Compare commits

..

3 Commits

Author SHA1 Message Date
bd1bde1657 Use block comments for docs
Much more readable in the raw source
2023-05-22 23:02:51 -07:00
9b14bebb2d Improve documentation on everything in lib.rs 2023-05-22 22:42:20 -07:00
4bbcabb2aa Document Index2D 2023-05-22 20:17:05 -07:00
7 changed files with 478 additions and 228 deletions

View File

@ -124,7 +124,7 @@ impl<T: Copy + Default + Real, const N: usize> LUDecomposition<T, N> {
/// This is equivalent to [`LUDecompose::det`] while allowing the LU decomposition /// This is equivalent to [`LUDecompose::det`] while allowing the LU decomposition
/// to be reused /// to be reused
pub fn det(&self) -> T { pub fn det(&self) -> T {
self.parity * self.lu.diagonals().fold(T::one(), T::mul) self.parity * self.lu.diagonals().fold(T::one(), |l, &r| l * r)
} }
/// Calculate the inverse of the original matrix, such that $bbM xx bbM^{-1} = bbI$ /// Calculate the inverse of the original matrix, such that $bbM xx bbM^{-1} = bbI$

View File

@ -1,66 +0,0 @@
use crate::Matrix;
use num_traits::{Bounded, One, Zero};
// Identity
impl<T: Copy + Zero + One, const N: usize> Matrix<T, N, N> {
/// Create an identity matrix, a square matrix where the diagonals are 1 and all other elements
/// are 0.
/// for example,
///
/// $bbI = [[1,0,0],[0,1,0],[0,0,1]]$
///
/// Matrix multiplication between a matrix and the identity matrix always results in itself
///
/// $bbA xx bbI = bbA$
///
/// # Examples
/// ```
/// # use vector_victor::Matrix;
/// let i = Matrix::<i32,3,3>::identity();
/// assert_eq!(i, Matrix::mat([[1,0,0],[0,1,0],[0,0,1]]))
/// ```
///
/// Note that the identity only exists for matrices that are square, so this doesnt work:
/// ```compile_fail
/// # use vector_victor::Matrix;
/// let i = Matrix::<i32,4,2>::identity();
/// ```
#[must_use]
pub fn identity() -> Self {
let mut result = Self::zero();
for i in 0..N {
result[(i, i)] = T::one();
}
return result;
}
}
// Zero
impl<T: Copy + Zero, const M: usize, const N: usize> Zero for Matrix<T, M, N> {
fn zero() -> Self {
Matrix::fill(T::zero())
}
fn is_zero(&self) -> bool {
self.elements().all(|e| e.is_zero())
}
}
// One
impl<T: Copy + One, const M: usize, const N: usize> One for Matrix<T, M, N> {
fn one() -> Self {
Matrix::fill(T::one())
}
}
// min_value and max_value
// LowerBounded and UpperBounded are automatically implemented from this
impl<T: Copy + Bounded, const N: usize, const M: usize> Bounded for Matrix<T, N, M> {
fn min_value() -> Self {
Self::fill(T::min_value())
}
fn max_value() -> Self {
Self::fill(T::max_value())
}
}

View File

@ -1,12 +1,78 @@
//! Helper trait for ergonomic matrix subscripting
use std::fmt::Debug; use std::fmt::Debug;
/** Trait implemented by types that can be used as a matrix index
There are currently two implementations:
[`usize`](#impl-Index2D-for-usize) and [`(usize,usize)`](#impl-Index2D-for-(usize,+usize))
# Examples
Indexing by a `usize` indexes starting at the first element and
increments linearly in row-major order. This is especially useful for column vectors.
```
# use vector_victor::{Matrix, Vector};
let m = Matrix::mat([[1,2,3],[4,5,6],[7,8,9]]);
assert_eq!(m[0], 1);
assert_eq!(m[4], 5);
assert_eq!(m[7], 8);
let v = Vector::vec([4,8,15,16,23,42]);
assert_eq!(v[2], 15); // just like a std::vec
```
Indexing by a `(usize,usize)` indexes by row and column
```
# use vector_victor::{Matrix, Vector};
let m = Matrix::mat([[1,2,3],[4,5,6],[7,8,9]]);
assert_eq!(m[(0,0)], 1);
assert_eq!(m[(1,1)], 5);
assert_eq!(m[(2,1)], 8);
``` */
pub trait Index2D: Copy + Debug { pub trait Index2D: Copy + Debug {
/** Convert an index to its 1-D linear interpretation, given the `width` and `height` of the
matrix being subscripted.
If the index is out of bounds for the given dimensions, this returns `None`,
otherwise it returns `Some(usize)`
# Examples
```
# use vector_victor::index::Index2D;
assert_eq!(
(1usize,2usize).to_1d(3,3),
Some(5),
"(1,2) is index 5 in a 3×3 matrix");
assert_eq!(
(3usize, 2usize).to_1d(3,3),
None,
"row 3, column 2 is out of bounds for a 3×3 matrix");
``` */
#[inline(always)] #[inline(always)]
fn to_1d(self, height: usize, width: usize) -> Option<usize> { fn to_1d(self, height: usize, width: usize) -> Option<usize> {
let (r, c) = self.to_2d(height, width)?; let (r, c) = self.to_2d(height, width)?;
Some(r * width + c) Some(r * width + c)
} }
/** Convert an index to its 2-D interpretation, given the `width` and `height` of the
matrix being subscripted.
If the index is out of bounds for the given dimensions, this returns `None`,
otherwise it returns `Some((usize, usize))`
# Examples
```
# use vector_victor::index::Index2D;
assert_eq!(
5usize.to_2d(3,3),
Some((1usize,2usize)),
"index 5 is at row 1 column 2 in a 3×3 matrix");
assert_eq!(
10usize.to_2d(3,3),
None,
"a 3×3 matrix only has 9 elements, so index 10 is out of bounds.");
``` */
fn to_2d(self, height: usize, width: usize) -> Option<(usize, usize)>; fn to_2d(self, height: usize, width: usize) -> Option<(usize, usize)>;
} }

View File

@ -1,22 +1,22 @@
extern crate core; extern crate core;
use index::Index2D; use index::Index2D;
use num_traits::{Bounded, One, Zero};
use std::cmp::min; use std::cmp::min;
use std::fmt::Debug; use std::fmt::Debug;
use std::iter::{zip, Flatten}; use std::iter::{zip, Flatten};
use std::ops::{Index, IndexMut}; use std::ops::{Index, IndexMut};
pub mod decompose; pub mod decompose;
mod identities;
pub mod index; pub mod index;
mod math; mod math;
mod ops; mod ops;
mod util; mod util;
/// A 2D array of values which can be operated upon. /** A 2D array of values which can be operated upon.
///
/// Matrices have a fixed size known at compile time Matrices have a fixed size known at compile time */
#[derive(Debug, Copy, Clone, PartialEq)] #[derive(Debug, Copy, Clone, PartialEq)]
pub struct Matrix<T, const M: usize, const N: usize> pub struct Matrix<T, const M: usize, const N: usize>
where where
@ -37,22 +37,87 @@ impl<T: Copy + Default, const M: usize, const N: usize> Default for Matrix<T, M,
} }
} }
// Zero
impl<T: Copy + Zero, const M: usize, const N: usize> Zero for Matrix<T, M, N> {
fn zero() -> Self {
Matrix::fill(T::zero())
}
fn is_zero(&self) -> bool {
self.elements().all(|e| e.is_zero())
}
}
// One
impl<T: Copy + One, const M: usize, const N: usize> One for Matrix<T, M, N> {
fn one() -> Self {
Matrix::fill(T::one())
}
}
// min_value and max_value
// LowerBounded and UpperBounded are automatically implemented from this
impl<T: Copy + Bounded, const N: usize, const M: usize> Bounded for Matrix<T, N, M> {
fn min_value() -> Self {
Self::fill(T::min_value())
}
fn max_value() -> Self {
Self::fill(T::max_value())
}
}
// Identity
impl<T: Copy + Zero + One, const N: usize> Matrix<T, N, N> {
/** Create an identity matrix, a square matrix where the diagonals are 1 and
all other elements are 0.
for example,
$bbI = \[\[1,0,0],\[0,1,0],\[0,0,1]]$
Matrix multiplication between a matrix and the identity matrix always results in itself
$bbA xx bbI = bbA$
# Examples
```
# use vector_victor::Matrix;
let i = Matrix::<i32,3,3>::identity();
assert_eq!(i, Matrix::mat([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]]))
```
Note that the identity only exists for matrices that are square, so this doesnt work:
```compile_fail
# use vector_victor::Matrix;
let i = Matrix::<i32,4,2>::identity();
``` */
#[must_use]
pub fn identity() -> Self {
let mut result = Self::zero();
for i in 0..N {
result[(i, i)] = T::one();
}
return result;
}
}
// Matrix constructors // Matrix constructors
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> { impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
/// Generate a new matrix from a 2D Array /** Generate a new matrix from a 2D Array
///
/// # Arguments # Arguments
///
/// * `data`: A 2D array of elements to copy into the new matrix * `data`: A 2D array of elements to copy into the new matrix
///
/// returns: Matrix<T, M, N> # Examples
///
/// # Examples ```
/// # use vector_victor::Matrix;
/// ``` let a = Matrix::mat([[1,2,3,4];4]);
/// # use vector_victor::Matrix; ``` */
/// let a = Matrix::mat([[1,2,3,4];4]);
/// ```
#[must_use] #[must_use]
pub fn mat(data: [[T; N]; M]) -> Self { pub fn mat(data: [[T; N]; M]) -> Self {
assert!(M > 0, "Matrix must have at least 1 row"); assert!(M > 0, "Matrix must have at least 1 row");
@ -60,22 +125,19 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
Matrix::<T, M, N> { data } Matrix::<T, M, N> { data }
} }
/// Generate a new matrix from a single scalar /** Generate a new matrix from a single scalar
///
/// # Arguments # Arguments
///
/// * `scalar`: Scalar value to copy into the new matrix. * `scalar`: Scalar value to copy into the new matrix.
///
/// returns: Matrix<T, M, N> # Examples
///
/// # Examples ```
/// # use vector_victor::Matrix;
/// ``` // these are equivalent
/// # use vector_victor::Matrix; assert_eq!(Matrix::<i32,4,4>::fill(5), Matrix::mat([[5;4];4]))
/// let my_matrix = Matrix::<i32,4,4>::fill(5); ``` */
/// // is equivalent to
/// assert_eq!(my_matrix, Matrix::mat([[5;4];4]))
/// ```
#[must_use] #[must_use]
pub fn fill(scalar: T) -> Matrix<T, M, N> { pub fn fill(scalar: T) -> Matrix<T, M, N> {
assert!(M > 0, "Matrix must have at least 1 row"); assert!(M > 0, "Matrix must have at least 1 row");
@ -85,22 +147,26 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
} }
} }
/// Create a matrix from an iterator of vectors /** Create a matrix from an iterator of vectors
///
/// # Arguments # Arguments
///
/// * `iter`: iterator of vectors to copy into rows * `iter`: iterator of vectors to copy into rows
///
/// returns: Matrix<T, M, N> # Examples
///
/// # Examples The following is another way of performing [`Matrix::transpose()`]
/// ```
/// ``` # use vector_victor::Matrix;
/// # use vector_victor::Matrix; let my_matrix = Matrix::mat([[1, 2, 3],
/// let my_matrix = Matrix::mat([[1,2,3],[4,5,6]]); [4, 5, 6]]);
/// let transpose : Matrix<_,3,2>= Matrix::from_rows(my_matrix.cols());
/// assert_eq!(transpose, Matrix::mat([[1,4],[2,5],[3,6]])) let transpose : Matrix<_,3,2>= Matrix::from_rows(my_matrix.cols());
/// ```
assert_eq!(transpose, Matrix::mat([[1, 4],
[2, 5],
[3, 6]]))
``` */
#[must_use] #[must_use]
pub fn from_rows<I>(iter: I) -> Self pub fn from_rows<I>(iter: I) -> Self
where where
@ -114,22 +180,26 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
result result
} }
/// Create a matrix from an iterator of vectors /** Create a matrix from an iterator of vectors
///
/// # Arguments # Arguments
///
/// * `iter`: iterator of vectors to copy into columns * `iter`: iterator of vectors to copy into columns
///
/// returns: Matrix<T, M, N> # Examples
///
/// # Examples The following is another way of performing [`Matrix::transpose()`]
/// ```
/// ``` # use vector_victor::Matrix;
/// # use vector_victor::Matrix; let my_matrix = Matrix::mat([[1, 2, 3],
/// let my_matrix = Matrix::mat([[1,2,3],[4,5,6]]); [4, 5, 6]]);
/// let transpose : Matrix<_,3,2>= Matrix::from_cols(my_matrix.rows());
/// assert_eq!(transpose, Matrix::mat([[1,4],[2,5],[3,6]])) let transpose : Matrix<_,3,2>= Matrix::from_cols(my_matrix.rows());
/// ```
assert_eq!(transpose, Matrix::mat([[1, 4],
[2, 5],
[3, 6]]))
``` */
#[must_use] #[must_use]
pub fn from_cols<I>(iter: I) -> Self pub fn from_cols<I>(iter: I) -> Self
where where
@ -146,16 +216,15 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
// Vector constructor // Vector constructor
impl<T: Copy, const N: usize> Vector<T, N> { impl<T: Copy, const N: usize> Vector<T, N> {
/// Create a vector from a 1D array. /** Create a vector from a 1D array.
/// Note that vectors are always column vectors unless explicitly instantiated as row vectors Note that vectors are always column vectors unless explicitly instantiated as row vectors
///
/// # Examples # Examples
/// ``` ```
/// # use vector_victor::{Matrix, Vector}; # use vector_victor::{Matrix, Vector};
/// let my_vector = Vector::vec([1,2,3,4]); // these are equivalent
/// // is equivalent to assert_eq!(Vector::vec([1,2,3,4]), Matrix::mat([[1],[2],[3],[4]]));
/// assert_eq!(my_vector, Matrix::mat([[1],[2],[3],[4]])); ``` */
/// ```
pub fn vec(data: [T; N]) -> Self { pub fn vec(data: [T; N]) -> Self {
assert!(N > 0, "Vector must have at least 1 element"); assert!(N > 0, "Vector must have at least 1 element");
return Vector::<T, N> { return Vector::<T, N> {
@ -166,55 +235,99 @@ impl<T: Copy, const N: usize> Vector<T, N> {
// ACCESSORS AND MUTATORS // ACCESSORS AND MUTATORS
impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> { impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
/// Returns an iterator over the elements of the matrix in row-major order. /** Returns an iterator over the elements of the matrix in row-major order.
///
/// # Examples This is identical to the behavior of [`IntoIterator`](#associatedtype.IntoIter)
/// ```
/// # use vector_victor::Matrix; # Examples
/// let my_matrix = Matrix::mat([[1,2],[3,4]]); ```
/// assert!(vec![1,2,3,4].iter().eq(my_matrix.elements())) # use vector_victor::Matrix;
/// ``` let my_matrix = Matrix::mat([[1, 2],
[3, 4]]);
itertools::assert_equal(my_matrix.elements(), [1,2,3,4].iter())
``` */
#[must_use] #[must_use]
pub fn elements<'a>(&'a self) -> impl Iterator<Item = &'a T> + 'a { pub fn elements<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
self.data.iter().flatten() self.data.iter().flatten()
} }
/// Returns a mutable iterator over the elements of the matrix in row-major order. /** Returns a mutable iterator over the elements of the matrix in row-major order.
# Examples
```
# use vector_victor::Matrix;
let mut my_matrix = Matrix::mat([[1, 2],
[3, 4]]);
for elem in my_matrix.elements_mut() {*elem += 2;}
itertools::assert_equal(my_matrix.elements(), [3,4,5,6].iter())
``` */
#[must_use] #[must_use]
pub fn elements_mut<'a>(&'a mut self) -> impl Iterator<Item = &'a mut T> + 'a { pub fn elements_mut<'s>(&'s mut self) -> impl Iterator<Item = &'s mut T> + 's {
self.data.iter_mut().flatten() self.data.iter_mut().flatten()
} }
/// returns an iterator over the elements along the diagonal of a matrix /** returns an iterator over the elements along the diagonal of a matrix
# Examples
```
# use vector_victor::Matrix;
let my_matrix = Matrix::mat([[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
[10,11,12]]);
itertools::assert_equal(my_matrix.diagonals(), [1,5,9].iter())
``` */
#[must_use] #[must_use]
pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's { pub fn diagonals<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
(0..min(N, M)).map(|n| self[(n, n)]) (0..min(N, M)).map(|n| &self[(n, n)])
} }
/// Returns an iterator over the elements directly below the diagonal of a matrix /** Returns an iterator over the elements directly below the diagonal of a matrix
# Examples
```
# use vector_victor::Matrix;
let my_matrix = Matrix::mat([[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
[10,11,12]]);
itertools::assert_equal(my_matrix.subdiagonals(), [4,8,12].iter());
``` */
#[must_use] #[must_use]
pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = T> + 's { pub fn subdiagonals<'s>(&'s self) -> impl Iterator<Item = &'s T> + 's {
(0..min(N, M) - 1).map(|n| self[(n, n + 1)]) (0..min(N, M - 1)).map(|n| &self[(n + 1, n)])
} }
/// Returns a reference to the element at that position in the matrix, or `None` if out of bounds. /** Returns a reference to the element at that position in the matrix, or `None` if out of bounds.
///
/// # Examples [`Index`](#impl-Index%3CI%3E-for-Matrix%3CT,+M,+N%3E) behaves similarly,
/// but will panic if the index is out of bounds instead of returning an option
/// ```
/// # use vector_victor::Matrix; # Arguments
/// let my_matrix = Matrix::mat([[1,2],[3,4]]);
/// * `index`: a 1D or 2D index into the matrix. See [Index2D] for more information on matrix indexing.
/// // element at index 2 is the same as the element at (row 1, column 0).
/// assert_eq!(my_matrix.get(2), my_matrix.get((1,0))); # Examples
///
/// // my_matrix.get() is equivalent to my_matrix[], ```
/// // but returns an Option instead of panicking # use vector_victor::Matrix;
/// assert_eq!(my_matrix.get(2), Some(&my_matrix[2])); let my_matrix = Matrix::mat([[1, 2],
/// [3, 4]]);
/// // index 4 is out of range, so get(4) returns None.
/// assert_eq!(my_matrix.get(4), None); // element at index 2 is the same as the element at row 1, column 0.
/// ``` assert_eq!(my_matrix.get(2), my_matrix.get((1,0)));
// my_matrix.get() is equivalent to my_matrix[],
// but returns an Option instead of panicking
assert_eq!(my_matrix.get(2), Some(&my_matrix[2]));
// index 4 is out of range, so get(4) returns None.
assert_eq!(my_matrix.get(4), None);
``` */
#[inline] #[inline]
#[must_use] #[must_use]
pub fn get(&self, index: impl Index2D) -> Option<&T> { pub fn get(&self, index: impl Index2D) -> Option<&T> {
@ -222,7 +335,29 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
Some(&self.data[m][n]) Some(&self.data[m][n])
} }
/// Returns a mutable reference to the element at that position in the matrix, or `None` if out of bounds. /** Returns a mutable reference to the element at that position in the matrix,
or `None` if out of bounds.
[`IndexMut`](#impl-IndexMut%3CI%3E-for-Matrix%3CT,+M,+N%3E) behaves similarly,
but will panic if the index is out of bounds instead of returning an option
# Arguments
* `index`: a 1D or 2D index into the matrix. See [Index2D] for more information
on matrix indexing.
# Examples
```
# use vector_victor::Matrix;
let mut my_matrix = Matrix::mat([[1, 2],
[3, 4]]);
match my_matrix.get_mut(2) {
Some(t) => *t = 5,
None => panic!()};
assert_eq!(my_matrix, Matrix::mat([[1,2],[5,4]]))
``` */
#[inline] #[inline]
#[must_use] #[must_use]
pub fn get_mut(&mut self, index: impl Index2D) -> Option<&mut T> { pub fn get_mut(&mut self, index: impl Index2D) -> Option<&mut T> {
@ -230,23 +365,28 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
Some(&mut self.data[m][n]) Some(&mut self.data[m][n])
} }
/// Returns a row of the matrix. or [None] if index is out of bounds /** Returns a row of the matrix.
///
/// # Examples # Panics
///
/// ``` Panics if row index `m` is out of bounds.
/// # use vector_victor::{Matrix, Vector};
/// let my_matrix = Matrix::mat([[1,2],[3,4]]); # Examples
///
/// // row at index 1 ```
/// assert_eq!(my_matrix.row(1), Vector::vec([3,4])); # use vector_victor::{Matrix, Vector};
/// ``` let my_matrix = Matrix::mat([[1, 2],
[3, 4]]);
// row at index 1
assert_eq!(my_matrix.row(1), Vector::vec([3,4]));
``` */
#[inline] #[inline]
#[must_use] #[must_use]
pub fn row(&self, m: usize) -> Vector<T, N> { pub fn row(&self, m: usize) -> Vector<T, N> {
assert!( assert!(
m < M, m < M,
"Row index {} out of bounds for {}x{} matrix", "Row index {} out of bounds for {}×{} matrix",
m, m,
M, M,
N N
@ -254,11 +394,27 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
Vector::<T, N>::vec(self.data[m]) Vector::<T, N>::vec(self.data[m])
} }
/** Sets a row of the matrix.
# Panics
Panics if row index `m` is out of bounds.
# Examples
```
# use vector_victor::{Matrix, Vector};
let mut my_matrix = Matrix::mat([[1, 2],
[3, 4]]);
// row at index 1
my_matrix.set_row(1, &Vector::vec([5,6]));
assert_eq!(my_matrix, Matrix::mat([[1,2],[5,6]]));
``` */
#[inline] #[inline]
pub fn set_row(&mut self, m: usize, val: &Vector<T, N>) { pub fn set_row(&mut self, m: usize, val: &Vector<T, N>) {
assert!( assert!(
m < M, m < M,
"Row index {} out of bounds for {}x{} matrix", "Row index {} out of bounds for {}×{} matrix",
m, m,
M, M,
N N
@ -268,18 +424,28 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
} }
} }
pub fn pivot_row(&mut self, m1: usize, m2: usize) { /** Returns a column of the matrix.
let tmp = self.row(m2);
self.set_row(m2, &self.row(m1));
self.set_row(m1, &tmp);
}
# Panics
Panics if column index `n` is out of bounds.
# Examples
```
# use vector_victor::{Matrix, Vector};
let my_matrix = Matrix::mat([[1, 2],
[3, 4]]);
// column at index 1
assert_eq!(my_matrix.col(1), Vector::vec([2,4]));
``` */
#[inline] #[inline]
#[must_use] #[must_use]
pub fn col(&self, n: usize) -> Vector<T, M> { pub fn col(&self, n: usize) -> Vector<T, M> {
assert!( assert!(
n < N, n < N,
"Column index {} out of bounds for {}x{} matrix", "Column index {} out of bounds for {}×{} matrix",
n, n,
M, M,
N N
@ -287,11 +453,27 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
Vector::<T, M>::vec(self.data.map(|r| r[n])) Vector::<T, M>::vec(self.data.map(|r| r[n]))
} }
/** Sets a column of the matrix.
# Panics
Panics if column index `n` is out of bounds.
# Examples
```
# use vector_victor::{Matrix, Vector};
let mut my_matrix = Matrix::mat([[1, 2],
[3, 4]]);
// column at index 1
my_matrix.set_col(1, &Vector::vec([5,6]));
assert_eq!(my_matrix, Matrix::mat([[1,5],[3,6]]));
``` */
#[inline] #[inline]
pub fn set_col(&mut self, n: usize, val: &Vector<T, M>) { pub fn set_col(&mut self, n: usize, val: &Vector<T, M>) {
assert!( assert!(
n < N, n < N,
"Column index {} out of bounds for {}x{} matrix", "Column index {} out of bounds for {}×{} matrix",
n, n,
M, M,
N N
@ -302,22 +484,64 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
} }
} }
/// Returns an iterator over the rows of the matrix, returning them as column vectors.
#[must_use]
pub fn rows<'a>(&'a self) -> impl Iterator<Item = Vector<T, N>> + 'a {
(0..M).map(|m| self.row(m))
}
/// Returns an iterator over the columns of the matrix, returning them as column vectors.
#[must_use]
pub fn cols<'a>(&'a self) -> impl Iterator<Item = Vector<T, M>> + 'a {
(0..N).map(|n| self.col(n))
}
/** Interchange two rows
# Panics
Panics if row index `m1` or `m2` are out of bounds */
pub fn pivot_row(&mut self, m1: usize, m2: usize) {
let tmp = self.row(m2);
self.set_row(m2, &self.row(m1));
self.set_row(m1, &tmp);
}
/** Interchange two columns
# Panics
Panics if column index `n1` or `n2` are out of bounds */
pub fn pivot_col(&mut self, n1: usize, n2: usize) { pub fn pivot_col(&mut self, n1: usize, n2: usize) {
let tmp = self.col(n2); let tmp = self.col(n2);
self.set_col(n2, &self.col(n1)); self.set_col(n2, &self.col(n1));
self.set_col(n1, &tmp); self.set_col(n1, &tmp);
} }
#[must_use] /** Apply a permutation matrix to the rows of a matrix
pub fn rows<'a>(&'a self) -> impl Iterator<Item = Vector<T, N>> + 'a {
(0..M).map(|m| self.row(m))
}
#[must_use] # Arguments
pub fn cols<'a>(&'a self) -> impl Iterator<Item = Vector<T, M>> + 'a {
(0..N).map(|n| self.col(n))
}
* `ms`: a [`Vector`] of [`usize`] of length M. Each entry is the index of the row that will
appear in the result
# Panics
Panics if any of the row indices in `ms` is out of bounds
# Examples
```
# use vector_victor::{Matrix, Vector};
let my_matrix = Matrix::mat([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]]);
let permuted = my_matrix.permute_rows(&Vector::vec([1, 0, 2]));
assert_eq!(permuted, Matrix::mat([[4, 5, 6],
[1, 2, 3],
[7, 8, 9]]))
``` */
#[must_use] #[must_use]
pub fn permute_rows(&self, ms: &Vector<usize, M>) -> Self pub fn permute_rows(&self, ms: &Vector<usize, M>) -> Self
where where
@ -326,6 +550,16 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
Self::from_rows(ms.elements().map(|&m| self.row(m))) Self::from_rows(ms.elements().map(|&m| self.row(m)))
} }
/** Apply a permutation matrix to the columns of a matrix
# Arguments
* `ns`: a [`Vector`] of [`usize`] of length N. Each entry is the index of the column that will
appear in the result
# Panics
Panics if any of the column indices in `ns` is out of bounds */
#[must_use] #[must_use]
pub fn permute_cols(&self, ns: &Vector<usize, N>) -> Self pub fn permute_cols(&self, ns: &Vector<usize, N>) -> Self
where where
@ -334,6 +568,20 @@ impl<T: Copy, const M: usize, const N: usize> Matrix<T, M, N> {
Self::from_cols(ns.elements().map(|&n| self.col(n))) Self::from_cols(ns.elements().map(|&n| self.col(n)))
} }
/** Returns the transpose $M^T$ of the matrix, or the matrix flipped across its diagonal.
# Examples
```
# use vector_victor::Matrix;
let my_matrix = Matrix::mat([[1, 2, 3],
[4, 5, 6]]);
assert_eq!(
my_matrix.transpose(),
Matrix::mat([[1, 4],
[2, 5],
[3, 6]]))
``` */
pub fn transpose(&self) -> Matrix<T, N, M> pub fn transpose(&self) -> Matrix<T, N, M>
where where
Matrix<T, N, M>: Default, Matrix<T, N, M>: Default,
@ -353,7 +601,7 @@ where
#[inline(always)] #[inline(always)]
fn index(&self, index: I) -> &Self::Output { fn index(&self, index: I) -> &Self::Output {
self.get(index).expect(&*format!( self.get(index).expect(&*format!(
"index {:?} out of range for {}x{} Matrix", "index {:?} out of range for {}×{} Matrix",
index, M, N index, M, N
)) ))
} }
@ -368,7 +616,7 @@ where
#[inline(always)] #[inline(always)]
fn index_mut(&mut self, index: I) -> &mut Self::Output { fn index_mut(&mut self, index: I) -> &mut Self::Output {
self.get_mut(index).expect(&*format!( self.get_mut(index).expect(&*format!(
"index {:?} out of range for {}x{} Matrix", "index {:?} out of range for {}×{} Matrix",
index, M, N index, M, N
)) ))
} }

View File

@ -6,24 +6,25 @@ use std::ops::{Add, Mul};
/// Operations for column vectors /// Operations for column vectors
impl<T: Copy, const N: usize> Vector<T, N> { impl<T: Copy, const N: usize> Vector<T, N> {
/// Compute the dot product of two vectors, otherwise known as the scalar product. /** Compute the dot product of two vectors, otherwise known as the scalar product.
/// This is the sum of the elementwise product, or in math terms
/// This is the sum of the elementwise product, or in math terms
/// $vec(a) * vec(b) = sum_(i=1)^n a_i b_i = a_1 b_1 + a_2 b_2 + ... + a_n b_n$
/// $vec(a) * vec(b) = sum_(i=1)^n a_i b_i = a_1 b_1 + a_2 b_2 + ... + a_n b_n$
/// for example, $[[1],[2],[3]] * [[4],[5],[6]] = (1 * 4) + (2 * 5) + (3 * 6) = 32$
/// for example, $\[\[1],\[2],\[3]] * \[\[4],\[5],\[6]] = (1 * 4) + (2 * 5) + (3 * 6) = 32$
/// For vectors in euclidean space, this has the property that it is equal to the magnitudes of
/// the vectors times the cosine of the angle between them. For vectors in euclidean space, this has the property that it is equal to the magnitudes of
/// the vectors times the cosine of the angle between them.
/// $vec(a) * vec(b) = |vec(a)| |vec(b)| cos(theta)$
/// $vec(a) * vec(b) = |vec(a)| |vec(b)| cos(theta)$
/// this also gives it the special property that the dot product of a vector and itself is the
/// square of its magnitude. You may recognize the 2D version as the this also gives it the special property that the dot product of a vector and itself is the
/// [pythagorean theorem](https://en.wikipedia.org/wiki/Pythagorean_theorem). square of its magnitude. You may recognize the 2D version as the
/// [pythagorean theorem](https://en.wikipedia.org/wiki/Pythagorean_theorem).
/// see [dot product](https://en.wikipedia.org/wiki/Dot_product) on Wikipedia for more
/// information. see [dot product](https://en.wikipedia.org/wiki/Dot_product) on Wikipedia for more
information. */
pub fn dot<R>(&self, rhs: &R) -> T pub fn dot<R>(&self, rhs: &R) -> T
where where
for<'s> &'s Self: Mul<&'s R, Output = Self>, for<'s> &'s Self: Mul<&'s R, Output = Self>,

View File

@ -1 +0,0 @@

View File

@ -1,3 +1,5 @@
//! Data structures and traits for decomposing and solving matrices
#[macro_use] #[macro_use]
mod common; mod common;