcpyDeviceToHost);
cudaMemcpy(blockLinearImage, d_result, count * 8, cudaMemcpyDeviceToHost);
// Output result.
if (outputOptions.outputHandler != NULL)
@ -364,10 +358,198 @@ void CudaCompressor::compressDXT5(const CompressionOptions::Private & compressio
}
clock_t end = clock();
//printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
free(alphaBlocks);
free(blockLinearImage);
cudaFree(d_data);
cudaFree(d_result);
#else
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
#endif
}
#if defined HAVE_CUDA
class Task
{
public:
explicit Task(uint numBlocks) : blockMaxCount(numBlocks), blockCount(0)
{
// System memory allocations.
blockLinearImage = new uint[blockMaxCount * 16];
xrefs = new uint[blockMaxCount * 16];
// Device memory allocations.
cudaMalloc((void**) &d_blockLinearImage, blockMaxCount * 16 * sizeof(uint));
cudaMalloc((void**) &d_compressedImage, blockMaxCount * 8U);
// @@ Check for allocation errors.
}
~Task()
{
delete [] blockLinearImage;
delete [] xrefs;
cudaFree(d_blockLinearImage);
cudaFree(d_compressedImage);
}
void addColorBlock(const ColorBlock & rgba)
{
nvDebugCheck(!isFull());
// @@ Count unique colors?
/*
// Convert colors to vectors.
Array<Vector3> pointArray(16);
for(int i = 0; i < 16; i++) {
const Color32 color = rgba.color(i);
pointArray.append(Vector3(color.r, color.g, color.b));
}
// Find best fit line.
const Vector3 axis = Fit::bestLine(pointArray).direction();
// Project points to axis.
float dps[16];
uint * order = &xrefs[blockCount * 16];
for (uint i = 0; i < 16; ++i)
{
dps[i] = dot(pointArray[i], axis);
order[i] = i;
}
// Sort them.
for (uint i = 0; i < 16; ++i)
{
for (uint j = i; j > 0 && dps[j] < dps[j - 1]; --j)
{
swap(dps[j], dps[j - 1]);
swap(order[j], order[j - 1]);
}
}
*/
// Write sorted colors to blockLinearImage.
for(uint i = 0; i < 16; ++i)
{
// blockLinearImage[blockCount * 16 + i] = rgba.color(order[i]);
blockLinearImage[blockCount * 16 + i] = rgba.color(i);
}
++blockCount;
}
bool isFull()
{
nvDebugCheck(blockCount <= blockMaxCount);
return blockCount == blockMaxCount;
}
void flush(const OutputOptions::Private & outputOptions)
{
if (blockCount == 0)
{
// Nothing to do.
return;
}
// Copy input color blocks.
cudaMemcpy(d_blockLinearImage, blockLinearImage, blockCount * 64, cudaMemcpyHostToDevice);
// Launch kernel.
compressKernel(blockCount, d_blockLinearImage, d_compressedImage, d_bitmaps);
// Check for errors.
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
nvDebug("CUDA Error: %s\n", cudaGetErrorString(err));
if (outputOptions.errorHandler != NULL)
{
outputOptions.errorHandler->error(Error_CudaError);
}
}
// Copy result to host, overwrite swizzled image.
uint * compressedImage = blockLinearImage;
cudaMemcpy(compressedImage, d_compressedImage, blockCount * 8, cudaMemcpyDeviceToHost);
// @@ Sort block indices.
// Output result.
if (outputOptions.outputHandler != NULL)
{
// outputOptions.outputHandler->writeData(compressedImage, blockCount * 8);
}
blockCount = 0;
}
private:
const uint blockMaxCount;
uint blockCount;
uint * blockLinearImage;
uint * xrefs;
uint * d_blockLinearImage;
uint * d_compressedImage;
};
#endif // defined HAVE_CUDA
void nv::cudaCompressDXT1_2(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
{
#if defined HAVE_CUDA
const uint w = image->width();
const uint h = image->height();
const uint blockNum = ((w + 3) / 4) * ((h + 3) / 4);
const uint blockMax = 32768; // 49152, 65535
doPrecomputation();
setupCompressKernel(compressionOptions.colorWeight.ptr());
ColorBlock rgba;
Task task(min(blockNum, blockMax));
clock_t start = clock();
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(image, x, y);
task.addColorBlock(rgba);
if (task.isFull())
{
task.flush(outputOptions);
}
}
}
task.flush(outputOptions);
clock_t end = clock();
printf("\rCUDA time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
#else
if (outputOptions.errorHandler != NULL)

View File

@ -31,29 +31,11 @@ namespace nv
{
class Image;
class CudaCompressor
{
public:
CudaCompressor();
~CudaCompressor();
void cudaCompressDXT1(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void cudaCompressDXT3(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void cudaCompressDXT5(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
bool isValid() const;
void setImage(const Image * image, nvtt::AlphaMode alphaMode);
void compressDXT1(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT3(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
private:
uint * m_bitmapTable;
uint * m_data;
uint * m_result;
const Image * m_image;
nvtt::AlphaMode m_alphaMode;
};
void cudaCompressDXT1_2(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
} // nv namespace

View File

@ -82,10 +82,6 @@ inline __device__ __host__ void operator /=(float3 & b, float f)
b.z *= inv;
}
inline __device__ __host__ bool operator ==(float3 a, float3 b)
{
return a.x == b.x && a.y == b.y && a.z == b.z;
}
inline __device__ __host__ float dot(float3 a, float3 b)
{
@ -135,37 +131,15 @@ inline __device__ __host__ float3 firstEigenVector( float matrix[6] )
float z = v.x * matrix[2] + v.y * matrix[4] + v.z * matrix[5];
float m = max(max(x, y), z);
float iv = 1.0f / m;
#if __DEVICE_EMULATION__
if (m == 0.0f) iv = 0.0f;
#endif
v = make_float3(x*iv, y*iv, z*iv);
}
return v;
}
inline __device__ bool singleColor(const float3 * colors)
{
#if __DEVICE_EMULATION__
bool sameColor = false;
for (int i = 0; i < 16; i++)
{
sameColor &= (colors[idx] == colors[0]);
}
return sameColor;
#else
__shared__ int sameColor[16];
const int idx = threadIdx.x;
sameColor[idx] = (colors[idx] == colors[0]);
sameColor[idx] &= sameColor[idx^8];
sameColor[idx] &= sameColor[idx^4];
sameColor[idx] &= sameColor[idx^2];
sameColor[idx] &= sameColor[idx^1];
return sameColor[0];
#endif
}
inline __device__ void colorSums(const float3 * colors, float3 * sums)
{
#if __DEVICE_EMULATION__

View File

@ -22,7 +22,6 @@
// OTHER DEALINGS IN THE SOFTWARE.
#include <nvcore/Debug.h>
#include <nvcore/Library.h>
#include "CudaUtils.h"
#if defined HAVE_CUDA
@ -70,41 +69,12 @@ static bool isWow32()
#endif
static bool isCudaDriverAvailable(uint version)
{
#if NV_OS_WIN32
Library nvcuda("nvcuda.dll");
#else
Library nvcuda(NV_LIBRARY_NAME(cuda));
#endif
if (!nvcuda.isValid())
{
return false;
}
if (version > 2000)
{
void * address = nvcuda.bindSymbol("cuStreamCreate");
if (address == NULL) return false;
}
if (version > 2010)
{
void * address = nvcuda.bindSymbol("cuLoadDataEx");
if (address == NULL) return false;
}
return true;
}
/// Determine if CUDA is available.
bool nv::cuda::isHardwarePresent()
{
#if defined HAVE_CUDA
#if NV_OS_WIN32
//if (isWindowsVista()) return false;
if (isWindowsVista()) return false;
//if (isWindowsVista() || !isWow32()) return false;
#endif
int count = deviceCount();
@ -120,12 +90,6 @@ bool nv::cuda::isHardwarePresent()
return false;
}
// Make sure that CUDA driver matches CUDA runtime.
if (!isCudaDriverAvailable(CUDART_VERSION))
{
return false;
}
// @@ Make sure that warp size == 32
}
@ -151,35 +115,6 @@ int nv::cuda::deviceCount()
return 0;
}
int nv::cuda::getFastestDevice()
{
int max_gflops_device = 0;
#if defined HAVE_CUDA
int max_gflops = 0;
const int device_count = deviceCount();
int current_device = 0;
while (current_device < device_count)
{
cudaDeviceProp device_properties;
cudaGetDeviceProperties(&device_properties, current_device);
int gflops = device_properties.multiProcessorCount * device_properties.clockRate;
if (device_properties.major != -1 && device_properties.minor != -1)
{
if( gflops > max_gflops )
{
max_gflops = gflops;
max_gflops_device = current_device;
}
}
current_device++;
}
#endif
return max_gflops_device;
}
/// Activate the given devices.
bool nv::cuda::setDevice(int i)
{

View File

@ -31,7 +31,6 @@ namespace nv
{
bool isHardwarePresent();
int deviceCount();
int getFastestDevice();
bool setDevice(int i);
};

View File

@ -49,14 +49,6 @@
#define NVTT_VERSION 200
#define NVTT_DECLARE_PIMPL(Class) \
private: \
Class(const Class &); \
void operator=(const Class &); \
public: \
struct Private; \
Private & m
// Public interface.
namespace nvtt
@ -97,8 +89,6 @@ namespace nvtt
/// Compression options. This class describes the desired compression format and other compression settings.
struct CompressionOptions
{
NVTT_DECLARE_PIMPL(CompressionOptions);
NVTT_API CompressionOptions();
NVTT_API ~CompressionOptions();
@ -114,6 +104,10 @@ namespace nvtt
NVTT_API void setPixelFormat(unsigned int bitcount, unsigned int rmask, unsigned int gmask, unsigned int bmask, unsigned int amask);
NVTT_API void setQuantization(bool colorDithering, bool alphaDithering, bool binaryAlpha, int alphaThreshold = 127);
//private:
struct Private;
Private & m;
};
@ -176,8 +170,6 @@ namespace nvtt
/// Input options. Specify format and layout of the input texture.
struct InputOptions
{
NVTT_DECLARE_PIMPL(InputOptions);
NVTT_API InputOptions();
NVTT_API ~InputOptions();
@ -222,6 +214,10 @@ namespace nvtt
// Set resizing options.
NVTT_API void setMaxExtents(int d);
NVTT_API void setRoundMode(RoundMode mode);
//private:
struct Private;
Private & m;
};
@ -262,8 +258,6 @@ namespace nvtt
/// the compressor to the user.
struct OutputOptions
{
NVTT_DECLARE_PIMPL(OutputOptions);
NVTT_API OutputOptions();
NVTT_API ~OutputOptions();
@ -275,14 +269,16 @@ namespace nvtt
NVTT_API void setOutputHandler(OutputHandler * outputHandler);
NVTT_API void setErrorHandler(ErrorHandler * errorHandler);
NVTT_API void setOutputHeader(bool outputHeader);
//private:
struct Private;
Private & m;
};
/// Texture compressor.
struct Compressor
{
NVTT_DECLARE_PIMPL(Compressor);
NVTT_API Compressor();
NVTT_API ~Compressor();
@ -294,6 +290,10 @@ namespace nvtt
// Estimate the size of compressing the input with the given options.
NVTT_API int estimateSize(const InputOptions & inputOptions, const CompressionOptions & compressionOptions) const;
//private:
struct Private;
Private & m;
};

View File

@ -207,6 +207,7 @@ NVTT_API void nvttDestroyCompressionOptions(NvttCompressionOptions * compression
NVTT_API void nvttSetCompressionOptionsFormat(NvttCompressionOptions * compressionOptions, NvttFormat format);
NVTT_API void nvttSetCompressionOptionsQuality(NvttCompressionOptions * compressionOptions, NvttQuality quality);
NVTT_API void nvttSetCompressionOptionsColorWeights(NvttCompressionOptions * compressionOptions, float red, float green, float blue, float alpha);
NVTT_API void nvttEnableCompressionOptionsCudaCompression(NvttCompressionOptions * compressionOptions, NvttBoolean enable);
NVTT_API void nvttSetCompressionOptionsPixelFormat(NvttCompressionOptions * compressionOptions, unsigned int bitcount, unsigned int rmask, unsigned int gmask, unsigned int bmask, unsigned int amask);
NVTT_API void nvttSetCompressionOptionsQuantization(NvttCompressionOptions * compressionOptions, NvttBoolean colorDithering, NvttBoolean alphaDithering, NvttBoolean binaryAlpha, int alphaThreshold);

View File

@ -29,8 +29,6 @@
#include "colourblock.h"
#include <cfloat>
#include "fastclusterlookup.inl"
namespace squish {
FastClusterFit::FastClusterFit()
@ -99,6 +97,91 @@ void FastClusterFit::SetColourSet( ColourSet const* colours, int flags )
}
struct Precomp {
float alpha2_sum;
float beta2_sum;
float alphabeta_sum;
float factor;
};
static SQUISH_ALIGN_16 Precomp s_threeElement[153];
static SQUISH_ALIGN_16 Precomp s_fourElement[969];
void FastClusterFit::DoPrecomputation()
{
int i = 0;
// Three element clusters:
for( int c0 = 0; c0 <= 16; c0++) // At least two clusters.
{
for( int c1 = 0; c1 <= 16-c0; c1++)
{
int c2 = 16 - c0 - c1;
/*if (c2 == 16) {
// a = b = x2 / 16
s_threeElement[i].alpha2_sum = 0;
s_threeElement[i].beta2_sum = 16;
s_threeElement[i].alphabeta_sum = -16;
s_threeElement[i].factor = 1.0f / 256.0f;
}
else if (c0 == 16) {
// a = b = x0 / 16
s_threeElement[i].alpha2_sum = 16;
s_threeElement[i].beta2_sum = 0;
s_threeElement[i].alphabeta_sum = -16;
s_threeElement[i].factor = 1.0f / 256.0f;
}
else*/ {
s_threeElement[i].alpha2_sum = c0 + c1 * 0.25f;
s_threeElement[i].beta2_sum = c2 + c1 * 0.25f;
s_threeElement[i].alphabeta_sum = c1 * 0.25f;
s_threeElement[i].factor = 1.0f / (s_threeElement[i].alpha2_sum * s_threeElement[i].beta2_sum - s_threeElement[i].alphabeta_sum * s_threeElement[i].alphabeta_sum);
}
i++;
}
}
//printf("%d three cluster elements\n", i);
// Four element clusters:
i = 0;
for( int c0 = 0; c0 <= 16; c0++)
{
for( int c1 = 0; c1 <= 16-c0; c1++)
{
for( int c2 = 0; c2 <= 16-c0-c1; c2++)
{
int c3 = 16 - c0 - c1 - c2;
/*if (c3 == 16) {
// a = b = x3 / 16
s_fourElement[i].alpha2_sum = 16.0f;
s_fourElement[i].beta2_sum = 0.0f;
s_fourElement[i].alphabeta_sum = -16.0f;
s_fourElement[i].factor = 1.0f / 256.0f;
}
else if (c0 == 16) {
// a = b = x0 / 16
s_fourElement[i].alpha2_sum = 0.0f;
s_fourElement[i].beta2_sum = 16.0f;
s_fourElement[i].alphabeta_sum = -16.0f;
s_fourElement[i].factor = 1.0f / 256.0f;
}
else*/ {
s_fourElement[i].alpha2_sum = c0 + c1 * (4.0f/9.0f) + c2 * (1.0f/9.0f);
s_fourElement[i].beta2_sum = c3 + c2 * (4.0f/9.0f) + c1 * (1.0f/9.0f);
s_fourElement[i].alphabeta_sum = (c1 + c2) * (2.0f/9.0f);
s_fourElement[i].factor = 1.0f / (s_fourElement[i].alpha2_sum * s_fourElement[i].beta2_sum - s_fourElement[i].alphabeta_sum * s_fourElement[i].alphabeta_sum);
}
i++;
}
}
}
//printf("%d four cluster elements\n", i);
}
void FastClusterFit::SetMetric(float r, float g, float b)
{
#if SQUISH_USE_SIMD

View File

@ -44,6 +44,8 @@ public:
void SetMetric(float r, float g, float b);
float GetBestError() const;
static void DoPrecomputation();
// Make them public
virtual void Compress3( void* block );
virtual void Compress4( void* block );

File diff suppressed because it is too large Load Diff

View File

@ -50,16 +50,6 @@ public:
return *this;
}
Vec4( const float * v )
{
union { vector float v; float c[4]; } u;
u.c[0] = v[0];
u.c[1] = v[1];
u.c[2] = v[2];
u.c[3] = v[3];
m_v = u.v;
}
Vec4( float x, float y, float z, float w )
{
union { vector float v; float c[4]; } u;

View File

@ -42,11 +42,11 @@ struct MyOutputHandler : public nvtt::OutputHandler
MyOutputHandler(const char * name) : total(0), progress(0), percentage(0), stream(new nv::StdOutputStream(name)) {}
virtual ~MyOutputHandler() { delete stream; }
void setTotal(int64 t)
virtual void setTotal(int64 t)
{
total = t + 128;
}
void setDisplayProgress(bool b)
virtual void setDisplayProgress(bool b)
{
verbose = b;
}
@ -373,6 +373,7 @@ int main(int argc, char *argv[])
inputOptions.setMipmapGeneration(false);
}
nvtt::CompressionOptions compressionOptions;
compressionOptions.setFormat(format);
if (fast)
@ -396,21 +397,6 @@ int main(int argc, char *argv[])
compressionOptions.setExternalCompressor(externalCompressor);
}
if (format == nvtt::Format_RGB)
{
compressionOptions.setQuantization(true, false, false);
//compressionOptions.setPixelFormat(16, 0xF000, 0x0F00, 0x00F0, 0x000F);
compressionOptions.setPixelFormat(16,
0x0F00,
0x00F0,
0x000F,
0xF000);
// 0x003F0000,
// 0x00003F00,
// 0x0000003F,
// 0x3F000000);
}
MyErrorHandler errorHandler;
MyOutputHandler outputHandler(output);

View File

@ -129,15 +129,12 @@ struct NormalError
}
void done()
{
if (samples)
{
ade /= samples;
mse /= samples * 3;
rmse = sqrt(mse);
psnr = (rmse == 0) ? 999.0f : 20.0f * log10(255.0f / rmse);
}
}
void print()
{

View File

@ -73,12 +73,10 @@ int main(int argc, char *argv[])
float scale = 0.5f;
float gamma = 2.2f;
nv::AutoPtr<nv::Filter> filter;
nv::Filter * filter = NULL;
nv::Path input;
nv::Path output;
nv::FloatImage::WrapMode wrapMode = nv::FloatImage::WrapMode_Mirror;
// Parse arguments.
for (int i = 1; i < argc; i++)
{
@ -110,18 +108,9 @@ int main(int argc, char *argv[])
else if (strcmp("lanczos", argv[i]) == 0) filter = new nv::LanczosFilter();
else if (strcmp("kaiser", argv[i]) == 0) {
filter = new nv::KaiserFilter(3);
((nv::KaiserFilter *)filter.ptr())->setParameters(4.0f, 1.0f);
((nv::KaiserFilter *)filter)->setParameters(4.0f, 1.0f);
}
}
else if (strcmp("-f", argv[i]) == 0)
{
if (i+1 == argc) break;
i++;
if (strcmp("mirror", argv[i]) == 0) wrapMode = nv::FloatImage::WrapMode_Mirror;
else if (strcmp("repeat", argv[i]) == 0) wrapMode = nv::FloatImage::WrapMode_Repeat;
else if (strcmp("clamp", argv[i]) == 0) wrapMode = nv::FloatImage::WrapMode_Clamp;
}
else if (argv[i][0] != '-')
{
input = argv[i];
@ -151,10 +140,6 @@ int main(int argc, char *argv[])
printf(" * mitchell\n");
printf(" * lanczos\n");
printf(" * kaiser\n");
printf(" -w mode One of the following: (default = 'mirror')\n");
printf(" * mirror\n");
printf(" * repeat\n");
printf(" * clamp\n");
return 1;
}
@ -170,14 +155,15 @@ int main(int argc, char *argv[])
nv::FloatImage fimage(&image);
fimage.toLinear(0, 3, gamma);
nv::AutoPtr<nv::FloatImage> fresult(fimage.resize(*filter, uint(image.width() * scale), uint(image.height() * scale), wrapMode));
nv::AutoPtr<nv::FloatImage> fresult(fimage.downSample(*filter, uint(image.width() * scale), uint(image.height() * scale), nv::FloatImage::WrapMode_Mirror));
nv::AutoPtr<nv::Image> result(fresult->createImageGammaCorrect(gamma));
result->setFormat(nv::Image::Format_ARGB);
nv::StdOutputStream stream(output);
nv::ImageIO::saveTGA(stream, result.ptr()); // @@ Add generic save function. Add support for png too.
delete filter;
return 0;
}