mirror of
https://github.com/drewcassidy/vector-victor.git
synced 2024-09-01 14:58:35 +00:00
Compare commits
No commits in common. "bd1bde165715a5e0fb50f341799b861aca5725c6" and "e2a2bc7529a5b3d0e22075bdd2f9238af5e83d00" have entirely different histories.
bd1bde1657
...
e2a2bc7529
@ -124,7 +124,7 @@ impl<T: Copy + Default + Real, const N: usize> LUDecomposition<T, N> {
|
|||||||
/// This is equivalent to [`LUDecompose::det`] while allowing the LU decomposition
|
/// This is equivalent to [`LUDecompose::det`] while allowing the LU decomposition
|
||||||
/// to be reused
|
/// to be reused
|
||||||
pub fn det(&self) -> T {
|
pub fn det(&self) -> T {
|
||||||
self.parity * self.lu.diagonals().fold(T::one(), |l, &r| l * r)
|
self.parity * self.lu.diagonals().fold(T::one(), T::mul)
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Calculate the inverse of the original matrix, such that $bbM xx bbM^{-1} = bbI$
|
/// Calculate the inverse of the original matrix, such that $bbM xx bbM^{-1} = bbI$
|
||||||
|
66
src/identities.rs
Normal file
66
src/identities.rs
Normal file
@ -0,0 +1,66 @@
|
|||||||
|
use crate::Matrix;
|
||||||
|
use num_traits::{Bounded, One, Zero};
|
||||||
|
|
||||||
|
// Identity
|
||||||
|
impl<T: Copy + Zero + One, const N: usize> Matrix<T, N, N> {
|
||||||
|
/// Create an identity matrix, a square matrix where the diagonals are 1 and all other elements
|
||||||
|
/// are 0.
|
||||||
|
/// for example,
|
||||||
|
///
|
||||||
|
/// $bbI = [[1,0,0],[0,1,0],[0,0,1]]$
|
||||||
|
///
|
||||||
|
/// Matrix multiplication between a matrix and the identity matrix always results in itself
|
||||||
|
///
|
||||||
|
/// $bbA xx bbI = bbA$
|
||||||
|
///
|
||||||
|
/// # Examples
|
||||||
|
/// ```
|
||||||
|
/// # use vector_victor::Matrix;
|
||||||
|
/// let i = Matrix::<i32,3,3>::identity();
|
||||||
|
/// assert_eq!(i, Matrix::mat([[1,0,0],[0,1,0],[0,0,1]]))
|
||||||
|
/// ```
|
||||||
|
///
|
||||||
|
/// Note that the identity only exists for matrices that are square, so this doesnt work:
|
||||||
|
/// ```compile_fail
|
||||||
|
/// # use vector_victor::Matrix;
|
||||||
|
/// let i = Matrix::<i32,4,2>::identity();
|
||||||
|
/// ```
|
||||||
|
#[must_use]
|
||||||
|
pub fn identity() -> Self {
|
||||||
|
let mut result = Self::zero();
|
||||||
|
for i in 0..N {
|
||||||
|
result[(i, i)] = T::one();
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Zero
|
||||||
|
impl<T: Copy + Zero, const M: usize, const N: usize> Zero for Matrix<T, M, N> {
|
||||||
|
fn zero() -> Self {
|
||||||
|
Matrix::fill(T::zero())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn is_zero(&self) -> bool {
|
||||||
|
self.elements().all(|e| e.is_zero())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// One
|
||||||
|
impl<T: Copy + One, const M: usize, const N: usize> One for Matrix<T, M, N> {
|
||||||
|
fn one() -> Self {
|
||||||
|
Matrix::fill(T::one())
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// min_value and max_value
|
||||||
|
// LowerBounded and UpperBounded are automatically implemented from this
|
||||||
|
impl<T: Copy + Bounded, const N: usize, const M: usize> Bounded for Matrix<T, N, M> {
|
||||||
|
fn min_value() -> Self {
|
||||||
|
Self::fill(T::min_value())
|
||||||
|
}
|
||||||
|
|
||||||
|
fn max_value() -> Self {
|
||||||
|
Self::fill(T::max_value())
|
||||||
|
}
|
||||||
|
}
|
66
src/index.rs
66
src/index.rs
@ -1,78 +1,12 @@
|
|||||||
//! Helper trait for ergonomic matrix subscripting
|
|
||||||
|
|
||||||
use std::fmt::Debug;
|
use std::fmt::Debug;
|
||||||
|
|
||||||
/** Trait implemented by types that can be used as a matrix index
|
|
||||||
|
|
||||||
There are currently two implementations:
|
|
||||||
[`usize`](#impl-Index2D-for-usize) and [`(usize,usize)`](#impl-Index2D-for-(usize,+usize))
|
|
||||||
|
|
||||||
# Examples
|
|
||||||
Indexing by a `usize` indexes starting at the first element and
|
|
||||||
increments linearly in row-major order. This is especially useful for column vectors.
|
|
||||||
|
|
||||||
```
|
|
||||||
# use vector_victor::{Matrix, Vector};
|
|
||||||
let m = Matrix::mat([[1,2,3],[4,5,6],[7,8,9]]);
|
|
||||||
assert_eq!(m[0], 1);
|
|
||||||
assert_eq!(m[4], 5);
|
|
||||||
assert_eq!(m[7], 8);
|
|
||||||
|
|
||||||
let v = Vector::vec([4,8,15,16,23,42]);
|
|
||||||
assert_eq!(v[2], 15); // just like a std::vec
|
|
||||||
```
|
|
||||||
|
|
||||||
Indexing by a `(usize,usize)` indexes by row and column
|
|
||||||
```
|
|
||||||
# use vector_victor::{Matrix, Vector};
|
|
||||||
let m = Matrix::mat([[1,2,3],[4,5,6],[7,8,9]]);
|
|
||||||
assert_eq!(m[(0,0)], 1);
|
|
||||||
assert_eq!(m[(1,1)], 5);
|
|
||||||
assert_eq!(m[(2,1)], 8);
|
|
||||||
``` */
|
|
||||||
pub trait Index2D: Copy + Debug {
|
pub trait Index2D: Copy + Debug {
|
||||||
/** Convert an index to its 1-D linear interpretation, given the `width` and `height` of the
|
|
||||||
matrix being subscripted.
|
|
||||||
|
|
||||||
If the index is out of bounds for the given dimensions, this returns `None`,
|
|
||||||
otherwise it returns `Some(usize)`
|
|
||||||
|
|
||||||
# Examples
|
|
||||||
```
|
|
||||||
# use vector_victor::index::Index2D;
|
|
||||||
assert_eq!(
|
|
||||||
(1usize,2usize).to_1d(3,3),
|
|
||||||
Some(5),
|
|
||||||
"(1,2) is index 5 in a 3×3 matrix");
|
|
||||||
assert_eq!(
|
|
||||||
(3usize, 2usize).to_1d(3,3),
|
|
||||||
None,
|
|
||||||
"row 3, column 2 is out of bounds for a 3×3 matrix");
|
|
||||||
``` */
|
|
||||||
#[inline(always)]
|
#[inline(always)]
|
||||||
fn to_1d(self, height: usize, width: usize) -> Option<usize> {
|
fn to_1d(self, height: usize, width: usize) -> Option<usize> {
|
||||||
let (r, c) = self.to_2d(height, width)?;
|
let (r, c) = self.to_2d(height, width)?;
|
||||||
Some(r * width + c)
|
Some(r * width + c)
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Convert an index to its 2-D interpretation, given the `width` and `height` of the
|
|
||||||
matrix being subscripted.
|
|
||||||
|
|
||||||
If the index is out of bounds for the given dimensions, this returns `None`,
|
|
||||||
otherwise it returns `Some((usize, usize))`
|
|
||||||
|
|
||||||
# Examples
|
|
||||||
```
|
|
||||||
# use vector_victor::index::Index2D;
|
|
||||||
assert_eq!(
|
|
||||||
5usize.to_2d(3,3),
|
|
||||||
Some((1usize,2usize)),
|
|
||||||
"index 5 is at row 1 column 2 in a 3×3 matrix");
|
|
||||||
assert_eq!(
|
|
||||||
10usize.to_2d(3,3),
|
|
||||||
None,
|
|
||||||
"a 3×3 matrix only has 9 elements, so index 10 is out of bounds.");
|
|
||||||
``` */
|
|
||||||
fn to_2d(self, height: usize, width: usize) -> Option<(usize, usize)>;
|
fn to_2d(self, height: usize, width: usize) -> Option<(usize, usize)>;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
532
src/lib.rs
532
src/lib.rs
@ -1,22 +1,22 @@
|
|||||||
extern crate core;
|
extern crate core;
|
||||||
|
|
||||||
use index::Index2D;
|
use index::Index2D;
|
||||||
use num_traits::{Bounded, One, Zero};
|
|
||||||
use std::cmp::min;
|
use std::cmp::min;
|
||||||
use std::fmt::Debug;
|
use std::fmt::Debug;
|
||||||
use std::iter::{zip, Flatten};
|
use std::iter::{zip, Flatten};
|
||||||
use std::ops::{Index, IndexMut};
|
use std::ops::{Index, IndexMut};
|
||||||
|
|
||||||
pub mod decompose;
|
pub mod decompose;
|
||||||
|
mod identities;
|
||||||
pub mod index;
|
pub mod index;
|
||||||
mod math;
|
mod math;
|
||||||
mod ops;
|
mod ops;
|
||||||
|
|
||||||
mod util;
|
mod util;
|
||||||
|
|
||||||
/** A 2D array of values which can be operated upon.
|
/// A 2D array of values which can be operated upon.
|
||||||
|
///
|
||||||
Matrices have a fixed size known at compile time */
|
/// Matrices have a fixed size known at compile time
|
||||||
#[derive(Debug, Copy, Clone, PartialEq)]
|
#[derive(Debug, Copy, Clone, PartialEq)]
|
||||||
pub struct Matrix<T, const M: usize, const N: usize>
|
pub struct Matrix<T, const M: usize, const N: usize>
|
||||||
where
|
where
|
||||||
@ -37,87 +37,22 @@ impl<T: Copy + Default, const M: usize, const N: usize> Default for Matrix<T, M,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Zero
|
|
||||||
impl<T: Copy + Zero, const M: usize, const N: usize> Zero for Matrix<T, M, N> {
|
|
||||||
fn zero() -> Self {
|
|
||||||
Matrix::fill(T::zero())
|
|
||||||
}
|
|
||||||
|
|
||||||
fn is_zero(&self) -> bool {
|
|
||||||
self.elements().all(|e| e.is_zero())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// One
|
|
||||||
impl<T: Copy + One, const M: usize, const N: usize> One for Matrix<T, M, N> {
|
|
||||||
fn one() -> Self {
|
|
||||||
Matrix::fill(T::one())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// min_value and max_value
|
|
||||||
// LowerBounded and UpperBounded are automatically implemented from this
|
|
||||||
impl<T: Copy + Bounded, const N: usize, const M: usize> Bounded for Matrix<T, N, M> {
|
|
||||||
fn min_value() -> Self {
|
|
||||||
Self::fill(T::min_value())
|
|
||||||
}
|
|
||||||
|
|
||||||
fn max_value() -> Self {
|
|
||||||
Self::fill(T::max_value())
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Identity
|
|
||||||
impl<T: Copy + Zero + One, const N: usize> Matrix<T, N, N> {
|
|
||||||
/** Create an identity matrix, a square matrix where the diagonals are 1 and
|
|
||||||
all other elements are 0.
|
|
||||||
|
|
||||||
for example,
|
|
||||||
|
|
||||||
$bbI = \[\[1,0,0],\[0,1,0],\[0,0,1]]$
|
|
||||||
|
|
||||||
Matrix multiplication between a matrix and the identity matrix always results in itself
|
|
||||||
|
|
||||||
$bbA xx bbI = bbA$
|
|
||||||
|
|
||||||
# Examples
|
|
||||||
```
|
|
||||||
# use vector_victor::Matrix;
|
|
||||||
let i = Matrix::<i32,3,3>::identity();
|
|
||||||
assert_eq!(i, Matrix::mat([[1, 0, 0],
|
|
||||||
[0, 1, 0],
|
|
||||||
[0, 0, 1]]))
|
|
||||||
```
|
|
||||||
|
|
||||||
Note that the identity only exists for matrices that are square, so this doesnt work:
|
|
||||||
```compile_fail
|
|
||||||
# use vector_victor::Matrix;
|
|
||||||
let i = Matrix::<i32,4,2>::identity();
|
|
||||||
``` */
|
|
||||||
#[must_use]
|
|
||||||
pub fn identity() -> Self {
|
|
||||||
let mut result = Self::zero();
|
|
||||||
for i in 0..N {
|
|
||||||
result[(i, i)] = T::one();
|
|
||||||
}
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Matrix constructors
|
// Matrix constructors
|
||||||
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||||
/** Generate a new matrix from a 2D Array
|
/// Generate a new matrix from a 2D Array
|
||||||
|
///
|
||||||
# Arguments
|
/// # Arguments
|
||||||
|
///
|
||||||
* `data`: A 2D array of elements to copy into the new matrix
|
/// * `data`: A 2D array of elements to copy into the new matrix
|
||||||
|
///
|
||||||
# Examples
|
/// returns: Matrix<T, M, N>
|
||||||
|
///
|
||||||
```
|
/// # Examples
|
||||||
# use vector_victor::Matrix;
|
///
|
||||||
let a = Matrix::mat([[1,2,3,4];4]);
|
/// ```
|
||||||
``` */
|
/// # use vector_victor::Matrix;
|
||||||
|
/// let a = Matrix::mat([[1,2,3,4];4]);
|
||||||
|
/// ```
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn mat(data: [[T; N]; M]) -> Self {
|
pub fn mat(data: [[T; N]; M]) -> Self {
|
||||||
assert!(M > 0, "Matrix must have at least 1 row");
|
assert!(M > 0, "Matrix must have at least 1 row");
|
||||||
@ -125,19 +60,22 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
Matrix::<T, M, N> { data }
|
Matrix::<T, M, N> { data }
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Generate a new matrix from a single scalar
|
/// Generate a new matrix from a single scalar
|
||||||
|
///
|
||||||
# Arguments
|
/// # Arguments
|
||||||
|
///
|
||||||
* `scalar`: Scalar value to copy into the new matrix.
|
/// * `scalar`: Scalar value to copy into the new matrix.
|
||||||
|
///
|
||||||
# Examples
|
/// returns: Matrix<T, M, N>
|
||||||
|
///
|
||||||
```
|
/// # Examples
|
||||||
# use vector_victor::Matrix;
|
///
|
||||||
// these are equivalent
|
/// ```
|
||||||
assert_eq!(Matrix::<i32,4,4>::fill(5), Matrix::mat([[5;4];4]))
|
/// # use vector_victor::Matrix;
|
||||||
``` */
|
/// let my_matrix = Matrix::<i32,4,4>::fill(5);
|
||||||
|
/// // is equivalent to
|
||||||
|
/// assert_eq!(my_matrix, Matrix::mat([[5;4];4]))
|
||||||
|
/// ```
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn fill(scalar: T) -> Matrix<T, M, N> {
|
pub fn fill(scalar: T) -> Matrix<T, M, N> {
|
||||||
assert!(M > 0, "Matrix must have at least 1 row");
|
assert!(M > 0, "Matrix must have at least 1 row");
|
||||||
@ -147,26 +85,22 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Create a matrix from an iterator of vectors
|
/// Create a matrix from an iterator of vectors
|
||||||
|
///
|
||||||
# Arguments
|
/// # Arguments
|
||||||
|
///
|
||||||
* `iter`: iterator of vectors to copy into rows
|
/// * `iter`: iterator of vectors to copy into rows
|
||||||
|
///
|
||||||
# Examples
|
/// returns: Matrix<T, M, N>
|
||||||
|
///
|
||||||
The following is another way of performing [`Matrix::transpose()`]
|
/// # Examples
|
||||||
```
|
///
|
||||||
# use vector_victor::Matrix;
|
/// ```
|
||||||
let my_matrix = Matrix::mat([[1, 2, 3],
|
/// # use vector_victor::Matrix;
|
||||||
[4, 5, 6]]);
|
/// let my_matrix = Matrix::mat([[1,2,3],[4,5,6]]);
|
||||||
|
/// let transpose : Matrix<_,3,2>= Matrix::from_rows(my_matrix.cols());
|
||||||
let transpose : Matrix<_,3,2>= Matrix::from_rows(my_matrix.cols());
|
/// assert_eq!(transpose, Matrix::mat([[1,4],[2,5],[3,6]]))
|
||||||
|
/// ```
|
||||||
assert_eq!(transpose, Matrix::mat([[1, 4],
|
|
||||||
[2, 5],
|
|
||||||
[3, 6]]))
|
|
||||||
``` */
|
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn from_rows<I>(iter: I) -> Self
|
pub fn from_rows<I>(iter: I) -> Self
|
||||||
where
|
where
|
||||||
@ -180,26 +114,22 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
result
|
result
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Create a matrix from an iterator of vectors
|
/// Create a matrix from an iterator of vectors
|
||||||
|
///
|
||||||
# Arguments
|
/// # Arguments
|
||||||
|
///
|
||||||
* `iter`: iterator of vectors to copy into columns
|
/// * `iter`: iterator of vectors to copy into columns
|
||||||
|
///
|
||||||
# Examples
|
/// returns: Matrix<T, M, N>
|
||||||
|
///
|
||||||
The following is another way of performing [`Matrix::transpose()`]
|
/// # Examples
|
||||||
```
|
///
|
||||||
# use vector_victor::Matrix;
|
/// ```
|
||||||
let my_matrix = Matrix::mat([[1, 2, 3],
|
/// # use vector_victor::Matrix;
|
||||||
[4, 5, 6]]);
|
/// let my_matrix = Matrix::mat([[1,2,3],[4,5,6]]);
|
||||||
|
/// let transpose : Matrix<_,3,2>= Matrix::from_cols(my_matrix.rows());
|
||||||
let transpose : Matrix<_,3,2>= Matrix::from_cols(my_matrix.rows());
|
/// assert_eq!(transpose, Matrix::mat([[1,4],[2,5],[3,6]]))
|
||||||
|
/// ```
|
||||||
assert_eq!(transpose, Matrix::mat([[1, 4],
|
|
||||||
[2, 5],
|
|
||||||
[3, 6]]))
|
|
||||||
``` */
|
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn from_cols<I>(iter: I) -> Self
|
pub fn from_cols<I>(iter: I) -> Self
|
||||||
where
|
where
|
||||||
@ -216,15 +146,16 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
|
|
||||||
// Vector constructor
|
// Vector constructor
|
||||||
impl<T: Copy, const N: usize> Vector<T, N> {
|
impl<T: Copy, const N: usize> Vector<T, N> {
|
||||||
/** Create a vector from a 1D array.
|
/// Create a vector from a 1D array.
|
||||||
Note that vectors are always column vectors unless explicitly instantiated as row vectors
|
/// Note that vectors are always column vectors unless explicitly instantiated as row vectors
|
||||||
|
///
|
||||||
# Examples
|
/// # Examples
|
||||||
```
|
/// ```
|
||||||
# use vector_victor::{Matrix, Vector};
|
/// # use vector_victor::{Matrix, Vector};
|
||||||
// these are equivalent
|
/// let my_vector = Vector::vec([1,2,3,4]);
|
||||||
assert_eq!(Vector::vec([1,2,3,4]), Matrix::mat([[1],[2],[3],[4]]));
|
/// // is equivalent to
|
||||||
``` */
|
/// assert_eq!(my_vector, Matrix::mat([[1],[2],[3],[4]]));
|
||||||
|
/// ```
|
||||||
pub fn vec(data: [T; N]) -> Self {
|
pub fn vec(data: [T; N]) -> Self {
|
||||||
assert!(N > 0, "Vector must have at least 1 element");
|
assert!(N > 0, "Vector must have at least 1 element");
|
||||||
return Vector::<T, N> {
|
return Vector::<T, N> {
|
||||||
@ -235,99 +166,55 @@ impl<T: Copy, const N: usize> Vector<T, N> {
|
|||||||
|
|
||||||
// ACCESSORS AND MUTATORS
|
// ACCESSORS AND MUTATORS
|
||||||
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
||||||
/** Returns an iterator over the elements of the matrix in row-major order.
|
/// Returns an iterator over the elements of the matrix in row-major order.
|
||||||
|
///
|
||||||
This is identical to the behavior of [`IntoIterator`](#associatedtype.IntoIter)
|
/// # Examples
|
||||||
|
/// ```
|
||||||
# Examples
|
/// # use vector_victor::Matrix;
|
||||||
```
|
/// let my_matrix = Matrix::mat([[1,2],[3,4]]);
|
||||||
# use vector_victor::Matrix;
|
/// assert!(vec![1,2,3,4].iter().eq(my_matrix.elements()))
|
||||||
let my_matrix = Matrix::mat([[1, 2],
|
/// ```
|
||||||
[3, 4]]);
|
|
||||||
|
|
||||||
itertools::assert_equal(my_matrix.elements(), [1,2,3,4].iter())
|
|
||||||
``` */
|
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn elements<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
|
pub fn elements<'a>(&'a self) -> impl Iterator<Item = &'a T> + 'a {
|
||||||
self.data.iter().flatten()
|
self.data.iter().flatten()
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Returns a mutable iterator over the elements of the matrix in row-major order.
|
/// Returns a mutable iterator over the elements of the matrix in row-major order.
|
||||||
|
|
||||||
# Examples
|
|
||||||
```
|
|
||||||
# use vector_victor::Matrix;
|
|
||||||
let mut my_matrix = Matrix::mat([[1, 2],
|
|
||||||
[3, 4]]);
|
|
||||||
|
|
||||||
for elem in my_matrix.elements_mut() {*elem += 2;}
|
|
||||||
itertools::assert_equal(my_matrix.elements(), [3,4,5,6].iter())
|
|
||||||
``` */
|
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn elements_mut<'s>(&'s mut self) -> impl Iterator<Item = &'s mut T> + 's {
|
pub fn elements_mut<'a>(&'a mut self) -> impl Iterator<Item = &'a mut T> + 'a {
|
||||||
self.data.iter_mut().flatten()
|
self.data.iter_mut().flatten()
|
||||||
}
|
}
|
||||||
|
|
||||||
/** returns an iterator over the elements along the diagonal of a matrix
|
/// returns an iterator over the elements along the diagonal of a matrix
|
||||||
|
|
||||||
# Examples
|
|
||||||
```
|
|
||||||
# use vector_victor::Matrix;
|
|
||||||
let my_matrix = Matrix::mat([[1, 2, 3],
|
|
||||||
[4, 5, 6],
|
|
||||||
[7, 8, 9],
|
|
||||||
[10,11,12]]);
|
|
||||||
|
|
||||||
itertools::assert_equal(my_matrix.diagonals(), [1,5,9].iter())
|
|
||||||
``` */
|
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
|
pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
|
||||||
(0..min(N, M)).map(|n| &self[(n, n)])
|
(0..min(N, M)).map(|n| self[(n, n)])
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Returns an iterator over the elements directly below the diagonal of a matrix
|
/// Returns an iterator over the elements directly below the diagonal of a matrix
|
||||||
|
|
||||||
# Examples
|
|
||||||
```
|
|
||||||
# use vector_victor::Matrix;
|
|
||||||
let my_matrix = Matrix::mat([[1, 2, 3],
|
|
||||||
[4, 5, 6],
|
|
||||||
[7, 8, 9],
|
|
||||||
[10,11,12]]);
|
|
||||||
|
|
||||||
itertools::assert_equal(my_matrix.subdiagonals(), [4,8,12].iter());
|
|
||||||
``` */
|
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
|
pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's {
|
||||||
(0..min(N, M - 1)).map(|n| &self[(n + 1, n)])
|
(0..min(N, M) - 1).map(|n| self[(n, n + 1)])
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Returns a reference to the element at that position in the matrix, or `None` if out of bounds.
|
/// Returns a reference to the element at that position in the matrix, or `None` if out of bounds.
|
||||||
|
///
|
||||||
[`Index`](#impl-Index%3CI%3E-for-Matrix%3CT,+M,+N%3E) behaves similarly,
|
/// # Examples
|
||||||
but will panic if the index is out of bounds instead of returning an option
|
///
|
||||||
|
/// ```
|
||||||
# Arguments
|
/// # use vector_victor::Matrix;
|
||||||
|
/// let my_matrix = Matrix::mat([[1,2],[3,4]]);
|
||||||
* `index`: a 1D or 2D index into the matrix. See [Index2D] for more information on matrix indexing.
|
///
|
||||||
|
/// // element at index 2 is the same as the element at (row 1, column 0).
|
||||||
# Examples
|
/// assert_eq!(my_matrix.get(2), my_matrix.get((1,0)));
|
||||||
|
///
|
||||||
```
|
/// // my_matrix.get() is equivalent to my_matrix[],
|
||||||
# use vector_victor::Matrix;
|
/// // but returns an Option instead of panicking
|
||||||
let my_matrix = Matrix::mat([[1, 2],
|
/// assert_eq!(my_matrix.get(2), Some(&my_matrix[2]));
|
||||||
[3, 4]]);
|
///
|
||||||
|
/// // index 4 is out of range, so get(4) returns None.
|
||||||
// element at index 2 is the same as the element at row 1, column 0.
|
/// assert_eq!(my_matrix.get(4), None);
|
||||||
assert_eq!(my_matrix.get(2), my_matrix.get((1,0)));
|
/// ```
|
||||||
|
|
||||||
// my_matrix.get() is equivalent to my_matrix[],
|
|
||||||
// but returns an Option instead of panicking
|
|
||||||
assert_eq!(my_matrix.get(2), Some(&my_matrix[2]));
|
|
||||||
|
|
||||||
// index 4 is out of range, so get(4) returns None.
|
|
||||||
assert_eq!(my_matrix.get(4), None);
|
|
||||||
``` */
|
|
||||||
#[inline]
|
#[inline]
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn get(&self, index: impl Index2D) -> Option<&T> {
|
pub fn get(&self, index: impl Index2D) -> Option<&T> {
|
||||||
@ -335,29 +222,7 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
Some(&self.data[m][n])
|
Some(&self.data[m][n])
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Returns a mutable reference to the element at that position in the matrix,
|
/// Returns a mutable reference to the element at that position in the matrix, or `None` if out of bounds.
|
||||||
or `None` if out of bounds.
|
|
||||||
|
|
||||||
[`IndexMut`](#impl-IndexMut%3CI%3E-for-Matrix%3CT,+M,+N%3E) behaves similarly,
|
|
||||||
but will panic if the index is out of bounds instead of returning an option
|
|
||||||
|
|
||||||
# Arguments
|
|
||||||
|
|
||||||
* `index`: a 1D or 2D index into the matrix. See [Index2D] for more information
|
|
||||||
on matrix indexing.
|
|
||||||
|
|
||||||
# Examples
|
|
||||||
|
|
||||||
```
|
|
||||||
# use vector_victor::Matrix;
|
|
||||||
let mut my_matrix = Matrix::mat([[1, 2],
|
|
||||||
[3, 4]]);
|
|
||||||
|
|
||||||
match my_matrix.get_mut(2) {
|
|
||||||
Some(t) => *t = 5,
|
|
||||||
None => panic!()};
|
|
||||||
assert_eq!(my_matrix, Matrix::mat([[1,2],[5,4]]))
|
|
||||||
``` */
|
|
||||||
#[inline]
|
#[inline]
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn get_mut(&mut self, index: impl Index2D) -> Option<&mut T> {
|
pub fn get_mut(&mut self, index: impl Index2D) -> Option<&mut T> {
|
||||||
@ -365,28 +230,23 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
Some(&mut self.data[m][n])
|
Some(&mut self.data[m][n])
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Returns a row of the matrix.
|
/// Returns a row of the matrix. or [None] if index is out of bounds
|
||||||
|
///
|
||||||
# Panics
|
/// # Examples
|
||||||
|
///
|
||||||
Panics if row index `m` is out of bounds.
|
/// ```
|
||||||
|
/// # use vector_victor::{Matrix, Vector};
|
||||||
# Examples
|
/// let my_matrix = Matrix::mat([[1,2],[3,4]]);
|
||||||
|
///
|
||||||
```
|
/// // row at index 1
|
||||||
# use vector_victor::{Matrix, Vector};
|
/// assert_eq!(my_matrix.row(1), Vector::vec([3,4]));
|
||||||
let my_matrix = Matrix::mat([[1, 2],
|
/// ```
|
||||||
[3, 4]]);
|
|
||||||
|
|
||||||
// row at index 1
|
|
||||||
assert_eq!(my_matrix.row(1), Vector::vec([3,4]));
|
|
||||||
``` */
|
|
||||||
#[inline]
|
#[inline]
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn row(&self, m: usize) -> Vector<T, N> {
|
pub fn row(&self, m: usize) -> Vector<T, N> {
|
||||||
assert!(
|
assert!(
|
||||||
m < M,
|
m < M,
|
||||||
"Row index {} out of bounds for {}×{} matrix",
|
"Row index {} out of bounds for {}x{} matrix",
|
||||||
m,
|
m,
|
||||||
M,
|
M,
|
||||||
N
|
N
|
||||||
@ -394,27 +254,11 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
Vector::<T, N>::vec(self.data[m])
|
Vector::<T, N>::vec(self.data[m])
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Sets a row of the matrix.
|
|
||||||
|
|
||||||
# Panics
|
|
||||||
|
|
||||||
Panics if row index `m` is out of bounds.
|
|
||||||
|
|
||||||
# Examples
|
|
||||||
|
|
||||||
```
|
|
||||||
# use vector_victor::{Matrix, Vector};
|
|
||||||
let mut my_matrix = Matrix::mat([[1, 2],
|
|
||||||
[3, 4]]);
|
|
||||||
// row at index 1
|
|
||||||
my_matrix.set_row(1, &Vector::vec([5,6]));
|
|
||||||
assert_eq!(my_matrix, Matrix::mat([[1,2],[5,6]]));
|
|
||||||
``` */
|
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn set_row(&mut self, m: usize, val: &Vector<T, N>) {
|
pub fn set_row(&mut self, m: usize, val: &Vector<T, N>) {
|
||||||
assert!(
|
assert!(
|
||||||
m < M,
|
m < M,
|
||||||
"Row index {} out of bounds for {}×{} matrix",
|
"Row index {} out of bounds for {}x{} matrix",
|
||||||
m,
|
m,
|
||||||
M,
|
M,
|
||||||
N
|
N
|
||||||
@ -424,28 +268,18 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Returns a column of the matrix.
|
pub fn pivot_row(&mut self, m1: usize, m2: usize) {
|
||||||
|
let tmp = self.row(m2);
|
||||||
|
self.set_row(m2, &self.row(m1));
|
||||||
|
self.set_row(m1, &tmp);
|
||||||
|
}
|
||||||
|
|
||||||
# Panics
|
|
||||||
|
|
||||||
Panics if column index `n` is out of bounds.
|
|
||||||
|
|
||||||
# Examples
|
|
||||||
|
|
||||||
```
|
|
||||||
# use vector_victor::{Matrix, Vector};
|
|
||||||
let my_matrix = Matrix::mat([[1, 2],
|
|
||||||
[3, 4]]);
|
|
||||||
|
|
||||||
// column at index 1
|
|
||||||
assert_eq!(my_matrix.col(1), Vector::vec([2,4]));
|
|
||||||
``` */
|
|
||||||
#[inline]
|
#[inline]
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn col(&self, n: usize) -> Vector<T, M> {
|
pub fn col(&self, n: usize) -> Vector<T, M> {
|
||||||
assert!(
|
assert!(
|
||||||
n < N,
|
n < N,
|
||||||
"Column index {} out of bounds for {}×{} matrix",
|
"Column index {} out of bounds for {}x{} matrix",
|
||||||
n,
|
n,
|
||||||
M,
|
M,
|
||||||
N
|
N
|
||||||
@ -453,27 +287,11 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
Vector::<T, M>::vec(self.data.map(|r| r[n]))
|
Vector::<T, M>::vec(self.data.map(|r| r[n]))
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Sets a column of the matrix.
|
|
||||||
|
|
||||||
# Panics
|
|
||||||
|
|
||||||
Panics if column index `n` is out of bounds.
|
|
||||||
|
|
||||||
# Examples
|
|
||||||
|
|
||||||
```
|
|
||||||
# use vector_victor::{Matrix, Vector};
|
|
||||||
let mut my_matrix = Matrix::mat([[1, 2],
|
|
||||||
[3, 4]]);
|
|
||||||
// column at index 1
|
|
||||||
my_matrix.set_col(1, &Vector::vec([5,6]));
|
|
||||||
assert_eq!(my_matrix, Matrix::mat([[1,5],[3,6]]));
|
|
||||||
``` */
|
|
||||||
#[inline]
|
#[inline]
|
||||||
pub fn set_col(&mut self, n: usize, val: &Vector<T, M>) {
|
pub fn set_col(&mut self, n: usize, val: &Vector<T, M>) {
|
||||||
assert!(
|
assert!(
|
||||||
n < N,
|
n < N,
|
||||||
"Column index {} out of bounds for {}×{} matrix",
|
"Column index {} out of bounds for {}x{} matrix",
|
||||||
n,
|
n,
|
||||||
M,
|
M,
|
||||||
N
|
N
|
||||||
@ -484,64 +302,22 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Returns an iterator over the rows of the matrix, returning them as column vectors.
|
|
||||||
#[must_use]
|
|
||||||
pub fn rows<'a>(&'a self) -> impl Iterator<Item = Vector<T, N>> + 'a {
|
|
||||||
(0..M).map(|m| self.row(m))
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Returns an iterator over the columns of the matrix, returning them as column vectors.
|
|
||||||
#[must_use]
|
|
||||||
pub fn cols<'a>(&'a self) -> impl Iterator<Item = Vector<T, M>> + 'a {
|
|
||||||
(0..N).map(|n| self.col(n))
|
|
||||||
}
|
|
||||||
|
|
||||||
/** Interchange two rows
|
|
||||||
|
|
||||||
# Panics
|
|
||||||
|
|
||||||
Panics if row index `m1` or `m2` are out of bounds */
|
|
||||||
pub fn pivot_row(&mut self, m1: usize, m2: usize) {
|
|
||||||
let tmp = self.row(m2);
|
|
||||||
self.set_row(m2, &self.row(m1));
|
|
||||||
self.set_row(m1, &tmp);
|
|
||||||
}
|
|
||||||
|
|
||||||
/** Interchange two columns
|
|
||||||
|
|
||||||
# Panics
|
|
||||||
|
|
||||||
Panics if column index `n1` or `n2` are out of bounds */
|
|
||||||
pub fn pivot_col(&mut self, n1: usize, n2: usize) {
|
pub fn pivot_col(&mut self, n1: usize, n2: usize) {
|
||||||
let tmp = self.col(n2);
|
let tmp = self.col(n2);
|
||||||
self.set_col(n2, &self.col(n1));
|
self.set_col(n2, &self.col(n1));
|
||||||
self.set_col(n1, &tmp);
|
self.set_col(n1, &tmp);
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Apply a permutation matrix to the rows of a matrix
|
#[must_use]
|
||||||
|
pub fn rows<'a>(&'a self) -> impl Iterator<Item = Vector<T, N>> + 'a {
|
||||||
|
(0..M).map(|m| self.row(m))
|
||||||
|
}
|
||||||
|
|
||||||
# Arguments
|
#[must_use]
|
||||||
|
pub fn cols<'a>(&'a self) -> impl Iterator<Item = Vector<T, M>> + 'a {
|
||||||
|
(0..N).map(|n| self.col(n))
|
||||||
|
}
|
||||||
|
|
||||||
* `ms`: a [`Vector`] of [`usize`] of length M. Each entry is the index of the row that will
|
|
||||||
appear in the result
|
|
||||||
|
|
||||||
# Panics
|
|
||||||
|
|
||||||
Panics if any of the row indices in `ms` is out of bounds
|
|
||||||
|
|
||||||
# Examples
|
|
||||||
|
|
||||||
```
|
|
||||||
# use vector_victor::{Matrix, Vector};
|
|
||||||
let my_matrix = Matrix::mat([[1, 2, 3],
|
|
||||||
[4, 5, 6],
|
|
||||||
[7, 8, 9]]);
|
|
||||||
|
|
||||||
let permuted = my_matrix.permute_rows(&Vector::vec([1, 0, 2]));
|
|
||||||
assert_eq!(permuted, Matrix::mat([[4, 5, 6],
|
|
||||||
[1, 2, 3],
|
|
||||||
[7, 8, 9]]))
|
|
||||||
``` */
|
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn permute_rows(&self, ms: &Vector<usize, M>) -> Self
|
pub fn permute_rows(&self, ms: &Vector<usize, M>) -> Self
|
||||||
where
|
where
|
||||||
@ -550,16 +326,6 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
Self::from_rows(ms.elements().map(|&m| self.row(m)))
|
Self::from_rows(ms.elements().map(|&m| self.row(m)))
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Apply a permutation matrix to the columns of a matrix
|
|
||||||
|
|
||||||
# Arguments
|
|
||||||
|
|
||||||
* `ns`: a [`Vector`] of [`usize`] of length N. Each entry is the index of the column that will
|
|
||||||
appear in the result
|
|
||||||
|
|
||||||
# Panics
|
|
||||||
|
|
||||||
Panics if any of the column indices in `ns` is out of bounds */
|
|
||||||
#[must_use]
|
#[must_use]
|
||||||
pub fn permute_cols(&self, ns: &Vector<usize, N>) -> Self
|
pub fn permute_cols(&self, ns: &Vector<usize, N>) -> Self
|
||||||
where
|
where
|
||||||
@ -568,20 +334,6 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
|
|||||||
Self::from_cols(ns.elements().map(|&n| self.col(n)))
|
Self::from_cols(ns.elements().map(|&n| self.col(n)))
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Returns the transpose $M^T$ of the matrix, or the matrix flipped across its diagonal.
|
|
||||||
|
|
||||||
# Examples
|
|
||||||
```
|
|
||||||
# use vector_victor::Matrix;
|
|
||||||
let my_matrix = Matrix::mat([[1, 2, 3],
|
|
||||||
[4, 5, 6]]);
|
|
||||||
|
|
||||||
assert_eq!(
|
|
||||||
my_matrix.transpose(),
|
|
||||||
Matrix::mat([[1, 4],
|
|
||||||
[2, 5],
|
|
||||||
[3, 6]]))
|
|
||||||
``` */
|
|
||||||
pub fn transpose(&self) -> Matrix<T, N, M>
|
pub fn transpose(&self) -> Matrix<T, N, M>
|
||||||
where
|
where
|
||||||
Matrix<T, N, M>: Default,
|
Matrix<T, N, M>: Default,
|
||||||
@ -601,7 +353,7 @@ where
|
|||||||
#[inline(always)]
|
#[inline(always)]
|
||||||
fn index(&self, index: I) -> &Self::Output {
|
fn index(&self, index: I) -> &Self::Output {
|
||||||
self.get(index).expect(&*format!(
|
self.get(index).expect(&*format!(
|
||||||
"index {:?} out of range for {}×{} Matrix",
|
"index {:?} out of range for {}x{} Matrix",
|
||||||
index, M, N
|
index, M, N
|
||||||
))
|
))
|
||||||
}
|
}
|
||||||
@ -616,7 +368,7 @@ where
|
|||||||
#[inline(always)]
|
#[inline(always)]
|
||||||
fn index_mut(&mut self, index: I) -> &mut Self::Output {
|
fn index_mut(&mut self, index: I) -> &mut Self::Output {
|
||||||
self.get_mut(index).expect(&*format!(
|
self.get_mut(index).expect(&*format!(
|
||||||
"index {:?} out of range for {}×{} Matrix",
|
"index {:?} out of range for {}x{} Matrix",
|
||||||
index, M, N
|
index, M, N
|
||||||
))
|
))
|
||||||
}
|
}
|
||||||
|
37
src/math.rs
37
src/math.rs
@ -6,25 +6,24 @@ use std::ops::{Add, Mul};
|
|||||||
|
|
||||||
/// Operations for column vectors
|
/// Operations for column vectors
|
||||||
impl<T: Copy, const N: usize> Vector<T, N> {
|
impl<T: Copy, const N: usize> Vector<T, N> {
|
||||||
/** Compute the dot product of two vectors, otherwise known as the scalar product.
|
/// Compute the dot product of two vectors, otherwise known as the scalar product.
|
||||||
|
/// This is the sum of the elementwise product, or in math terms
|
||||||
This is the sum of the elementwise product, or in math terms
|
///
|
||||||
|
/// $vec(a) * vec(b) = sum_(i=1)^n a_i b_i = a_1 b_1 + a_2 b_2 + ... + a_n b_n$
|
||||||
$vec(a) * vec(b) = sum_(i=1)^n a_i b_i = a_1 b_1 + a_2 b_2 + ... + a_n b_n$
|
///
|
||||||
|
/// for example, $[[1],[2],[3]] * [[4],[5],[6]] = (1 * 4) + (2 * 5) + (3 * 6) = 32$
|
||||||
for example, $\[\[1],\[2],\[3]] * \[\[4],\[5],\[6]] = (1 * 4) + (2 * 5) + (3 * 6) = 32$
|
///
|
||||||
|
/// For vectors in euclidean space, this has the property that it is equal to the magnitudes of
|
||||||
For vectors in euclidean space, this has the property that it is equal to the magnitudes of
|
/// the vectors times the cosine of the angle between them.
|
||||||
the vectors times the cosine of the angle between them.
|
///
|
||||||
|
/// $vec(a) * vec(b) = |vec(a)| |vec(b)| cos(theta)$
|
||||||
$vec(a) * vec(b) = |vec(a)| |vec(b)| cos(theta)$
|
///
|
||||||
|
/// this also gives it the special property that the dot product of a vector and itself is the
|
||||||
this also gives it the special property that the dot product of a vector and itself is the
|
/// square of its magnitude. You may recognize the 2D version as the
|
||||||
square of its magnitude. You may recognize the 2D version as the
|
/// [pythagorean theorem](https://en.wikipedia.org/wiki/Pythagorean_theorem).
|
||||||
[pythagorean theorem](https://en.wikipedia.org/wiki/Pythagorean_theorem).
|
///
|
||||||
|
/// see [dot product](https://en.wikipedia.org/wiki/Dot_product) on Wikipedia for more
|
||||||
see [dot product](https://en.wikipedia.org/wiki/Dot_product) on Wikipedia for more
|
/// information.
|
||||||
information. */
|
|
||||||
pub fn dot<R>(&self, rhs: &R) -> T
|
pub fn dot<R>(&self, rhs: &R) -> T
|
||||||
where
|
where
|
||||||
for<'s> &'s Self: Mul<&'s R, Output = Self>,
|
for<'s> &'s Self: Mul<&'s R, Output = Self>,
|
||||||
|
1
src/mod.rs
Normal file
1
src/mod.rs
Normal file
@ -0,0 +1 @@
|
|||||||
|
|
@ -1,5 +1,3 @@
|
|||||||
//! Data structures and traits for decomposing and solving matrices
|
|
||||||
|
|
||||||
#[macro_use]
|
#[macro_use]
|
||||||
mod common;
|
mod common;
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user