254 Commits
2.0.2 ... 2.0.6

Author SHA1 Message Date
de8f0153c0 Tag 2.0.6 for release. 2009-03-19 19:06:30 +00:00
820eb374d5 Add single color table generation code. 2009-03-19 10:06:42 +00:00
974cacda5f Update single color compression tables. 2009-03-19 10:00:43 +00:00
953a63d7b5 Add farbrausch images to testsuite. 2009-03-19 10:00:26 +00:00
19477d60c0 Fix errors in the pixel format conversion code. 2009-03-19 08:57:49 +00:00
8a48250bcb Fix win32 errors and errors in the png saving code. 2009-03-19 08:57:28 +00:00
18d95584cc Add farbrausch textures. 2009-03-19 06:28:32 +00:00
9b3075030e Add data to repro bug reports. 2009-03-19 06:18:31 +00:00
dd98ce6eab Add one more exclude rule to pkg builder script. 2009-03-18 06:55:54 +00:00
35ff0e5aa6 Remove verbose error checking. 2009-03-18 05:51:15 +00:00
8529dcf755 Fix memory leaks.
Shutdown CUDA properly when nvtt context is destroyed.
Fixes issue 83.
2009-03-18 05:46:53 +00:00
56543e1a92 Merge changes from 2.0 2009-03-18 04:05:39 +00:00
72543c9307 Add todo message. 2009-03-17 08:16:00 +00:00
872c61e1d1 Add image saving code. 2009-03-17 08:14:28 +00:00
7f3cee4db9 Remove commented out code. 2009-03-17 06:33:31 +00:00
3f036a11a6 Avoid msvc8 warnings. 2009-03-16 21:08:09 +00:00
3df9aff396 rename gnuwin back to gnuwin32 2009-03-16 19:42:25 +00:00
be12367910 fix blend, add setborder and fill methods. 2009-03-16 09:05:32 +00:00
c59a2e0a4b Implement alpha premultiplication and color blending. 2009-03-16 08:54:43 +00:00
0abec17ab4 Implement toGreyScale.
Skip undefined images.
2009-03-16 08:47:20 +00:00
6b67f4a0d7 More progress with imperative api.
Rename Texture to TexImage.
Implement image initialization.
Add stubs for all methods.
2009-03-16 08:37:07 +00:00
6e2565d1a4 Install doc files in doc folder. 2009-03-16 06:05:51 +00:00
3e3c8a4d18 Generate debs on linux only. 2009-03-15 18:35:00 +00:00
8e836591ee Fix warning. 2009-03-15 18:34:46 +00:00
50b8b67185 Hide file format especific savers. Add generic image saver.
Misc fixes under OSX.
2009-03-15 10:18:54 +00:00
36850f6241 Include readme in the installer. 2009-03-14 08:02:47 +00:00
ed58bd90ff Update readme. 2009-03-14 08:02:33 +00:00
ab73c790e1 Testsuite cleanups and improvements.
Add ctest support.
Add FileSystem::changeDirectory method.
2009-03-14 07:27:25 +00:00
4a34c673a4 Add testsuite images. 2009-03-14 07:09:26 +00:00
0ce578668f Compile libraries as dynamic libs.
Excluse qtproject folder in source packages.
Add support for package generation using cpack.
2009-03-14 06:04:33 +00:00
53e6c4c911 Update project files with recently added files. 2009-03-14 03:31:12 +00:00
d99cf11e2e Update version checking code. 2009-03-14 03:30:20 +00:00
d9832ed22c Eliminate some warnings with MSVC. 2009-03-14 03:29:43 +00:00
a02649faa9 Fallback to CPU compressor only on smaller images. 2009-03-14 03:29:14 +00:00
a28ebb4ccf Some more progress in the imperative API. 2009-03-07 07:14:00 +00:00
0f5a5e5d24 Some more progress in the imperative API. 2009-03-05 05:34:28 +00:00
8f0b129a52 Add RefCounted base class back to the reposotory. 2009-03-05 05:33:53 +00:00
098bc2f905 Fix some endiannes errors. 2009-03-04 09:36:40 +00:00
5943e8f42f Fix errors on ibook G4. 2009-03-04 07:04:32 +00:00
ba72ebafcb Delete win64 dlls, not very useful without the corresponding lib files. 2009-03-02 09:50:47 +00:00
a89735994c Update vc9 project files. 2009-03-02 09:45:17 +00:00
e7fd290af6 Update changelog. 2009-03-02 09:28:11 +00:00
35b97e7a13 Add property file. 2009-03-02 09:27:51 +00:00
472c2d691f Update vc8 project files. 2009-03-02 09:27:07 +00:00
e48f56a15e Includer project headers first. 2009-03-02 09:21:48 +00:00
25e32c8ff2 Fix msvc warnings. 2009-03-02 09:21:30 +00:00
db63ba7fa4 Fix build in win64. 2009-03-02 09:21:07 +00:00
3df66be089 Do not use CUDA to compress small mipmaps. 2009-03-02 09:09:05 +00:00
3a52923697 Add alpha command line option. 2009-03-02 09:07:07 +00:00
9953883d26 Cleanup cmake files. 2009-03-02 07:32:00 +00:00
5ed9090012 Move poshlib to extern. 2009-03-02 07:30:38 +00:00
93e2fb46a9 Update changelog and buildpkg script. 2009-03-02 07:01:06 +00:00
03c9ec0f62 More cleanup. Remove files that are not strictly required. 2009-03-01 02:38:24 +00:00
88fc5ca18e Merge changes from private tree.
Eliminate files that are not needed for NVTT.
2009-03-01 00:18:47 +00:00
6fb29816a2 Gnome thumbnailer. Fixes issue 82. 2009-02-03 09:32:54 +00:00
c67edca820 Update changelog. 2009-02-03 09:30:54 +00:00
9d5242594b Add gnome thumbnailer by Frank Richter. Fixes issue 82. 2009-02-03 09:29:25 +00:00
69c74d7a5e Add support for comments. 2009-02-03 09:23:58 +00:00
b7ea7a255b Fix const-correctness. 2009-02-03 09:22:30 +00:00
17790a34df Add support for PNG in nvdecompress. Patch by Frank Richter. Fixes issue 80. 2009-02-03 09:08:39 +00:00
7741a99b90 Add support for saving PNG files. Patch by Frank Richter. Fixes issue 79. 2009-02-03 09:06:21 +00:00
36dd7fb76b Merge changes from p4. 2009-02-03 08:22:35 +00:00
8fa870bf0c Fix typo. Fixes issue 82. 2009-02-03 08:02:20 +00:00
1afdf2da8a Fix alpha-weighted filtering. 2009-01-28 12:10:04 +00:00
242aa4254e Use alpha-aware resize when alpha is used for transparency and it's not premultiplied. 2009-01-28 10:58:57 +00:00
4f576d5539 Add support for alpha weighting to float image. 2009-01-28 10:55:23 +00:00
2411f3f5db Fix generation of blended sobel filter. Fixes issue 77. 2009-01-28 00:56:27 +00:00
1c6b65ad52 Do not use custom FindGLUT cmake script. 2009-01-27 23:39:33 +00:00
f92a2191f2 Print message when cuda acceleration enabled. 2009-01-20 10:43:56 +00:00
7f9b10329b Add squish.h to project. 2009-01-19 10:43:53 +00:00
49409e9d92 Cleanup color rounding and expansion. 2009-01-19 10:42:31 +00:00
f753cc9702 Implement FileSystem::exists correctly on win32. 2009-01-19 10:41:51 +00:00
07a4daed7b Add FileSystem.{h,cpp} to project. 2009-01-19 10:41:09 +00:00
2ad15489bb Try to optimize color rounding and expansion.
Detect CUDA 2.1 properly.
2009-01-19 09:54:43 +00:00
fa53ddcecd Add NV5x/G8x DXT decompression code.
Clean things up a bit, remove old code.
2009-01-13 08:25:04 +00:00
7a8b3aecc9 Fix name of libpng dll. 2009-01-10 04:40:46 +00:00
94357626f7 Merge fixes from 2.0 branch. 2009-01-10 01:31:02 +00:00
19342d8adf Use timer class instead of clock.
Check that file exists before opening.
2009-01-09 05:46:24 +00:00
2ed4fee447 Fix error sin string builder and path. 2009-01-09 05:45:36 +00:00
f03d702d84 Implement exists with access instead of stat. 2009-01-09 05:45:02 +00:00
10de10b9c2 Implement FileSystem::exists(). 2009-01-09 02:24:32 +00:00
508f9fbdc2 Start implementing experimental interface. 2009-01-05 10:17:06 +00:00
e965b0e4a9 Include correct headers. 2009-01-04 07:29:35 +00:00
1f4d313d0f Merge changes from internal branch. Whitespace changes only. 2008-12-29 11:34:39 +00:00
dc0b78ad14 Do not enable testing. 2008-12-29 11:33:48 +00:00
b8eb12afc1 Merge changes from internal branch.
- Better support for win64.
2008-12-29 11:33:20 +00:00
1975883bed Update after changes in nvcore. 2008-12-29 11:29:45 +00:00
9bda107603 Add pull push filter with bilinear filtering. 2008-12-29 11:28:29 +00:00
b4f17b968a Merge changes from internal branch.
- Add frustum class and bezier evaluation functions.
- Add component accessors to vector.
- Add matrix constructors.
- Fix errors in sparse solvers.
- Better robust orthogonalization.
- Fix montecarlo distribution.
2008-12-29 11:27:13 +00:00
e5ae0c0e20 Merge internal branch.
- Remove old/unused code.
- Remove format string constructors.
- Better win64 support (vsscanf, prefetch, etc).
- Fix radix sort to sort -0 correctly.
- Add misc utilities (constraints, timer, cpuinfo, introsort).
2008-12-29 11:20:06 +00:00
a03411e451 Check version properly. 2008-12-16 20:25:12 +00:00
931580edc5 Include cuda runtime properly. 2008-12-09 11:26:08 +00:00
fd2f5465f8 Do not use kahansum, that was stupid.
Include cuda runtime properly.
2008-12-09 11:25:46 +00:00
127052f404 Use KahanSum to compute RMSE.
Fix typos.
2008-12-07 23:15:06 +00:00
a30490ab9b Preserve cluster location for empty partitions. 2008-11-24 10:35:42 +00:00
1ec115c7ec Cleanup 4 means compressor. 2008-11-24 10:35:07 +00:00
a4f56b65b8 Add support for alpha modes in the CPU compressors. Fixes issue 30. 2008-11-24 10:34:16 +00:00
bb69acec6c Add FileSystem to build. 2008-11-23 22:25:47 +00:00
4bbf5e96f4 Add squish external compressor.
Rename our squish version to nvsquish.
2008-11-23 08:59:56 +00:00
4a85f8e48d Remove executable flag. 2008-11-22 22:12:05 +00:00
f34b7ce84f Merge optimizations from squish. 2008-11-22 22:10:51 +00:00
010905edd3 Fix tabs. 2008-11-22 22:10:11 +00:00
7bb2d55d35 Create output directory. 2008-11-22 22:08:31 +00:00
e3a7cc19dd Add file system helper. 2008-11-22 22:07:07 +00:00
379605d30a Use metric to measure distance to clusters. 2008-11-22 21:32:27 +00:00
c05c4e155b Merge optimizations from official squish release. 2008-11-22 11:36:06 +00:00
fd73484bfc Merge optimizations from official squish relese. 2008-11-22 11:35:13 +00:00
f29d7dd938 Try using 4 means clustering. 2008-11-22 11:34:29 +00:00
3a5dc4783a Add support for regressions. 2008-11-22 11:33:31 +00:00
d4a713451e Fix 4 means clustering. 2008-11-22 11:32:51 +00:00
a302475fa6 Add fitting implementation to project. 2008-11-22 11:30:46 +00:00
6e988ea4c8 Add stream to the vc8 project. 2008-11-22 11:28:18 +00:00
7731181900 Update changelog. 2008-11-22 08:37:56 +00:00
41f6e0ba73 Try 4-means. 2008-11-22 08:37:14 +00:00
11073171a1 Rename stress to testsuite. Install target. 2008-11-22 08:36:55 +00:00
0805832b44 Remove squish build and project files. 2008-11-22 08:36:17 +00:00
a4dcd414ca Fix errors. 2008-11-22 08:35:04 +00:00
4ff8a83f90 Add fitting code to build. 2008-11-22 08:30:55 +00:00
48da357385 Add PCA, and 4-means implementation. 2008-11-22 08:30:20 +00:00
e1916d43c8 Do not mix tabs and spaces. 2008-11-22 00:14:05 +00:00
321f320bfb Do not print stupid messages. 2008-11-22 00:13:14 +00:00
df32fedc7c Add command line options.
Reformat output for easier parsing.
2008-11-21 09:09:57 +00:00
a7396b70ba Fix segfault on linux. Merged from 2.0 branch. 2008-11-21 09:08:00 +00:00
d9ca49cc5e Fix bug in dxt decompression.
Output files as TGA.
2008-11-21 08:06:25 +00:00
56849b78ad Output compressed files. 2008-11-21 07:58:49 +00:00
a769831fb5 Add const keyword to const arguments. 2008-11-21 07:57:28 +00:00
7486201a7e Fix bug in testsuite. 2008-11-21 07:45:09 +00:00
1813624992 Modify stress test to compress a list of real images. 2008-11-21 07:38:12 +00:00
5fa27adfcd Add custom error code and message for the case when container format does not support a certain output format. 2008-11-19 08:10:54 +00:00
6d1891a7e9 Remove gcc-4.3 warning. 2008-11-14 02:19:39 +00:00
8fb1d70d0b Fix bug detected by gcc-4.3. 2008-11-14 02:19:07 +00:00
c26c52d59c Fix gcc-4.3 warnings. 2008-11-14 02:18:35 +00:00
c3329d4675 Fix gcc-4.3 warning. 2008-11-14 02:16:36 +00:00
1cefc366f8 Remove unused function. 2008-11-14 02:15:35 +00:00
7df0885c4f Fix CUDA detection code on linux. 2008-11-14 01:15:36 +00:00
1c5da0e341 Do not use cuda API when CUDA not found.
Fix end of lines.
2008-11-10 21:54:03 +00:00
36ba75b598 Select fastest device. 2008-10-30 04:50:41 +00:00
1628831878 Fix comment. 2008-10-27 08:00:46 +00:00
12e774ea74 Fix cmake file. 2008-10-26 05:56:32 +00:00
66b18f2dbd Fix build under VC7 2008-10-22 03:48:06 +00:00
9ea1934097 Update vc8 projects. 2008-10-17 18:40:16 +00:00
9771e72702 Update vc9 projects. 2008-10-17 18:38:55 +00:00
7776bd5c17 Win32 fixes. 2008-10-17 18:37:17 +00:00
6d8a75462a Build nvtt as a shared library. 2008-10-16 22:22:45 +00:00
cf18077eda Prevent missmatches between incompatible versions of the CUDA runtime and the CUDA driver. 2008-10-16 22:21:21 +00:00
aa37e7a868 Add library loading helpers. 2008-10-16 22:20:31 +00:00
d01a5c1661 Workaround bug in CUDA runtime. When using CUDA 2.0, it's required to use a driver that supports CUDA 2.0. 2008-10-16 08:39:58 +00:00
36ed6bebda Update changelog with branch 2.0 fixes. 2008-10-15 07:17:20 +00:00
5234060618 Integrate branch 2.0 to trunk. 2008-10-15 07:16:57 +00:00
f402f28643 Use unsigned ints for stream sizes and positions. 2008-10-15 07:15:50 +00:00
f047043eb2 Fix compiler errors under gcc-4.3 2008-10-15 07:15:00 +00:00
7eac4195c4 Fix compiler errors under gcc-4.3 2008-10-15 07:14:25 +00:00
0f5692d1ea Compile CUDA files as C++. 2008-10-11 06:43:57 +00:00
b2d6122769 Fix linux build. 2008-10-05 19:20:42 +00:00
cd59058fc2 Fix linux includes. 2008-10-05 19:17:59 +00:00
db14e048e1 Fix errors in Green and Alpha optimal compressors. 2008-10-02 07:33:05 +00:00
0c36fcf626 Update changelog. 2008-10-01 22:30:19 +00:00
68be24bf00 Set correct DXT5n swizzle code.
Select swizzle codes in nvtt instead of nvimage.
2008-10-01 22:28:57 +00:00
b284669993 Try some optimizations. 2008-10-01 22:28:01 +00:00
2f6e885ced Add DXT1 compressor that uses texture to avoid CPU swizzling.
Fix errors under emulation.
Experiment with DXT5 compressor.
2008-10-01 22:24:53 +00:00
1957120c26 Reference gnuwin32 libs and include paths correctly. 2008-09-11 07:56:39 +00:00
d7ddcb9263 Set optimal options for release vc9 projects.
Fixes issue 62.
2008-09-11 07:48:02 +00:00
f5f6e88585 Do not use freeimage yet. 2008-08-20 22:34:08 +00:00
13e2d2e447 Fix float support. 2008-08-20 22:32:54 +00:00
0b13b6d0d9 Update version number. 2008-08-20 22:31:14 +00:00
ad85b0fcbe Include gnuwin32 directory properly. 2008-08-20 22:30:41 +00:00
0515d9a0a0 Add Half.{h,cpp} to project. 2008-07-31 10:00:05 +00:00
16adf94635 Add support for floating point output formats.
Images are currently output in linear space, some color transforms not applied.
2008-07-31 09:55:22 +00:00
e9002a7d86 Adding support for floating point input/output. Work in progress. 2008-07-31 02:04:44 +00:00
3161fca9d9 Decompress DDS10 files. Only BC# supported so far. 2008-07-30 02:28:09 +00:00
bb5b02df0e Adding support for floating point images as input. 2008-07-29 08:56:40 +00:00
1941e27148 Fix DDS10 header initialization.
Fix depth initialization.
2008-07-29 08:43:42 +00:00
02c3abb394 Fix color transforms. 2008-07-29 06:05:11 +00:00
86ef67bbfa Fix error in input image transformation. 2008-07-29 05:45:35 +00:00
79529f994f Fix compilation error. 2008-07-29 05:44:31 +00:00
c2508d9eeb Add option to use dds10 headers. 2008-07-29 02:31:57 +00:00
b1cd916105 Change parameters in declaration to match definition. 2008-07-29 02:31:09 +00:00
96655b3e7c Work in progress:
- better support for DDS10 file format.
- support for RGBA pixel formats with more than 32 bits.
- support for pixel types other than UNORM.
2008-07-26 10:03:12 +00:00
529c0075e1 do not compile mpeg tests. 2008-07-26 09:01:00 +00:00
c70e5d6121 Reorg header files. 2008-07-05 09:10:45 +00:00
7394644719 Move ui to separate folder. 2008-07-05 09:10:00 +00:00
d5055300e2 Require cmake 2.6.0 2008-07-05 09:09:23 +00:00
b2e7d717c2 Fix compilation error under gcc/linux. 2008-07-05 08:57:03 +00:00
756f12c994 Fix errors in color transforms.
Add support for color offsets.
Add support for special swizzles that select default const values.
2008-06-30 10:59:57 +00:00
206bfcf0f3 reorg included files 2008-06-28 08:40:32 +00:00
15cfd1c06b fix path to gnulibs 2008-06-28 02:57:31 +00:00
8b26ecc865 fix path to gnulibs 2008-06-28 02:56:57 +00:00
488f3c8f42 fix path to gnu libs. 2008-06-28 02:56:27 +00:00
458b8814a7 fix path to gnulibs. 2008-06-28 02:55:35 +00:00
c08acc8a71 Add single color compressor to optimal green compressor.
Improve quality of DXT1 green compressor increasing search range.
2008-06-28 02:50:09 +00:00
45f7244f20 Check in proposed fix for issue 44. 2008-06-27 18:52:49 +00:00
f412ec8efb Fix assertion. 2008-06-26 07:23:31 +00:00
a1a34f546f Do not compile nvmpegenc. 2008-06-26 07:23:09 +00:00
7ef88c6f7e Fix build on OSX 10.5. Solves issue 44. 2008-06-26 07:22:34 +00:00
3368f9039b Fix embarrasing typo. 2008-06-24 21:47:47 +00:00
870a3fe438 Add references. 2008-06-23 19:24:59 +00:00
82bed4ac9a Eliminate warning. 2008-06-19 10:01:56 +00:00
b8a9395117 Fix end of lines. 2008-06-19 09:53:09 +00:00
65f769160d Fix solution. 2008-06-19 09:52:20 +00:00
524ebbec8c Add PhotoshopExporter template project to solution. 2008-06-19 00:38:15 +00:00
ce85eaff3e Add photoshop exporter template. 2008-06-19 00:37:15 +00:00
6befe3505c Enable Qt ui with win32/msvc. 2008-06-19 00:35:47 +00:00
ff6f7f0506 Add quick and dirty single frame mpeg encoder based on ffmpeg. 2008-06-13 08:12:58 +00:00
55e7d3dec4 Delete outdated comment. 2008-06-03 06:34:18 +00:00
b5e373b734 Compile NVTT under G5/leopard 2008-05-23 22:22:09 +00:00
6ce542b5c0 Fix error in cmake file. 2008-05-23 06:51:02 +00:00
58e5f6534f Print version number in copyright statement. 2008-05-22 21:48:40 +00:00
eda4786ca6 Update version number. 2008-05-22 21:48:19 +00:00
29a720bf82 Do not print text. 2008-05-22 21:32:09 +00:00
1120f83f7d Fix errors. 2008-05-22 21:31:44 +00:00
c38c3dc584 Fix win32 buid errors and warnings due to FreeImage. 2008-05-22 21:31:15 +00:00
7d3d0ede9d Update projects to use FreeImage. 2008-05-22 21:30:34 +00:00
bc66a7ad74 Update cmake files. 2008-05-22 19:47:52 +00:00
ca8d17abf5 Reorganize external libs. 2008-05-22 19:47:23 +00:00
10e79dac9d Update changelog. 2008-05-21 19:22:43 +00:00
e068964423 Fix EXR loading code. Issue 45. Fix provided by alastairpatrick. 2008-05-21 19:17:27 +00:00
ea340443d9 Add -mipfilter command line option, per request of Noel Llopis. 2008-05-19 20:10:05 +00:00
fb2b0cb38c Fix bug reported by Noel Llopis.
Make sure FreeImage declarations are not used when FreeImage is not available.
2008-05-19 18:23:42 +00:00
c01566cd2f Add support for FreeImage in nvimage.
Add support for floating point input images in nvtt.
2008-05-15 09:47:55 +00:00
47bdab8e27 Define FREEIMAGE_LIBRARIES. 2008-05-15 09:46:45 +00:00
70267fda15 Add support for input floating point images. Patch provided by Jim Tilander. See issue 27. 2008-05-15 06:18:24 +00:00
aebcea412c Search for freeimage. 2008-05-15 06:17:46 +00:00
bccdcd49da Use standard gram schmidt 2008-05-15 06:04:17 +00:00
68e9f05794 Add freeimage cmake file. 2008-05-15 05:57:11 +00:00
0f186e688f Remove 'virtual' from non virtual methods. 2008-05-08 21:15:05 +00:00
38e9652d64 Remove executable flag. 2008-05-08 18:20:55 +00:00
f08114c1b5 Whops, check fix for vc9. 2008-05-08 18:18:53 +00:00
7b9f891f92 Update vc9 projects. 2008-05-07 21:58:50 +00:00
787c9bb8fb Add vc9 projects. 2008-05-07 21:55:33 +00:00
42220b981e Add vc9 folder 2008-05-07 21:45:48 +00:00
70331a37fd Refactor compression functions, group them into class methods. 2008-05-06 23:55:19 +00:00
2ffc4cd7ad Ups, checked in the file before saving it. 2008-05-06 23:34:46 +00:00
4ba8e87a38 Ups, checked in file before saving it. 2008-05-06 23:34:13 +00:00
d440d68aa8 Update ChangeLog. 2008-05-06 23:22:04 +00:00
48f61dbfc0 Add support for linear and swizzle transforms. Fixes issue 4. 2008-05-06 23:21:39 +00:00
94c3fa75a8 Add comments indicating where to perform linear color transforms. 2008-05-06 22:01:23 +00:00
c562af6d9b Integrate YCoCg color space conversion by Jim Tilander. 2008-05-06 21:49:10 +00:00
a889f2fda6 Add support for alpha modes in the CUDA compressors. 2008-05-06 20:04:05 +00:00
d855d0461b Add single color checks to CUDA compressors.
Use optimized bitmap table for CTX compressor.
2008-05-06 19:52:27 +00:00
246f2a409a Add cpp file to project so that a library is built. 2008-05-06 19:48:43 +00:00
6a6b3edce1 factorial optimization suggested by pponywong. 2008-05-06 06:37:06 +00:00
52b3bc9437 Update project files. Remove fast compressor, add optimal compressor. 2008-04-29 22:34:09 +00:00
f6ab357b09 Add missing files to project. 2008-04-29 22:33:42 +00:00
ce3a65c03e Fix operator= in String class. 2008-04-29 22:32:12 +00:00
8d9bf5c0b3 Fix after refactoring CPU compressors. Changes were not tested with CUDA enabled. 2008-04-29 22:31:55 +00:00
ab5265e642 Remove declaration of method that was removed. 2008-04-28 08:39:24 +00:00
fd1d5e41c7 Add missing files! 2008-04-28 06:22:26 +00:00
3980d5dc21 Update changelog. 2008-04-26 09:17:16 +00:00
15e7125b4b Check for single color blocks in all compressors. 2008-04-26 09:16:56 +00:00
921ee354c0 Remove legacy compressors.
Add iteration count parameter to iterative alpha compressor.
Add optimal compressors.
2008-04-26 08:02:30 +00:00
e3f7e303e4 Use FLT_MAX instead of INFINITE. The latter not supported in msvc. 2008-04-20 06:01:50 +00:00
1df69495fc Precompute fast cluster fit factors, and store as static const.
nvtt is completely reentrant now. Fixes issue 37.
cleanup interface of cuda compressors.
2008-04-18 08:49:32 +00:00
91eb30667f Add TLS class wrapper.
Fix AutoPtr operator=.
Fix typo.
2008-04-17 18:39:01 +00:00
6db5cffca6 Fix changelog. 2008-04-17 09:28:38 +00:00
103 changed files with 3828 additions and 6869 deletions

View File

@ -1,4 +1,4 @@
CMAKE_MINIMUM_REQUIRED(VERSION 2.4.0)
CMAKE_MINIMUM_REQUIRED(VERSION 2.6.0)
PROJECT(NV)
ENABLE_TESTING()
@ -16,6 +16,13 @@ MESSAGE(STATUS "Setting optimal options")
MESSAGE(STATUS " Processor: ${NV_SYSTEM_PROCESSOR}")
MESSAGE(STATUS " Compiler Flags: ${CMAKE_CXX_FLAGS}")
IF(NVTT_SHARED)
SET(NVCORE_SHARED TRUE)
SET(NVMATH_SHARED TRUE)
SET(NVIMAGE_SHARED TRUE)
ENDIF(NVTT_SHARED)
ADD_SUBDIRECTORY(src)
IF(WIN32)

View File

@ -1,7 +1,35 @@
NVIDIA Texture Tools version 2.1.0
* CTX1 CUDA compressor.
* DXT1n CUDA compressor.
* Support alpha premultiplication by Charles Nicholson. See issue 30.
NVIDIA Texture Tools version 2.0.6
* Fix dll version checking.
* Detect CUDA 2.1 and future CUDA versions correctly.
* Print CUDA detection message in nvcompress.
* Select the fastest CUDA device.
* Compile squish with -fPIC. Fixes issue 74.
* Fix warnings under gcc 4.3.2.
* Fix nvzoom option typo by Frank Richter. Fixes issue 81.
* Do not use CUDA to compress small mipmaps. Fixes issue 76.
* Compute mipmaps of semi-transparent images correctly.
* Shutdown CUDA properly. Fixes issue 83.
* Fix pixel format converions. Fixes issue 87.
* Update single color compression tables. Fixes issue 85.
NVIDIA Texture Tools version 2.0.5
* Fix error in single color compressor. Fixes issue 66.
* Detect mismatch between CUDA runtime and driver, and disable CUDA in that case.
* Fix cmake files when compiling NVTT as a shared library.
* When linking nvtt dynamically on unix, link all libraries dynamically.
* Select fastest CUDA device.
NVIDIA Texture Tools version 2.0.4
* Fix error in RGB format output; reported by jonsoh. See issue 49.
* Added support RGB format dithering by jonsoh. Fixes issue 50 and 51.
* Prevent infinite loop in indexMirror when width equal 1. Fixes issue 65.
* Implement general scale filter, including upsampling.
NVIDIA Texture Tools version 2.0.3
* More accurate DXT3 compressor. Fixes issue 38.
* Remove legacy compressors. Fix issue 34.
* Check for single color in all compressors. Fixes issue 43.
* Fix error in fast downsample filter, reported by Noel Llopis.
NVIDIA Texture Tools version 2.0.2
* Fix copy ctor error reported by Richard Sim.
@ -10,7 +38,6 @@ NVIDIA Texture Tools version 2.0.2
* Fix RGBA modes with less than 32 bpp by Viktor Linder.
* Fix alpha decompression by Amorilia. See issue 40.
* Avoid default-initialized constructors for POD types, reported by Jim Tilander.
* Improved decompressor tool submitted by Amorilia. See issue 41.
* Add single color compresor for DXT1a.
* Set swizzle code to ATI2 files. See issue 41.

View File

@ -2,7 +2,7 @@
--------------------------------------------------------------------------------
NVIDIA Texture Tools
README.txt
Version 2.1
Version 2.0
--------------------------------------------------------------------------------
--------------------------------------------------------------------------------

View File

@ -1 +1 @@
2.1.0
2.0.6

View File

@ -57,7 +57,7 @@ MARK_AS_ADVANCED (CUDA_FOUND CUDA_COMPILER CUDA_RUNTIME_LIBRARY)
#SET(CUDA_OPTIONS "-ncfe")
SET(CUDA_OPTIONS "")
SET(CUDA_OPTIONS "--host-compilation=C")
IF (CUDA_EMULATION)
SET (CUDA_OPTIONS "${CUDA_OPTIONS} -deviceemu")

2
configure vendored
View File

@ -53,7 +53,7 @@ echo "-- Configuring nvidia-texture-tools "`cat VERSION`
mkdir -p ./build
cd ./build
$CMAKE .. -DCMAKE_BUILD_TYPE=$build -DCMAKE_INSTALL_PREFIX=$prefix -G "Unix Makefiles" || exit 1
$CMAKE .. -DNVTT_SHARED=1 -DCMAKE_BUILD_TYPE=$build -DCMAKE_INSTALL_PREFIX=$prefix -G "Unix Makefiles" || exit 1
cd ..
echo ""

BIN
gnuwin32/lib/libpng.a Normal file

Binary file not shown.

BIN
gnuwin32/lib/libz.a Normal file

Binary file not shown.

View File

@ -278,6 +278,7 @@
AdditionalDependencies="libpng.lib jpeg.lib tiff.lib"
OutputFile="$(SolutionDir)\$(ConfigurationName).$(PlatformName)\bin\$(ProjectName).exe"
AdditionalLibraryDirectories="..\..\..\gnuwin32\lib"
LinkTimeCodeGeneration="1"
TargetMachine="17"
/>
<Tool

View File

@ -281,6 +281,10 @@
RelativePath="..\..\..\src\nvcore\Debug.cpp"
>
</File>
<File
RelativePath="..\..\..\src\nvcore\Library.cpp"
>
</File>
<File
RelativePath="..\..\..\src\nvcore\Memory.cpp"
>
@ -315,6 +319,10 @@
RelativePath="..\..\..\src\nvcore\DefsVcWin32.h"
>
</File>
<File
RelativePath="..\..\..\src\nvcore\Library.h"
>
</File>
<File
RelativePath="..\..\..\src\nvcore\Memory.h"
>

View File

@ -277,6 +277,7 @@
AdditionalDependencies="libpng.lib jpeg.lib tiff.lib"
OutputFile="$(SolutionDir)\$(ConfigurationName).$(PlatformName)\bin\$(ProjectName).exe"
AdditionalLibraryDirectories="..\..\..\gnuwin32\lib"
LinkTimeCodeGeneration="1"
TargetMachine="17"
/>
<Tool

View File

@ -355,6 +355,10 @@
RelativePath="..\..\..\src\nvimage\nvimage.h"
>
</File>
<File
RelativePath="..\..\..\src\nvimage\PixelFormat.h"
>
</File>
<File
RelativePath="..\..\..\src\nvimage\PsdFile.h"
>

View File

@ -277,6 +277,10 @@
Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
>
<File
RelativePath="..\..\..\src\nvmath\Plane.cpp"
>
</File>
</Filter>
<Filter
Name="Header Files"
@ -295,6 +299,10 @@
RelativePath="..\..\..\src\nvmath\Matrix.h"
>
</File>
<File
RelativePath="..\..\..\src\nvmath\Plane.h"
>
</File>
<File
RelativePath="..\..\..\src\nvmath\Vector.h"
>

View File

@ -3,18 +3,18 @@ Microsoft Visual Studio Solution File, Format Version 9.00
# Visual Studio 2005
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "nvtt", "nvtt\nvtt.vcproj", "{1AEB7681-57D8-48EE-813D-5C41CC38B647}"
ProjectSection(ProjectDependencies) = postProject
{50C465FE-B308-42BC-894D-89484482AF06} = {50C465FE-B308-42BC-894D-89484482AF06}
{4046F392-A18B-4C66-9639-3EABFFF5D531} = {4046F392-A18B-4C66-9639-3EABFFF5D531}
{F143D180-D4C4-4037-B3DE-BE89A21C8D1D} = {F143D180-D4C4-4037-B3DE-BE89A21C8D1D}
{CE017322-01FC-4851-9C8B-64E9A8E26C38} = {CE017322-01FC-4851-9C8B-64E9A8E26C38}
{F143D180-D4C4-4037-B3DE-BE89A21C8D1D} = {F143D180-D4C4-4037-B3DE-BE89A21C8D1D}
{4046F392-A18B-4C66-9639-3EABFFF5D531} = {4046F392-A18B-4C66-9639-3EABFFF5D531}
{50C465FE-B308-42BC-894D-89484482AF06} = {50C465FE-B308-42BC-894D-89484482AF06}
EndProjectSection
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "nvcompress", "nvcompress\nvcompress.vcproj", "{88079E38-83AA-4E8A-B18A-66A78D1B058B}"
ProjectSection(ProjectDependencies) = postProject
{50C465FE-B308-42BC-894D-89484482AF06} = {50C465FE-B308-42BC-894D-89484482AF06}
{4046F392-A18B-4C66-9639-3EABFFF5D531} = {4046F392-A18B-4C66-9639-3EABFFF5D531}
{1AEB7681-57D8-48EE-813D-5C41CC38B647} = {1AEB7681-57D8-48EE-813D-5C41CC38B647}
{F143D180-D4C4-4037-B3DE-BE89A21C8D1D} = {F143D180-D4C4-4037-B3DE-BE89A21C8D1D}
{1AEB7681-57D8-48EE-813D-5C41CC38B647} = {1AEB7681-57D8-48EE-813D-5C41CC38B647}
{4046F392-A18B-4C66-9639-3EABFFF5D531} = {4046F392-A18B-4C66-9639-3EABFFF5D531}
{50C465FE-B308-42BC-894D-89484482AF06} = {50C465FE-B308-42BC-894D-89484482AF06}
EndProjectSection
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "nvimage", "nvimage\nvimage.vcproj", "{4046F392-A18B-4C66-9639-3EABFFF5D531}"
@ -34,16 +34,16 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "nvddsinfo", "nvddsinfo\nvdd
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "nvdecompress", "nvdecompress\nvdecompress.vcproj", "{75A0527D-BFC9-49C3-B46B-CD1A901D5927}"
ProjectSection(ProjectDependencies) = postProject
{50C465FE-B308-42BC-894D-89484482AF06} = {50C465FE-B308-42BC-894D-89484482AF06}
{4046F392-A18B-4C66-9639-3EABFFF5D531} = {4046F392-A18B-4C66-9639-3EABFFF5D531}
{F143D180-D4C4-4037-B3DE-BE89A21C8D1D} = {F143D180-D4C4-4037-B3DE-BE89A21C8D1D}
{4046F392-A18B-4C66-9639-3EABFFF5D531} = {4046F392-A18B-4C66-9639-3EABFFF5D531}
{50C465FE-B308-42BC-894D-89484482AF06} = {50C465FE-B308-42BC-894D-89484482AF06}
EndProjectSection
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "nvimgdiff", "nvimgdiff\nvimgdiff.vcproj", "{05A59E8B-EA70-4F22-89E8-E0927BA13064}"
ProjectSection(ProjectDependencies) = postProject
{F143D180-D4C4-4037-B3DE-BE89A21C8D1D} = {F143D180-D4C4-4037-B3DE-BE89A21C8D1D}
{50C465FE-B308-42BC-894D-89484482AF06} = {50C465FE-B308-42BC-894D-89484482AF06}
{4046F392-A18B-4C66-9639-3EABFFF5D531} = {4046F392-A18B-4C66-9639-3EABFFF5D531}
{F143D180-D4C4-4037-B3DE-BE89A21C8D1D} = {F143D180-D4C4-4037-B3DE-BE89A21C8D1D}
EndProjectSection
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "nvassemble", "nvassemble\nvassemble.vcproj", "{3BC6D760-91E8-4FFB-BD0E-F86F367AD8EA}"
@ -55,18 +55,13 @@ Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "nvassemble", "nvassemble\nv
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "nvzoom", "nvzoom\nvzoom.vcproj", "{51999D3E-EF22-4BDD-965F-4201034D3DCE}"
ProjectSection(ProjectDependencies) = postProject
{50C465FE-B308-42BC-894D-89484482AF06} = {50C465FE-B308-42BC-894D-89484482AF06}
{4046F392-A18B-4C66-9639-3EABFFF5D531} = {4046F392-A18B-4C66-9639-3EABFFF5D531}
{F143D180-D4C4-4037-B3DE-BE89A21C8D1D} = {F143D180-D4C4-4037-B3DE-BE89A21C8D1D}
{4046F392-A18B-4C66-9639-3EABFFF5D531} = {4046F392-A18B-4C66-9639-3EABFFF5D531}
{50C465FE-B308-42BC-894D-89484482AF06} = {50C465FE-B308-42BC-894D-89484482AF06}
EndProjectSection
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "Nvidia.TextureTools", "Nvidia.TextureTools\Nvidia.TextureTools.csproj", "{CAB55C39-8FA9-4912-98D9-E52669C8911D}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "stress", "stress\stress.vcproj", "{317B694E-B5C1-42A6-956F-FC12B69175A6}"
ProjectSection(ProjectDependencies) = postProject
{1AEB7681-57D8-48EE-813D-5C41CC38B647} = {1AEB7681-57D8-48EE-813D-5C41CC38B647}
EndProjectSection
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug (no cuda)|Any CPU = Debug (no cuda)|Any CPU
@ -319,22 +314,6 @@ Global
{CAB55C39-8FA9-4912-98D9-E52669C8911D}.Release|Any CPU.Build.0 = Release|Any CPU
{CAB55C39-8FA9-4912-98D9-E52669C8911D}.Release|Win32.ActiveCfg = Release|Any CPU
{CAB55C39-8FA9-4912-98D9-E52669C8911D}.Release|x64.ActiveCfg = Release|Any CPU
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Debug (no cuda)|Any CPU.ActiveCfg = Debug|Win32
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Debug (no cuda)|Win32.ActiveCfg = Debug|Win32
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Debug (no cuda)|Win32.Build.0 = Debug|Win32
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Debug (no cuda)|x64.ActiveCfg = Debug|Win32
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Debug|Any CPU.ActiveCfg = Debug|Win32
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Debug|Win32.ActiveCfg = Debug|Win32
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Debug|Win32.Build.0 = Debug|Win32
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Debug|x64.ActiveCfg = Debug|Win32
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Release (no cuda)|Any CPU.ActiveCfg = Release|Win32
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Release (no cuda)|Win32.ActiveCfg = Release|Win32
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Release (no cuda)|Win32.Build.0 = Release|Win32
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Release (no cuda)|x64.ActiveCfg = Release|Win32
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Release|Any CPU.ActiveCfg = Release|Win32
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Release|Win32.ActiveCfg = Release|Win32
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Release|Win32.Build.0 = Release|Win32
{317B694E-B5C1-42A6-956F-FC12B69175A6}.Release|x64.ActiveCfg = Release|Win32
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE

View File

@ -53,8 +53,8 @@ END
//
VS_VERSION_INFO VERSIONINFO
FILEVERSION 2,1,0,0
PRODUCTVERSION 2,1,0,0
FILEVERSION 2,0,6,0
PRODUCTVERSION 2,0,6,0
FILEFLAGSMASK 0x17L
#ifdef _DEBUG
FILEFLAGS 0x1L
@ -71,12 +71,12 @@ BEGIN
BEGIN
VALUE "CompanyName", "NVIDIA Corporation"
VALUE "FileDescription", "NVIDIA Texture Tools Dynamic Link Library"
VALUE "FileVersion", "2, 1, 0, 0"
VALUE "FileVersion", "2, 0, 6, 0"
VALUE "InternalName", "nvtt"
VALUE "LegalCopyright", "Copyright (C) 2007"
VALUE "OriginalFilename", "nvtt.dll"
VALUE "ProductName", "NVIDIA Texture Tools Dynamic Link Library"
VALUE "ProductVersion", "2, 1, 0, 0"
VALUE "ProductVersion", "2, 0, 6, 0"
END
END
BLOCK "VarFileInfo"

View File

@ -691,7 +691,7 @@
>
<Tool
Name="VCCustomBuildTool"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -keep -ccbin &quot;$(VCInstallDir)bin&quot; -c -D_DEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/Od,/Zi,/RTC1,/MDd -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -m32 -ccbin &quot;$(VCInstallDir)bin&quot; -c -D_DEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/Od,/Zi,/RTC1,/MDd -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
AdditionalDependencies="CudaMath.h"
Outputs="$(IntDir)\$(InputName).obj"
/>
@ -701,7 +701,7 @@
>
<Tool
Name="VCCustomBuildTool"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -keep -ccbin &quot;$(VCInstallDir)bin&quot; -c -D_DEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/Od,/Zi,/RTC1,/MDd -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -m64 -ccbin &quot;$(VCInstallDir)bin&quot; -c -D_DEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/Od,/Zi,/RTC1,/MDd -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
AdditionalDependencies="CudaMath.h"
Outputs="$(IntDir)\$(InputName).obj"
/>
@ -711,7 +711,7 @@
>
<Tool
Name="VCCustomBuildTool"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -keep -ccbin &quot;$(VCInstallDir)bin&quot; -c -DNDEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MD -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -m32 -ccbin &quot;$(VCInstallDir)bin&quot; -c -DNDEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MD -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
AdditionalDependencies="CudaMath.h"
Outputs="$(IntDir)\$(InputName).obj"
/>
@ -721,7 +721,7 @@
>
<Tool
Name="VCCustomBuildTool"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -keep -ccbin &quot;$(VCInstallDir)bin&quot; -c -DNDEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MD -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
CommandLine="&quot;$(CUDA_BIN_PATH)\nvcc.exe&quot; -m64 -ccbin &quot;$(VCInstallDir)bin&quot; -c -DNDEBUG -DWIN32 -D_CONSOLE -D_MBCS -Xcompiler /EHsc,/W3,/nologo,/Wp64,/O2,/Zi,/MD -I&quot;$(CUDA_INC_PATH)&quot; -I./ -o $(IntDir)\$(InputName).obj ..\\..\\..\\src\\nvtt\\cuda\\CompressKernel.cu&#x0D;&#x0A;"
AdditionalDependencies="CudaMath.h"
Outputs="$(IntDir)\$(InputName).obj"
/>
@ -849,10 +849,6 @@
RelativePath="..\..\..\src\nvtt\cuda\CudaUtils.cpp"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\FastCompressDXT.cpp"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\InputOptions.cpp"
>
@ -865,6 +861,10 @@
RelativePath="..\..\..\src\nvtt\nvtt_wrapper.cpp"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\OptimalCompressDXT.cpp"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\OutputOptions.cpp"
>
@ -911,10 +911,6 @@
RelativePath="..\..\..\src\nvtt\cuda\CudaUtils.h"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\FastCompressDXT.h"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\InputOptions.h"
>
@ -927,6 +923,10 @@
RelativePath="..\..\..\src\nvtt\nvtt_wrapper.h"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\OptimalCompressDXT.h"
>
</File>
<File
RelativePath="..\..\..\src\nvtt\OutputOptions.h"
>

View File

@ -1,201 +0,0 @@
<?xml version="1.0" encoding="Windows-1252"?>
<VisualStudioProject
ProjectType="Visual C++"
Version="8.00"
Name="stress"
ProjectGUID="{317B694E-B5C1-42A6-956F-FC12B69175A6}"
RootNamespace="stress"
Keyword="Win32Proj"
>
<Platforms>
<Platform
Name="Win32"
/>
</Platforms>
<ToolFiles>
</ToolFiles>
<Configurations>
<Configuration
Name="Debug|Win32"
OutputDirectory="$(ConfigurationName)\$(PlatformName)"
IntermediateDirectory="$(ConfigurationName)\$(PlatformName)"
ConfigurationType="1"
CharacterSet="1"
>
<Tool
Name="VCPreBuildEventTool"
/>
<Tool
Name="VCCustomBuildTool"
/>
<Tool
Name="VCXMLDataGeneratorTool"
/>
<Tool
Name="VCWebServiceProxyGeneratorTool"
/>
<Tool
Name="VCMIDLTool"
/>
<Tool
Name="VCCLCompilerTool"
Optimization="0"
AdditionalIncludeDirectories="..;..\..\..\src"
PreprocessorDefinitions="WIN32;_DEBUG;_CONSOLE"
MinimalRebuild="true"
BasicRuntimeChecks="3"
RuntimeLibrary="3"
UsePrecompiledHeader="0"
WarningLevel="3"
Detect64BitPortabilityProblems="true"
DebugInformationFormat="4"
/>
<Tool
Name="VCManagedResourceCompilerTool"
/>
<Tool
Name="VCResourceCompilerTool"
/>
<Tool
Name="VCPreLinkEventTool"
/>
<Tool
Name="VCLinkerTool"
OutputFile="$(SolutionDir)\$(ConfigurationName).$(PlatformName)\bin\$(ProjectName).exe"
LinkIncremental="2"
GenerateDebugInformation="true"
SubSystem="1"
TargetMachine="1"
/>
<Tool
Name="VCALinkTool"
/>
<Tool
Name="VCManifestTool"
/>
<Tool
Name="VCXDCMakeTool"
/>
<Tool
Name="VCBscMakeTool"
/>
<Tool
Name="VCFxCopTool"
/>
<Tool
Name="VCAppVerifierTool"
/>
<Tool
Name="VCWebDeploymentTool"
/>
<Tool
Name="VCPostBuildEventTool"
/>
</Configuration>
<Configuration
Name="Release|Win32"
OutputDirectory="$(ConfigurationName)\$(PlatformName)"
IntermediateDirectory="$(ConfigurationName)\$(PlatformName)"
ConfigurationType="1"
CharacterSet="1"
WholeProgramOptimization="1"
>
<Tool
Name="VCPreBuildEventTool"
/>
<Tool
Name="VCCustomBuildTool"
/>
<Tool
Name="VCXMLDataGeneratorTool"
/>
<Tool
Name="VCWebServiceProxyGeneratorTool"
/>
<Tool
Name="VCMIDLTool"
/>
<Tool
Name="VCCLCompilerTool"
AdditionalIncludeDirectories="..;..\..\..\src"
PreprocessorDefinitions="WIN32;NDEBUG;_CONSOLE"
RuntimeLibrary="2"
UsePrecompiledHeader="0"
WarningLevel="3"
Detect64BitPortabilityProblems="true"
DebugInformationFormat="3"
/>
<Tool
Name="VCManagedResourceCompilerTool"
/>
<Tool
Name="VCResourceCompilerTool"
/>
<Tool
Name="VCPreLinkEventTool"
/>
<Tool
Name="VCLinkerTool"
OutputFile="$(SolutionDir)\$(ConfigurationName).$(PlatformName)\bin\$(ProjectName).exe"
LinkIncremental="1"
GenerateDebugInformation="true"
SubSystem="1"
OptimizeReferences="2"
EnableCOMDATFolding="2"
TargetMachine="1"
/>
<Tool
Name="VCALinkTool"
/>
<Tool
Name="VCManifestTool"
/>
<Tool
Name="VCXDCMakeTool"
/>
<Tool
Name="VCBscMakeTool"
/>
<Tool
Name="VCFxCopTool"
/>
<Tool
Name="VCAppVerifierTool"
/>
<Tool
Name="VCWebDeploymentTool"
/>
<Tool
Name="VCPostBuildEventTool"
/>
</Configuration>
</Configurations>
<References>
</References>
<Files>
<Filter
Name="Source Files"
Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
>
<File
RelativePath="..\..\..\src\nvtt\tests\stress.cpp"
>
</File>
</Filter>
<Filter
Name="Header Files"
Filter="h;hpp;hxx;hm;inl;inc;xsd"
UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
>
</Filter>
<Filter
Name="Resource Files"
Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav"
UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"
>
</Filter>
</Files>
<Globals>
</Globals>
</VisualStudioProject>

View File

@ -1,11 +1,11 @@
INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR})
SUBDIRS(nvcore)
SUBDIRS(nvmath)
SUBDIRS(nvimage)
SUBDIRS(nvtt)
INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_BINARY_DIR})
# OpenGL
INCLUDE(FindOpenGL)
IF(OPENGL_FOUND)
@ -84,7 +84,6 @@ ELSE(PNG_FOUND)
ENDIF(PNG_FOUND)
# TIFF
SET(TIFF_NAMES libtiff)
INCLUDE(FindTIFF)
IF(TIFF_FOUND)
SET(HAVE_TIFF ${TIFF_FOUND} CACHE BOOL "Set to TRUE if TIFF is found, FALSE otherwise")

View File

@ -1,147 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#ifndef NV_CORE_ALGORITHMS_H
#define NV_CORE_ALGORITHMS_H
namespace nv
{
/// Return the maximum of two values.
template <typename T>
inline const T & max(const T & a, const T & b)
{
//return std::max(a, b);
if( a < b ) {
return b;
}
return a;
}
/// Return the minimum of two values.
template <typename T>
inline const T & min(const T & a, const T & b)
{
//return std::min(a, b);
if( b < a ) {
return b;
}
return a;
}
/// Clamp between two values.
template <typename T>
inline const T & clamp(const T & x, const T & a, const T & b)
{
return min(max(x, a), b);
}
/// Delete all the elements of a container.
template <typename T>
void deleteAll(T & container)
{
for (typename T::PseudoIndex i = container.start(); !container.isDone(i); container.advance(i))
{
delete container[i];
}
}
// @@ Swap should be implemented here.
#if 0
// This does not use swap, but copies, in some cases swaps are much faster than copies!
// Container should implement operator[], and size()
template <class Container, class T>
void insertionSort(Container<T> & container)
{
const uint n = container.size();
for (uint i=1; i < n; ++i)
{
T value = container[i];
uint j = i;
while (j > 0 && container[j-1] > value)
{
container[j] = container[j-1];
--j;
}
if (i != j)
{
container[j] = value;
}
}
}
template <class Container, class T>
void quickSort(Container<T> & container)
{
quickSort(container, 0, container.count());
}
{
/* threshhold for transitioning to insertion sort */
while (n > 12) {
int c01,c12,c,m,i,j;
/* compute median of three */
m = n >> 1;
c = p[0] > p[m];
c01 = c;
c = &p[m] > &p[n-1];
c12 = c;
/* if 0 >= mid >= end, or 0 < mid < end, then use mid */
if (c01 != c12) {
/* otherwise, we'll need to swap something else to middle */
int z;
c = p[0] < p[n-1];
/* 0>mid && mid<n: 0>n => n; 0<n => 0 */
/* 0<mid && mid>n: 0>n => 0; 0<n => n */
z = (c == c12) ? 0 : n-1;
swap(p[z], p[m]);
}
/* now p[m] is the median-of-three */
/* swap it to the beginning so it won't move around */
swap(p[0], p[m]);
/* partition loop */
i=1;
j=n-1;
for(;;) {
/* handling of equality is crucial here */
/* for sentinels & efficiency with duplicates */
for (;;++i) {
c = p[i] > p[0];
if (!c) break;
}
a = &p[0];
for (;;--j) {
b=&p[j];
c = p[j] > p[0]
if (!c) break;
}
/* make sure we haven't crossed */
if (i >= j) break;
swap(p[i], p[j]);
++i;
--j;
}
/* recurse on smaller side, iterate on larger */
if (j < (n-i)) {
quickSort(p, j);
p = p+i;
n = n-i;
}
else {
quickSort(p+i, n-i);
n = j;
}
}
insertionSort();
}
#endif // 0
} // nv namespace
#endif // NV_CORE_ALGORITHMS_H

View File

@ -80,13 +80,13 @@ public:
/// Clear all the bits.
void clearAll()
{
memset(m_bitArray.mutableBuffer(), 0, m_bitArray.size());
memset(m_bitArray.unsecureBuffer(), 0, m_bitArray.size());
}
/// Set all the bits.
void setAll()
{
memset(m_bitArray.mutableBuffer(), 0xFF, m_bitArray.size());
memset(m_bitArray.unsecureBuffer(), 0xFF, m_bitArray.size());
}
/// Toggle all the bits.

View File

@ -3,13 +3,7 @@ ADD_SUBDIRECTORY(poshlib)
SET(CORE_SRCS
nvcore.h
DefsGnucDarwin.h
DefsGnucLinux.h
DefsGnucWin32.h
DefsVcWin32.h
Ptr.h
RefCounted.h
RefCounted.cpp
BitArray.h
Memory.h
Memory.cpp
@ -26,15 +20,18 @@ SET(CORE_SRCS
TextWriter.cpp
Radix.h
Radix.cpp
CpuInfo.h
CpuInfo.cpp
Algorithms.h)
Library.h
Library.cpp)
INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})
# targets
ADD_DEFINITIONS(-DNVCORE_EXPORTS)
IF(UNIX)
SET(LIBS ${LIBS} ${CMAKE_DL_LIBS})
ENDIF(UNIX)
IF(NVCORE_SHARED)
ADD_LIBRARY(nvcore SHARED ${CORE_SRCS})
ELSE(NVCORE_SHARED)

View File

@ -19,7 +19,6 @@ Do not use memmove in insert & remove, use copy ctors instead.
#include <nvcore/nvcore.h>
#include <nvcore/Memory.h>
#include <nvcore/Debug.h>
//#include <nvcore/Stream.h>
#include <string.h> // memmove
#include <new> // for placement new
@ -71,10 +70,40 @@ namespace nv
{
// Templates
/// Return the maximum of two values.
template <typename T>
inline const T & max(const T & a, const T & b)
{
//return std::max(a, b);
if( a < b ) {
return b;
}
return a;
}
/// Return the minimum of two values.
template <typename T>
inline const T & min(const T & a, const T & b)
{
//return std::min(a, b);
if( b < a ) {
return b;
}
return a;
}
/// Clamp between two values.
template <typename T>
inline const T & clamp(const T & x, const T & a, const T & b)
{
return min(max(x, a), b);
}
/// Swap two values.
template <typename T>
inline void swap(T & a, T & b)
{
//return std::swap(a, b);
T temp = a;
a = b;
b = temp;
@ -105,6 +134,16 @@ namespace nv
uint operator()(uint x) const { return x; }
};
/// Delete all the elements of a container.
template <typename T>
void deleteAll(T & container)
{
for(typename T::PseudoIndex i = container.start(); !container.isDone(i); container.advance(i))
{
delete container[i];
}
}
/** Return the next power of two.
* @see http://graphics.stanford.edu/~seander/bithacks.html
@ -115,7 +154,7 @@ namespace nv
inline uint nextPowerOfTwo( uint x )
{
nvDebugCheck( x != 0 );
#if 1 // On modern CPUs this is supposed to be as fast as using the bsr instruction.
#if 1 // On modern CPUs this is as fast as using the bsr instruction.
x--;
x |= x >> 1;
x |= x >> 2;
@ -138,6 +177,15 @@ namespace nv
return (n & (n-1)) == 0;
}
/// Simple iterator interface.
template <typename T>
struct Iterator
{
virtual void advance();
virtual bool isDone();
virtual T current();
};
/**
* Replacement for std::vector that is easier to debug and provides
@ -204,7 +252,7 @@ namespace nv
const T * buffer() const { return m_buffer; }
/// Get vector pointer.
T * mutableBuffer() { return m_buffer; }
T * unsecureBuffer() { return m_buffer; }
/// Is vector empty.
bool isEmpty() const { return m_size == 0; }
@ -776,13 +824,13 @@ namespace nv
}
/// Number of entries in the hash.
int size()
int size() const
{
return entry_count;
}
/// Number of entries in the hash.
int count()
int count() const
{
return size();
}

View File

@ -1,88 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#include <nvcore/CpuInfo.h>
#include <nvcore/Debug.h>
using namespace nv;
#if NV_OS_WIN32
#define _WIN32_WINNT 0x0501
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
typedef BOOL (WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
static bool isWow64()
{
LPFN_ISWOW64PROCESS fnIsWow64Process = (LPFN_ISWOW64PROCESS)GetProcAddress(GetModuleHandle(TEXT("kernel32")), "IsWow64Process");
BOOL bIsWow64 = FALSE;
if (NULL != fnIsWow64Process)
{
if (!fnIsWow64Process(GetCurrentProcess(), &bIsWow64))
{
return false;
}
}
return bIsWow64 == TRUE;
}
#endif // NV_OS_WIN32
uint CpuInfo::processorCount()
{
#if NV_OS_WIN32
SYSTEM_INFO sysInfo;
typedef BOOL (WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
if (isWow64())
{
GetNativeSystemInfo(&sysInfo);
}
else
{
GetSystemInfo(&sysInfo);
}
uint count = (uint)sysInfo.dwNumberOfProcessors;
nvDebugCheck(count >= 1);
return count;
#else
return 1;
#endif
}
uint CpuInfo::coreCount()
{
return 1;
}
bool CpuInfo::hasMMX()
{
return false;
}
bool CpuInfo::hasSSE()
{
return false;
}
bool CpuInfo::hasSSE2()
{
return false;
}
bool CpuInfo::hasSSE3()
{
return false;
}

View File

@ -1,88 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#ifndef NV_CORE_CPUINFO_H
#define NV_CORE_CPUINFO_H
#include <nvcore/nvcore.h>
#if NV_CC_MSVC
# include <intrin.h> // __rdtsc
#endif
namespace nv
{
// CPU Information.
class CpuInfo
{
static uint processorCount();
static uint coreCount();
static bool hasMMX();
static bool hasSSE();
static bool hasSSE2();
static bool hasSSE3();
};
#if NV_CC_MSVC
#pragma intrinsic(__rdtsc)
inline uint64 rdtsc()
{
return __rdtsc();
}
#endif
#if NV_CC_GNUC
#if defined(__i386__)
inline /*volatile*/ uint64 rdtsc()
{
uint64 x;
//__asm__ volatile ("rdtsc" : "=A" (x));
__asm__ volatile (".byte 0x0f, 0x31" : "=A" (x));
return x;
}
#elif defined(__x86_64__)
static __inline__ uint64 rdtsc(void)
{
unsigned int hi, lo;
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
return ( (unsigned long long)lo)|( ((unsigned long long)hi)<<32 );
}
#elif defined(__powerpc__)
static __inline__ uint64 rdtsc(void)
{
uint64 result=0;
unsigned long int upper, lower, tmp;
__asm__ volatile(
"0: \n"
"\tmftbu %0 \n"
"\tmftb %1 \n"
"\tmftbu %2 \n"
"\tcmpw %2,%0 \n"
"\tbne 0b \n"
: "=r"(upper),"=r"(lower),"=r"(tmp)
);
result = upper;
result = result<<32;
result = result|lower;
return(result);
}
#endif
#endif // NV_CC_GNUC
} // nv namespace
#endif // NV_CORE_CPUINFO_H

View File

@ -28,7 +28,7 @@
#endif
#if NV_OS_LINUX && defined(HAVE_EXECINFO_H)
# include <execinfo.h>
# include <execinfo.h> // backtrace
# if NV_CC_GNUC // defined(HAVE_CXXABI_H)
# include <cxxabi.h>
# endif
@ -39,6 +39,13 @@
# include <sys/types.h>
# include <sys/sysctl.h> // sysctl
# include <ucontext.h>
# undef HAVE_EXECINFO_H
# if defined(HAVE_EXECINFO_H) // only after OSX 10.5
# include <execinfo.h> // backtrace
# if NV_CC_GNUC // defined(HAVE_CXXABI_H)
# include <cxxabi.h>
# endif
# endif
#endif
#include <stdexcept> // std::runtime_error
@ -128,6 +135,14 @@ namespace
#if defined(HAVE_EXECINFO_H) // NV_OS_LINUX
static bool nvHasStackTrace() {
#if NV_OS_DARWIN
return backtrace != NULL;
#else
return true;
#endif
}
static void nvPrintStackTrace(void * trace[], int size, int start=0) {
char ** string_array = backtrace_symbols(trace, size);
@ -166,24 +181,36 @@ namespace
static void * callerAddress(void * secret)
{
# if NV_OS_DARWIN && NV_CPU_PPC
ucontext_t * ucp = (ucontext_t *)secret;
return (void *) ucp->uc_mcontext->ss.srr0;
# elif NV_OS_DARWIN && NV_CPU_X86
ucontext_t * ucp = (ucontext_t *)secret;
return (void *) ucp->uc_mcontext->ss.eip;
# elif NV_CPU_X86_64
// #define REG_RIP REG_INDEX(rip) // seems to be 16
ucontext_t * ucp = (ucontext_t *)secret;
return (void *)ucp->uc_mcontext.gregs[REG_RIP];
# elif NV_CPU_X86
ucontext_t * ucp = (ucontext_t *)secret;
return (void *)ucp->uc_mcontext.gregs[14/*REG_EIP*/];
# elif NV_CPU_PPC
ucontext_t * ucp = (ucontext_t *)secret;
return (void *) ucp->uc_mcontext.regs->nip;
# if NV_OS_DARWIN
# if defined(_STRUCT_MCONTEXT)
# if NV_CPU_PPC
ucontext_t * ucp = (ucontext_t *)secret;
return (void *) ucp->uc_mcontext->__ss.__srr0;
# elif NV_CPU_X86
ucontext_t * ucp = (ucontext_t *)secret;
return (void *) ucp->uc_mcontext->__ss.__eip;
# endif
# else
# if NV_CPU_PPC
ucontext_t * ucp = (ucontext_t *)secret;
return (void *) ucp->uc_mcontext->ss.srr0;
# elif NV_CPU_X86
ucontext_t * ucp = (ucontext_t *)secret;
return (void *) ucp->uc_mcontext->ss.eip;
# endif
# endif
# else
return NULL;
# if NV_CPU_X86_64
// #define REG_RIP REG_INDEX(rip) // seems to be 16
ucontext_t * ucp = (ucontext_t *)secret;
return (void *)ucp->uc_mcontext.gregs[REG_RIP];
# elif NV_CPU_X86
ucontext_t * ucp = (ucontext_t *)secret;
return (void *)ucp->uc_mcontext.gregs[14/*REG_EIP*/];
# elif NV_CPU_PPC
ucontext_t * ucp = (ucontext_t *)secret;
return (void *) ucp->uc_mcontext.regs->nip;
# endif
# endif
// How to obtain the instruction pointers in different platforms, from mlton's source code.
@ -228,17 +255,18 @@ namespace
}
# if defined(HAVE_EXECINFO_H)
if (nvHasStackTrace()) // in case of weak linking
{
void * trace[64];
int size = backtrace(trace, 64);
void * trace[64];
int size = backtrace(trace, 64);
if (pnt != NULL) {
// Overwrite sigaction with caller's address.
trace[1] = pnt;
if (pnt != NULL) {
// Overwrite sigaction with caller's address.
trace[1] = pnt;
}
nvPrintStackTrace(trace, size, 1);
}
nvPrintStackTrace(trace, size, 1);
# endif // defined(HAVE_EXECINFO_H)
exit(0);
@ -373,9 +401,12 @@ namespace
# endif
# if defined(HAVE_EXECINFO_H)
void * trace[64];
int size = backtrace(trace, 64);
nvPrintStackTrace(trace, size, 3);
if (nvHasStackTrace())
{
void * trace[64];
int size = backtrace(trace, 64);
nvPrintStackTrace(trace, size, 2);
}
# endif
// Exit cleanly.
@ -422,9 +453,12 @@ void NV_CDECL nvDebug(const char *msg, ...)
void debug::dumpInfo()
{
#if !NV_OS_WIN32 && defined(HAVE_SIGNAL_H) && defined(HAVE_EXECINFO_H)
void * trace[64];
int size = backtrace(trace, 64);
nvPrintStackTrace(trace, size, 1);
if (nvHasStackTrace())
{
void * trace[64];
int size = backtrace(trace, 64);
nvPrintStackTrace(trace, size, 1);
}
#endif
}

View File

@ -2,8 +2,7 @@
#error "Do not include this file directly."
#endif
#include <stdlib.h> // uint8_t, int8_t, ...
#include <stdint.h> // uint8_t, int8_t, ...
// Function linkage
#define DLL_IMPORT

View File

@ -19,7 +19,9 @@
// Set standard function names.
#define snprintf _snprintf
#define vsnprintf _vsnprintf
#if _MSC_VER < 1500
# define vsnprintf _vsnprintf
#endif
#define vsscanf _vsscanf
#define chdir _chdir
#define getcwd _getcwd

41
src/nvcore/Library.cpp Normal file
View File

@ -0,0 +1,41 @@
#include "Library.h"
#include "Debug.h"
#if NV_OS_WIN32
#define WIN32_LEAN_AND_MEAN
#define VC_EXTRALEAN
#include <windows.h>
#else
#include <dlfcn.h>
#endif
void * nvLoadLibrary(const char * name)
{
#if NV_OS_WIN32
return (void *)LoadLibraryExA( name, NULL, 0 );
#else
return dlopen(name, RTLD_LAZY);
#endif
}
void nvUnloadLibrary(void * handle)
{
nvDebugCheck(handle != NULL);
#if NV_OS_WIN32
FreeLibrary((HMODULE)handle);
#else
dlclose(handle);
#endif
}
void * nvBindSymbol(void * handle, const char * symbol)
{
#if NV_OS_WIN32
return (void *)GetProcAddress((HMODULE)handle, symbol);
#else
return (void *)dlsym(handle, symbol);
#endif
}

50
src/nvcore/Library.h Normal file
View File

@ -0,0 +1,50 @@
// This code is in the public domain -- castano@gmail.com
#ifndef NV_CORE_LIBRARY_H
#define NV_CORE_LIBRARY_H
#include <nvcore/nvcore.h>
#if NV_OS_WIN32
#define LIBRARY_NAME(name) #name ".dll"
#elif NV_OS_DARWIN
#define NV_LIBRARY_NAME(name) "lib" #name ".dylib"
#else
#define NV_LIBRARY_NAME(name) "lib" #name ".so"
#endif
NVCORE_API void * nvLoadLibrary(const char * name);
NVCORE_API void nvUnloadLibrary(void * lib);
NVCORE_API void * nvBindSymbol(void * lib, const char * symbol);
class NVCORE_CLASS Library
{
public:
Library(const char * name)
{
handle = nvLoadLibrary(name);
}
~Library()
{
if (isValid())
{
nvUnloadLibrary(handle);
}
}
bool isValid() const
{
return handle != NULL;
}
void * bindSymbol(const char * symbol)
{
return nvBindSymbol(handle, symbol);
}
private:
void * handle;
};
#endif // NV_CORE_LIBRARY_H

View File

@ -24,7 +24,7 @@ __forceinline void nvPrefetch(const void * mem)
#else // NV_CC_MSVC
// do nothing in other case.
#define piPrefetch(ptr)
#define nvPrefetch(ptr)
#endif // NV_CC_MSVC

View File

@ -8,11 +8,6 @@
#include <stdio.h> // NULL
#define NV_DECLARE_PTR(Class) \
typedef SmartPtr<class Class> Class ## Ptr; \
typedef SmartPtr<const class Class> ClassConst ## Ptr
namespace nv
{
@ -48,8 +43,11 @@ public:
/** Delete owned pointer and assign new one. */
void operator=( T * p ) {
delete m_ptr;
m_ptr = p;
if (p != m_ptr)
{
delete m_ptr;
m_ptr = p;
}
}
/** Member access. */
@ -98,23 +96,125 @@ private:
T * m_ptr;
};
#if 0
/** Reference counted base class to be used with Pointer.
*
* The only requirement of the Pointer class is that the RefCounted class implements the
* addRef and release methods.
*/
class RefCounted
{
NV_FORBID_COPY(RefCounted);
public:
/// Ctor.
RefCounted() : m_count(0), m_weak_proxy(NULL)
{
s_total_obj_count++;
}
/// Virtual dtor.
virtual ~RefCounted()
{
nvCheck( m_count == 0 );
nvCheck( s_total_obj_count > 0 );
s_total_obj_count--;
}
/// Increase reference count.
uint addRef() const
{
s_total_ref_count++;
m_count++;
return m_count;
}
/// Decrease reference count and remove when 0.
uint release() const
{
nvCheck( m_count > 0 );
s_total_ref_count--;
m_count--;
if( m_count == 0 ) {
releaseWeakProxy();
delete this;
return 0;
}
return m_count;
}
/// Get weak proxy.
WeakProxy * getWeakProxy() const
{
if (m_weak_proxy == NULL) {
m_weak_proxy = new WeakProxy;
m_weak_proxy->AddRef();
}
return m_weak_proxy;
}
/// Release the weak proxy.
void releaseWeakProxy() const
{
if (m_weak_proxy != NULL) {
m_weak_proxy->NotifyObjectDied();
m_weak_proxy->Release();
m_weak_proxy = NULL;
}
}
/** @name Debug methods: */
//@{
/// Get reference count.
int refCount() const
{
return m_count;
}
/// Get total number of objects.
static int totalObjectCount()
{
return s_total_obj_count;
}
/// Get total number of references.
static int totalReferenceCount()
{
return s_total_ref_count;
}
//@}
private:
NVCORE_API static int s_total_ref_count;
NVCORE_API static int s_total_obj_count;
mutable int m_count;
mutable WeakProxy * weak_proxy;
};
#endif
/// Smart pointer template class.
template <class BaseClass>
class SmartPtr {
class Pointer {
public:
// BaseClass must implement addRef() and release().
typedef SmartPtr<BaseClass> ThisType;
typedef Pointer<BaseClass> ThisType;
/// Default ctor.
SmartPtr() : m_ptr(NULL)
Pointer() : m_ptr(NULL)
{
}
/** Other type assignment. */
template <class OtherBase>
SmartPtr( const SmartPtr<OtherBase> & tc )
Pointer( const Pointer<OtherBase> & tc )
{
m_ptr = static_cast<BaseClass *>( tc.ptr() );
if( m_ptr ) {
@ -123,7 +223,7 @@ public:
}
/** Copy ctor. */
SmartPtr( const ThisType & bc )
Pointer( const ThisType & bc )
{
m_ptr = bc.ptr();
if( m_ptr ) {
@ -131,8 +231,8 @@ public:
}
}
/** Copy cast ctor. SmartPtr(NULL) is valid. */
explicit SmartPtr( BaseClass * bc )
/** Copy cast ctor. Pointer(NULL) is valid. */
explicit Pointer( BaseClass * bc )
{
m_ptr = bc;
if( m_ptr ) {
@ -141,7 +241,7 @@ public:
}
/** Dtor. */
~SmartPtr()
~Pointer()
{
set(NULL);
}
@ -175,7 +275,7 @@ public:
//@{
/** Other type assignment. */
template <class OtherBase>
void operator = ( const SmartPtr<OtherBase> & tc )
void operator = ( const Pointer<OtherBase> & tc )
{
set( static_cast<BaseClass *>(tc.ptr()) );
}
@ -198,7 +298,7 @@ public:
//@{
/** Other type equal comparation. */
template <class OtherBase>
bool operator == ( const SmartPtr<OtherBase> & other ) const
bool operator == ( const Pointer<OtherBase> & other ) const
{
return m_ptr == other.ptr();
}
@ -217,7 +317,7 @@ public:
/** Other type not equal comparation. */
template <class OtherBase>
bool operator != ( const SmartPtr<OtherBase> & other ) const
bool operator != ( const Pointer<OtherBase> & other ) const
{
return m_ptr != other.ptr();
}

View File

@ -1,9 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#include "RefCounted.h"
using namespace nv;
int nv::RefCounted::s_total_ref_count = 0;
int nv::RefCounted::s_total_obj_count = 0;

View File

@ -1,114 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#ifndef NV_CORE_REFCOUNTED_H
#define NV_CORE_REFCOUNTED_H
#include <nvcore/nvcore.h>
#include <nvcore/Debug.h>
namespace nv
{
/// Reference counted base class to be used with SmartPtr and WeakPtr.
class RefCounted
{
NV_FORBID_COPY(RefCounted);
public:
/// Ctor.
RefCounted() : m_count(0)/*, m_weak_proxy(NULL)*/
{
s_total_obj_count++;
}
/// Virtual dtor.
virtual ~RefCounted()
{
nvCheck( m_count == 0 );
nvCheck( s_total_obj_count > 0 );
s_total_obj_count--;
}
/// Increase reference count.
uint addRef() const
{
s_total_ref_count++;
m_count++;
return m_count;
}
/// Decrease reference count and remove when 0.
uint release() const
{
nvCheck( m_count > 0 );
s_total_ref_count--;
m_count--;
if( m_count == 0 ) {
// releaseWeakProxy();
delete this;
return 0;
}
return m_count;
}
/*
/// Get weak proxy.
WeakProxy * getWeakProxy() const
{
if (m_weak_proxy == NULL) {
m_weak_proxy = new WeakProxy;
m_weak_proxy->AddRef();
}
return m_weak_proxy;
}
/// Release the weak proxy.
void releaseWeakProxy() const
{
if (m_weak_proxy != NULL) {
m_weak_proxy->NotifyObjectDied();
m_weak_proxy->Release();
m_weak_proxy = NULL;
}
}
*/
/** @name Debug methods: */
//@{
/// Get reference count.
int refCount() const
{
return m_count;
}
/// Get total number of objects.
static int totalObjectCount()
{
return s_total_obj_count;
}
/// Get total number of references.
static int totalReferenceCount()
{
return s_total_ref_count;
}
//@}
private:
NVCORE_API static int s_total_ref_count;
NVCORE_API static int s_total_obj_count;
mutable int m_count;
// mutable WeakProxy * weak_proxy;
};
} // nv namespace
#endif // NV_CORE_REFCOUNTED_H

View File

@ -47,25 +47,25 @@ public:
/** @name Stream implementation. */
//@{
virtual void seek( int pos )
virtual void seek( uint pos )
{
nvDebugCheck(m_fp != NULL);
nvDebugCheck(pos >= 0 && pos < size());
nvDebugCheck(pos < size());
fseek(m_fp, pos, SEEK_SET);
}
virtual int tell() const
virtual uint tell() const
{
nvDebugCheck(m_fp != NULL);
return ftell(m_fp);
}
virtual int size() const
virtual uint size() const
{
nvDebugCheck(m_fp != NULL);
int pos = ftell(m_fp);
uint pos = ftell(m_fp);
fseek(m_fp, 0, SEEK_END);
int end = ftell(m_fp);
uint end = ftell(m_fp);
fseek(m_fp, pos, SEEK_SET);
return end;
}
@ -117,11 +117,11 @@ public:
/** @name Stream implementation. */
//@{
/// Write data.
virtual void serialize( void * data, int len )
virtual uint serialize( void * data, uint len )
{
nvDebugCheck(data != NULL);
nvDebugCheck(m_fp != NULL);
fwrite(data, len, 1, m_fp);
return (uint)fwrite(data, 1, len, m_fp);
}
virtual bool isLoading() const
@ -156,11 +156,11 @@ public:
/** @name Stream implementation. */
//@{
/// Read data.
virtual void serialize( void * data, int len )
virtual uint serialize( void * data, uint len )
{
nvDebugCheck(data != NULL);
nvDebugCheck(m_fp != NULL);
fread(data, len, 1, m_fp);
return (uint)fread(data, 1, len, m_fp);
}
virtual bool isLoading() const
@ -184,33 +184,40 @@ class NVCORE_CLASS MemoryInputStream : public Stream
public:
/// Ctor.
MemoryInputStream( const uint8 * mem, int size ) :
MemoryInputStream( const uint8 * mem, uint size ) :
m_mem(mem), m_ptr(mem), m_size(size) { }
/** @name Stream implementation. */
//@{
/// Read data.
virtual void serialize( void * data, int len )
virtual uint serialize( void * data, uint len )
{
nvDebugCheck(data != NULL);
nvDebugCheck(!isError());
uint left = m_size - tell();
if (len > left) len = left;
memcpy( data, m_ptr, len );
m_ptr += len;
return len;
}
virtual void seek( int pos )
virtual void seek( uint pos )
{
nvDebugCheck(!isError());
m_ptr = m_mem + pos;
nvDebugCheck(!isError());
}
virtual int tell() const
virtual uint tell() const
{
return int(m_ptr - m_mem);
nvDebugCheck(m_ptr >= m_mem);
return uint(m_ptr - m_mem);
}
virtual int size() const
virtual uint size() const
{
return m_size;
}
@ -252,7 +259,7 @@ private:
const uint8 * m_mem;
const uint8 * m_ptr;
int m_size;
uint m_size;
};
@ -286,17 +293,19 @@ public:
/** @name Stream implementation. */
//@{
/// Read data.
virtual void serialize( void * data, int len )
virtual uint serialize( void * data, uint len )
{
nvDebugCheck(data != NULL);
m_s->serialize( data, len );
len = m_s->serialize( data, len );
if( m_s->isError() ) {
throw std::exception();
}
return len;
}
virtual void seek( int pos )
virtual void seek( uint pos )
{
m_s->seek( pos );
@ -305,12 +314,12 @@ public:
}
}
virtual int tell() const
virtual uint tell() const
{
return m_s->tell();
}
virtual int size() const
virtual uint size() const
{
return m_s->size();
}

View File

@ -209,48 +209,11 @@ StringBuilder::StringBuilder( const StringBuilder & s ) : m_size(0), m_str(NULL)
}
/** Copy string. */
StringBuilder::StringBuilder( const char * s )
StringBuilder::StringBuilder( const char * s ) : m_size(0), m_str(NULL)
{
copy(s);
}
/** Allocate and copy string. */
StringBuilder::StringBuilder( int size_hint, const StringBuilder & s) : m_size(size_hint), m_str(NULL)
{
nvDebugCheck(m_size > 0);
m_str = strAlloc(m_size);
copy(s);
}
/** Allocate and format string. */
StringBuilder::StringBuilder( const char * fmt, ... ) : m_size(0), m_str(NULL)
{
nvDebugCheck(fmt != NULL);
va_list arg;
va_start( arg, fmt );
format( fmt, arg );
va_end( arg );
}
/** Allocate and format string. */
StringBuilder::StringBuilder( int size_hint, const char * fmt, ... ) : m_size(size_hint), m_str(NULL)
{
nvDebugCheck(m_size > 0);
nvDebugCheck(fmt != NULL);
m_str = strAlloc(m_size);
va_list arg;
va_start( arg, fmt );
format( fmt, arg );
va_end( arg );
}
/** Delete the string. */
StringBuilder::~StringBuilder()
{
@ -278,8 +241,7 @@ StringBuilder & StringBuilder::format( const char * fmt, ... )
/** Format a string safely. */
StringBuilder & StringBuilder::format( const char * fmt, va_list arg )
{
nvCheck(fmt != NULL);
nvCheck(m_size >= 0);
nvDebugCheck(fmt != NULL);
if( m_size == 0 ) {
m_size = 64;
@ -327,8 +289,7 @@ StringBuilder & StringBuilder::format( const char * fmt, va_list arg )
/** Append a string. */
StringBuilder & StringBuilder::append( const char * s )
{
nvCheck(s != NULL);
nvCheck(m_size >= 0);
nvDebugCheck(s != NULL);
const uint slen = uint(strlen( s ));
@ -475,31 +436,6 @@ void StringBuilder::reset()
}
Path::Path(const char * fmt, ...)
{
nvDebugCheck( fmt != NULL );
va_list arg;
va_start( arg, fmt );
format( fmt, arg );
va_end( arg );
}
Path::Path(int size_hint, const char * fmt, ...) : StringBuilder(size_hint)
{
nvDebugCheck( fmt != NULL );
va_list arg;
va_start( arg, fmt );
format( fmt, arg );
va_end( arg );
}
/// Get the file name from a path.
const char * Path::fileName() const
{

View File

@ -14,7 +14,7 @@ namespace nv
uint strHash(const char * str, uint h) NV_PURE;
/// String hash vased on Bernstein's hash.
/// String hash based on Bernstein's hash.
inline uint strHash(const char * data, uint h = 5381)
{
uint i;
@ -47,9 +47,6 @@ namespace nv
explicit StringBuilder( int size_hint );
StringBuilder( const char * str );
StringBuilder( const StringBuilder & );
StringBuilder( int size_hint, const StringBuilder & );
StringBuilder( const char * format, ... ) __attribute__((format (printf, 2, 3)));
StringBuilder( int size_hint, const char * format, ... ) __attribute__((format (printf, 3, 4)));
~StringBuilder();
@ -120,18 +117,16 @@ namespace nv
char * m_str;
};
/// Path string.
/// Path string. @@ This should be called PathBuilder.
class NVCORE_CLASS Path : public StringBuilder
{
public:
Path() : StringBuilder() {}
explicit Path(int size_hint) : StringBuilder(size_hint) {}
Path(const StringBuilder & str) : StringBuilder(str) {}
Path(int size_hint, const StringBuilder & str) : StringBuilder(size_hint, str) {}
Path(const char * format, ...) __attribute__((format (printf, 2, 3)));
Path(int size_hint, const char * format, ...) __attribute__((format (printf, 3, 4)));
Path(const char * str) : StringBuilder(str) {}
Path(const Path & path) : StringBuilder(path) {}
const char * fileName() const;
const char * extension() const;
@ -140,7 +135,7 @@ namespace nv
void stripFileName();
void stripExtension();
// statics
NVCORE_API static char separator();
NVCORE_API static const char * fileName(const char *);
@ -213,9 +208,12 @@ namespace nv
/// Implement value semantics.
String & operator=( const String & str )
{
release();
data = str.data;
addRef();
if (str.data != data)
{
release();
data = str.data;
addRef();
}
return *this;
}

View File

@ -41,17 +41,17 @@ public:
ByteOrder byteOrder() const { return m_byteOrder; }
/// Serialize the given data. @@ Should return bytes serialized?
virtual void serialize( void * data, int len ) = 0;
/// Serialize the given data.
virtual uint serialize( void * data, uint len ) = 0;
/// Move to the given position in the archive.
virtual void seek( int pos ) = 0;
virtual void seek( uint pos ) = 0;
/// Return the current position in the archive.
virtual int tell() const = 0;
virtual uint tell() const = 0;
/// Return the current size of the archive.
virtual int size() const = 0;
virtual uint size() const = 0;
/// Determine if there has been any error.
virtual bool isError() const = 0;
@ -136,13 +136,13 @@ public:
protected:
/// Serialize in the stream byte order.
Stream & byteOrderSerialize( void * v, int len ) {
Stream & byteOrderSerialize( void * v, uint len ) {
if( m_byteOrder == getSystemByteOrder() ) {
serialize( v, len );
}
else {
for( int i=len-1; i>=0; i-- ) {
serialize( (uint8 *)v + i, 1 );
for( uint i = len; i > 0; i-- ) {
serialize( (uint8 *)v + i - 1, 1 );
}
}
return *this;

View File

@ -48,7 +48,7 @@ const char * TextReader::readToEnd()
m_text.reserve(size + 1);
m_text.resize(size);
m_stream->serialize(m_text.mutableBuffer(), size);
m_stream->serialize(m_text.unsecureBuffer(), size);
m_text.pushBack('\0');
return m_text.buffer();

View File

@ -22,7 +22,6 @@
// OTHER DEALINGS IN THE SOFTWARE.
#include <nvcore/Stream.h>
#include <nvcore/Containers.h> // swap
#include "ColorBlock.h"
#include "BlockDXT.h"

View File

@ -1,6 +1,5 @@
// This code is in the public domain -- castanyo@yahoo.es
#include <nvcore/Containers.h> // swap
#include <nvmath/Box.h>
#include <nvimage/ColorBlock.h>
#include <nvimage/Image.h>

View File

@ -532,7 +532,7 @@ DDSHeader::DDSHeader()
// Store version information on the reserved header attributes.
this->reserved[9] = MAKEFOURCC('N', 'V', 'T', 'T');
this->reserved[10] = (0 << 16) | (9 << 8) | (5); // major.minor.revision
this->reserved[10] = (2 << 16) | (0 << 8) | (6); // major.minor.revision
this->pf.size = 32;
this->pf.flags = 0;
@ -989,10 +989,10 @@ void DirectDrawSurface::readLinearImage(Image * img)
stream->serialize(&c, byteCount);
Color32 pixel(0, 0, 0, 0xFF);
pixel.r = PixelFormat::convert(c >> rshift, rsize, 8);
pixel.g = PixelFormat::convert(c >> gshift, gsize, 8);
pixel.b = PixelFormat::convert(c >> bshift, bsize, 8);
pixel.a = PixelFormat::convert(c >> ashift, asize, 8);
pixel.r = PixelFormat::convert((c & header.pf.rmask) >> rshift, rsize, 8);
pixel.g = PixelFormat::convert((c & header.pf.gmask) >> gshift, gsize, 8);
pixel.b = PixelFormat::convert((c & header.pf.bmask) >> bshift, bsize, 8);
pixel.a = PixelFormat::convert((c & header.pf.amask) >> ashift, asize, 8);
img->pixel(x, y) = pixel;
}

View File

@ -26,18 +26,17 @@
* http://www.xmission.com/~legalize/zoom.html
*
* Reconstruction Filters in Computer Graphics
* http://www.mentallandscape.com/Papers_siggraph88.pdf
* http://www.mentallandscape.com/Papers_siggraph88.pdf
*
* More references:
* http://www.worldserver.com/turk/computergraphics/ResamplingFilters.pdf
* http://www.worldserver.com/turk/computergraphics/ResamplingFilters.pdf
* http://www.dspguide.com/ch16.htm
*/
#include "Filter.h"
#include <nvcore/Containers.h> // swap
#include <nvmath/nvmath.h> // fabs
#include <nvmath/Vector.h> // Vector4
#include <nvimage/Filter.h>
#include <nvcore/Containers.h> // swap
using namespace nv;
@ -244,7 +243,7 @@ SincFilter::SincFilter(float w) : Filter(w) {}
float SincFilter::evaluate(float x) const
{
return 0.0f;
return sincf(PI * x);
}
@ -504,7 +503,7 @@ void Kernel2::initBlendedSobel(const Vector4 & scale)
for (int i = 0; i < 7; i++) {
for (int e = 0; e < 7; e++) {
m_data[i * 9 + e + 1] += elements[i * 7 + e] * scale.z();
m_data[(i + 1) * 9 + e + 1] += elements[i * 7 + e] * scale.z();
}
}
}
@ -519,7 +518,7 @@ void Kernel2::initBlendedSobel(const Vector4 & scale)
for (int i = 0; i < 5; i++) {
for (int e = 0; e < 5; e++) {
m_data[i * 9 + e + 2] += elements[i * 5 + e] * scale.y();
m_data[(i + 2) * 9 + e + 2] += elements[i * 5 + e] * scale.y();
}
}
}
@ -532,7 +531,7 @@ void Kernel2::initBlendedSobel(const Vector4 & scale)
for (int i = 0; i < 3; i++) {
for (int e = 0; e < 3; e++) {
m_data[i * 9 + e + 3] += elements[i * 3 + e] * scale.x();
m_data[(i + 3) * 9 + e + 3] += elements[i * 3 + e] * scale.x();
}
}
}
@ -541,12 +540,17 @@ void Kernel2::initBlendedSobel(const Vector4 & scale)
PolyphaseKernel::PolyphaseKernel(const Filter & f, uint srcLength, uint dstLength, int samples/*= 32*/)
{
nvCheck(srcLength >= dstLength); // @@ Upsampling not implemented!
nvDebugCheck(samples > 0);
const float scale = float(dstLength) / float(srcLength);
float scale = float(dstLength) / float(srcLength);
const float iscale = 1.0f / scale;
if (scale > 1) {
// Upsampling.
samples = 1;
scale = 1;
}
m_length = dstLength;
m_width = f.width() * iscale;
m_windowSize = (int)ceilf(m_width * 2) + 1;

View File

@ -78,7 +78,7 @@ namespace nv
MitchellFilter();
virtual float evaluate(float x) const;
void setParameters(float a, float b);
void setParameters(float b, float c);
private:
float p0, p2, p3;

View File

@ -1,16 +1,18 @@
// This code is in the public domain -- castanyo@yahoo.es
#include <nvcore/Containers.h>
#include <nvcore/Ptr.h>
#include <nvmath/Color.h>
#include "FloatImage.h"
#include "Filter.h"
#include "Image.h"
#include <nvmath/Color.h>
#include <nvmath/Matrix.h>
#include <nvcore/Containers.h>
#include <nvcore/Ptr.h>
#include <math.h>
using namespace nv;
namespace
@ -140,7 +142,8 @@ Image * FloatImage::createImageGammaCorrect(float gamma/*= 2.2f*/) const
/// Allocate a 2d float image of the given format and the given extents.
void FloatImage::allocate(uint c, uint w, uint h)
{
nvCheck(m_mem == NULL);
free();
m_width = w;
m_height = h;
m_componentNum = c;
@ -151,7 +154,6 @@ void FloatImage::allocate(uint c, uint w, uint h)
/// Free the image, but don't clear the members.
void FloatImage::free()
{
nvCheck(m_mem != NULL);
nv::mem::free( reinterpret_cast<void *>(m_mem) );
m_mem = NULL;
}
@ -376,7 +378,7 @@ FloatImage * FloatImage::fastDownSample() const
{
const uint n = w * h;
if (n & 1)
if ((m_width * m_height) & 1)
{
const float scale = 1.0f / (2 * n + 1);
@ -540,73 +542,27 @@ FloatImage * FloatImage::fastDownSample() const
return dst_image.release();
}
/*
/// Downsample applying a 1D kernel separately in each dimension.
FloatImage * FloatImage::downSample(const Kernel1 & kernel, WrapMode wm) const
{
const uint w = max(1, m_width / 2);
const uint h = max(1, m_height / 2);
return downSample(kernel, w, h, wm);
}
/// Downsample applying a 1D kernel separately in each dimension.
FloatImage * FloatImage::downSample(const Kernel1 & kernel, uint w, uint h, WrapMode wm) const
{
nvCheck(!(kernel.windowSize() & 1)); // Make sure that kernel m_width is even.
AutoPtr<FloatImage> tmp_image( new FloatImage() );
tmp_image->allocate(m_componentNum, w, m_height);
AutoPtr<FloatImage> dst_image( new FloatImage() );
dst_image->allocate(m_componentNum, w, h);
const float xscale = float(m_width) / float(w);
const float yscale = float(m_height) / float(h);
for(uint c = 0; c < m_componentNum; c++) {
float * tmp_channel = tmp_image->channel(c);
for(uint y = 0; y < m_height; y++) {
for(uint x = 0; x < w; x++) {
float sum = this->applyKernelHorizontal(&kernel, uint(x*xscale), y, c, wm);
const uint tmp_index = tmp_image->index(x, y);
tmp_channel[tmp_index] = sum;
}
}
float * dst_channel = dst_image->channel(c);
for(uint y = 0; y < h; y++) {
for(uint x = 0; x < w; x++) {
float sum = tmp_image->applyKernelVertical(&kernel, uint(x*xscale), uint(y*yscale), c, wm);
const uint dst_index = dst_image->index(x, y);
dst_channel[dst_index] = sum;
}
}
}
return dst_image.release();
}
*/
/// Downsample applying a 1D kernel separately in each dimension.
FloatImage * FloatImage::downSample(const Filter & filter, WrapMode wm) const
{
const uint w = max(1, m_width / 2);
const uint h = max(1, m_height / 2);
return downSample(filter, w, h, wm);
return resize(filter, w, h, wm);
}
/// Downsample applying a 1D kernel separately in each dimension.
FloatImage * FloatImage::downSample(const Filter & filter, WrapMode wm, uint alpha) const
{
const uint w = max(1, m_width / 2);
const uint h = max(1, m_height / 2);
return resize(filter, w, h, wm, alpha);
}
/// Downsample applying a 1D kernel separately in each dimension.
FloatImage * FloatImage::downSample(const Filter & filter, uint w, uint h, WrapMode wm) const
FloatImage * FloatImage::resize(const Filter & filter, uint w, uint h, WrapMode wm) const
{
// @@ Use monophase filters when frac(m_width / w) == 0
@ -636,7 +592,7 @@ FloatImage * FloatImage::downSample(const Filter & filter, uint w, uint h, WrapM
float * dst_channel = dst_image->channel(c);
for (uint x = 0; x < w; x++) {
tmp_image->applyKernelVertical(ykernel, x, c, wm, tmp_column.mutableBuffer());
tmp_image->applyKernelVertical(ykernel, x, c, wm, tmp_column.unsecureBuffer());
for (uint y = 0; y < h; y++) {
dst_channel[y * w + x] = tmp_column[y];
@ -657,7 +613,7 @@ FloatImage * FloatImage::downSample(const Filter & filter, uint w, uint h, WrapM
float * tmp_channel = tmp_image->channel(c);
for (uint x = 0; x < w; x++) {
tmp_image->applyKernelVertical(ykernel, x, c, wm, tmp_column.mutableBuffer());
tmp_image->applyKernelVertical(ykernel, x, c, wm, tmp_column.unsecureBuffer());
for (uint y = 0; y < h; y++) {
tmp_channel[y * w + x] = tmp_column[y];
@ -675,10 +631,56 @@ FloatImage * FloatImage::downSample(const Filter & filter, uint w, uint h, WrapM
return dst_image.release();
}
/// Downsample applying a 1D kernel separately in each dimension.
FloatImage * FloatImage::resize(const Filter & filter, uint w, uint h, WrapMode wm, uint alpha) const
{
nvCheck(alpha < m_componentNum);
AutoPtr<FloatImage> tmp_image( new FloatImage() );
AutoPtr<FloatImage> dst_image( new FloatImage() );
PolyphaseKernel xkernel(filter, m_width, w, 32);
PolyphaseKernel ykernel(filter, m_height, h, 32);
{
tmp_image->allocate(m_componentNum, w, m_height);
dst_image->allocate(m_componentNum, w, h);
Array<float> tmp_column(h);
tmp_column.resize(h);
for (uint c = 0; c < m_componentNum; c++)
{
float * tmp_channel = tmp_image->channel(c);
for (uint y = 0; y < m_height; y++) {
this->applyKernelHorizontal(xkernel, y, c, alpha, wm, tmp_channel + y * w);
}
}
// Process all channels before applying vertical kernel to make sure alpha has been computed.
for (uint c = 0; c < m_componentNum; c++)
{
float * dst_channel = dst_image->channel(c);
for (uint x = 0; x < w; x++) {
tmp_image->applyKernelVertical(ykernel, x, c, alpha, wm, tmp_column.unsecureBuffer());
for (uint y = 0; y < h; y++) {
dst_channel[y * w + x] = tmp_column[y];
}
}
}
}
return dst_image.release();
}
/// Apply 2D kernel at the given coordinates and return result.
float FloatImage::applyKernel(const Kernel2 * k, int x, int y, int c, WrapMode wm) const
float FloatImage::applyKernel(const Kernel2 * k, int x, int y, uint c, WrapMode wm) const
{
nvDebugCheck(k != NULL);
@ -707,7 +709,7 @@ float FloatImage::applyKernel(const Kernel2 * k, int x, int y, int c, WrapMode w
/// Apply 1D vertical kernel at the given coordinates and return result.
float FloatImage::applyKernelVertical(const Kernel1 * k, int x, int y, int c, WrapMode wm) const
float FloatImage::applyKernelVertical(const Kernel1 * k, int x, int y, uint c, WrapMode wm) const
{
nvDebugCheck(k != NULL);
@ -729,7 +731,7 @@ float FloatImage::applyKernelVertical(const Kernel1 * k, int x, int y, int c, Wr
}
/// Apply 1D horizontal kernel at the given coordinates and return result.
float FloatImage::applyKernelHorizontal(const Kernel1 * k, int x, int y, int c, WrapMode wm) const
float FloatImage::applyKernelHorizontal(const Kernel1 * k, int x, int y, uint c, WrapMode wm) const
{
nvDebugCheck(k != NULL);
@ -752,7 +754,7 @@ float FloatImage::applyKernelHorizontal(const Kernel1 * k, int x, int y, int c,
/// Apply 1D vertical kernel at the given coordinates and return result.
void FloatImage::applyKernelVertical(const PolyphaseKernel & k, int x, int c, WrapMode wm, float * output) const
void FloatImage::applyKernelVertical(const PolyphaseKernel & k, int x, uint c, WrapMode wm, float * __restrict output) const
{
const uint length = k.length();
const float scale = float(length) / float(m_height);
@ -784,7 +786,7 @@ void FloatImage::applyKernelVertical(const PolyphaseKernel & k, int x, int c, Wr
}
/// Apply 1D horizontal kernel at the given coordinates and return result.
void FloatImage::applyKernelHorizontal(const PolyphaseKernel & k, int y, int c, WrapMode wm, float * output) const
void FloatImage::applyKernelHorizontal(const PolyphaseKernel & k, int y, uint c, WrapMode wm, float * __restrict output) const
{
const uint length = k.length();
const float scale = float(length) / float(m_width);
@ -815,3 +817,93 @@ void FloatImage::applyKernelHorizontal(const PolyphaseKernel & k, int y, int c,
}
}
/// Apply 1D vertical kernel at the given coordinates and return result.
void FloatImage::applyKernelVertical(const PolyphaseKernel & k, int x, uint c, uint a, WrapMode wm, float * __restrict output) const
{
const uint length = k.length();
const float scale = float(length) / float(m_height);
const float iscale = 1.0f / scale;
const float width = k.width();
const int windowSize = k.windowSize();
const float * channel = this->channel(c);
const float * alpha = this->channel(a);
for (uint i = 0; i < length; i++)
{
const float center = (0.5f + i) * iscale;
const int left = (int)floorf(center - width);
const int right = (int)ceilf(center + width);
nvCheck(right - left <= windowSize);
float norm = 0;
float sum = 0;
for (int j = 0; j < windowSize; ++j)
{
const int idx = this->index(x, j+left, wm);
float w = k.valueAt(i, j) * (alpha[idx] + (1.0f / 256.0f));
norm += w;
sum += w * channel[idx];
}
output[i] = sum / norm;
}
}
/// Apply 1D horizontal kernel at the given coordinates and return result.
void FloatImage::applyKernelHorizontal(const PolyphaseKernel & k, int y, uint c, uint a, WrapMode wm, float * __restrict output) const
{
const uint length = k.length();
const float scale = float(length) / float(m_width);
const float iscale = 1.0f / scale;
const float width = k.width();
const int windowSize = k.windowSize();
const float * channel = this->channel(c);
const float * alpha = this->channel(a);
for (uint i = 0; i < length; i++)
{
const float center = (0.5f + i) * iscale;
const int left = (int)floorf(center - width);
const int right = (int)ceilf(center + width);
nvDebugCheck(right - left <= windowSize);
float norm = 0.0f;
float sum = 0;
for (int j = 0; j < windowSize; ++j)
{
const int idx = this->index(left + j, y, wm);
float w = k.valueAt(i, j) * (alpha[idx] + (1.0f / 256.0f));
norm += w;
sum += w * channel[idx];
}
output[i] = sum / norm;
}
}
FloatImage* FloatImage::clone() const
{
FloatImage* copy = new FloatImage();
copy->m_width = m_width;
copy->m_height = m_height;
copy->m_componentNum = m_componentNum;
copy->m_count = m_count;
if(m_mem)
{
copy->allocate(m_componentNum, m_width, m_height);
memcpy(copy->m_mem, m_mem, m_count * sizeof(float));
}
return copy;
}

View File

@ -3,14 +3,20 @@
#ifndef NV_IMAGE_FLOATIMAGE_H
#define NV_IMAGE_FLOATIMAGE_H
#include <stdlib.h> // abs
#include <nvimage/nvimage.h>
#include <nvmath/Vector.h>
#include <nvcore/Debug.h>
#include <nvcore/Algorithms.h> // clamp
#include <nvimage/nvimage.h>
#include <nvcore/Containers.h> // clamp
#include <stdlib.h> // abs
namespace nv
{
class Vector4;
class Matrix;
class Image;
class Filter;
class Kernel1;
@ -62,20 +68,22 @@ public:
NVIMAGE_API void toGamma(uint base_component, uint num, float gamma = 2.2f);
NVIMAGE_API void exponentiate(uint base_component, uint num, float power);
NVIMAGE_API FloatImage * fastDownSample() const;
NVIMAGE_API FloatImage * downSample(const Filter & filter, WrapMode wm) const;
NVIMAGE_API FloatImage * downSample(const Filter & filter, uint w, uint h, WrapMode wm) const;
NVIMAGE_API FloatImage * downSample(const Filter & filter, WrapMode wm, uint alpha) const;
NVIMAGE_API FloatImage * resize(const Filter & filter, uint w, uint h, WrapMode wm) const;
//NVIMAGE_API FloatImage * downSample(const Kernel1 & filter, WrapMode wm) const;
//NVIMAGE_API FloatImage * downSample(const Kernel1 & filter, uint w, uint h, WrapMode wm) const;
NVIMAGE_API FloatImage * resize(const Filter & filter, uint w, uint h, WrapMode wm, uint alpha) const;
//@}
NVIMAGE_API float applyKernel(const Kernel2 * k, int x, int y, int c, WrapMode wm) const;
NVIMAGE_API float applyKernelVertical(const Kernel1 * k, int x, int y, int c, WrapMode wm) const;
NVIMAGE_API float applyKernelHorizontal(const Kernel1 * k, int x, int y, int c, WrapMode wm) const;
NVIMAGE_API void applyKernelVertical(const PolyphaseKernel & k, int x, int c, WrapMode wm, float * output) const;
NVIMAGE_API void applyKernelHorizontal(const PolyphaseKernel & k, int y, int c, WrapMode wm, float * output) const;
NVIMAGE_API float applyKernel(const Kernel2 * k, int x, int y, uint c, WrapMode wm) const;
NVIMAGE_API float applyKernelVertical(const Kernel1 * k, int x, int y, uint c, WrapMode wm) const;
NVIMAGE_API float applyKernelHorizontal(const Kernel1 * k, int x, int y, uint c, WrapMode wm) const;
NVIMAGE_API void applyKernelVertical(const PolyphaseKernel & k, int x, uint c, WrapMode wm, float * output) const;
NVIMAGE_API void applyKernelHorizontal(const PolyphaseKernel & k, int y, uint c, WrapMode wm, float * output) const;
NVIMAGE_API void applyKernelVertical(const PolyphaseKernel & k, int x, uint c, uint a, WrapMode wm, float * output) const;
NVIMAGE_API void applyKernelHorizontal(const PolyphaseKernel & k, int y, uint c, uint a, WrapMode wm, float * output) const;
uint width() const { return m_width; }
@ -111,6 +119,9 @@ public:
float sampleLinearMirror(float x, float y, int c) const;
//@}
FloatImage* clone() const;
public:
uint index(uint x, uint y) const;
@ -228,11 +239,15 @@ inline uint FloatImage::indexRepeat(int x, int y) const
inline uint FloatImage::indexMirror(int x, int y) const
{
if (m_width == 1) x = 0;
x = abs(x);
while (x >= m_width) {
x = abs(m_width + m_width - x - 2);
}
if (m_height == 1) y = 0;
y = abs(y);
while (y >= m_height) {
y = abs(m_height + m_height - y - 2);

View File

@ -2,7 +2,6 @@
#include <nvcore/Debug.h>
#include <nvcore/Ptr.h>
#include <nvcore/Containers.h> // swap
#include <nvmath/Color.h>

View File

@ -162,9 +162,6 @@ FloatImage * nv::ImageIO::loadFloat(const char * fileName, Stream & s)
if (strCaseCmp(extension, ".pfm") == 0) {
return loadFloatPFM(fileName, s);
}
if (strCaseCmp(extension, ".hdr") == 0) {
return loadGridFloat(fileName, s);
}
*/
return NULL;
@ -797,7 +794,7 @@ Image * nv::ImageIO::loadJPG(Stream & s)
// Read the entire file.
Array<uint8> byte_array;
byte_array.resize(s.size());
s.serialize(byte_array.mutableBuffer(), s.size());
s.serialize(byte_array.unsecureBuffer(), s.size());
jpeg_decompress_struct cinfo;
jpeg_error_mgr jerr;
@ -1092,8 +1089,7 @@ namespace
virtual void seekg(Imf::Int64 pos)
{
nvDebugCheck(pos >= 0 && pos < UINT_MAX);
m_stream.seek((uint)pos);
m_stream.seek(pos);
}
virtual void clear()
@ -1302,77 +1298,6 @@ bool nv::ImageIO::saveFloatPFM(const char * fileName, const FloatImage * fimage,
return true;
}
#pragma warning(disable : 4996)
NVIMAGE_API FloatImage * nv::ImageIO::loadGridFloat(const char * fileName, Stream & s)
{
nvCheck(s.isLoading());
nvCheck(!s.isError());
Tokenizer parser(&s);
parser.nextLine();
if (parser.token() != "ncols")
{
nvDebug("Failed to find 'ncols' token in file '%s'.\n", fileName);
return NULL;
}
parser.nextToken(true);
const int nCols = parser.token().toInt();
parser.nextToken(true);
if (parser.token() != "nrows")
{
nvDebug("Failed to find 'nrows' token in file '%s'.\n", fileName);
return NULL;
}
parser.nextToken(true);
const int nRows = parser.token().toInt();
/* There's a byte order defined in the header. We could read it. However, here we
just assume that it matches the platform's byte order.
// There is then a bunch of data that we don't care about (lat, long definitions, etc).
for (int i=0; i!=9; ++i)
parser.nextToken(true);
if (parser.token() != "byteorder")
return NULL;
parser.nextToken(true);
const Stream::ByteOrder byteOrder = (parser.token() == "LSBFIRST")? Stream::LittleEndian: Stream::BigEndian;
*/
// GridFloat comes in two files: an ASCII header which was parsed above (.hdr) and a big blob
// of binary data in a .flt file.
Path dataPath(fileName);
dataPath.stripExtension();
dataPath.append(".flt");
// Open the binary data.
FILE* file = fopen(dataPath.fileName(), "rb");
if (!file)
{
nvDebug("Failed to find GridFloat blob file '%s' corresponding to '%s'.\n", dataPath.fileName(), fileName);
return NULL;
}
// Allocate image.
AutoPtr<FloatImage> fimage(new FloatImage());
fimage->allocate(1, nCols, nRows);
float * channel = fimage->channel(0);
// The binary blob is defined to be in row-major order, containing IEEE floats.
// So we can just slurp it in. Theoretically, we ought to use the byte order.
const size_t nRead = fread((void*) channel, sizeof(float), nRows * nCols, file);
fclose(file);
return fimage.release();
}
#endif
#if 0

View File

@ -47,15 +47,10 @@ namespace nv
NVIMAGE_API bool saveFloatEXR(const char * fileName, const FloatImage * fimage, uint base_component, uint num_components);
#endif
/*
NVIMAGE_API FloatImage * loadFloatPFM(const char * fileName, Stream & s);
NVIMAGE_API bool saveFloatPFM(const char * fileName, const FloatImage * fimage, uint base_component, uint num_components);
// GridFloat is a simple, open format for terrain elevation data. See http://ned.usgs.gov/Ned/faq.asp.
// Expects: 1) fileName will be an ".hdr" header file, 2) there will also exist a corresponding float data
// blob in a ".flt" file. (This is what USGS gives you.)
NVIMAGE_API FloatImage * loadGridFloat(const char * fileName, Stream & s);
*/
// NVIMAGE_API FloatImage * loadFloatPFM(const char * fileName, Stream & s);
// NVIMAGE_API bool saveFloatPFM(const char * fileName, const FloatImage * fimage, uint base_component, uint num_components);
} // ImageIO namespace
} // nv namespace

View File

@ -21,15 +21,16 @@
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#include <nvcore/Ptr.h>
#include <nvmath/Color.h>
#include <nvimage/NormalMap.h>
#include <nvimage/Filter.h>
#include <nvimage/FloatImage.h>
#include <nvimage/Image.h>
#include <nvmath/Color.h>
#include <nvcore/Ptr.h>
using namespace nv;
// Create normal map using the given kernels.

View File

@ -39,7 +39,7 @@ namespace nv
bool isSupported() const
{
if (version != 1) {
printf("*** bad version number %u\n", version);
nvDebug("*** bad version number %u\n", version);
return false;
}
if (channel_count > 4) {

View File

@ -12,14 +12,14 @@ http://www.efg2.com/Lab/Library/ImageProcessing/DHALF.TXT
@@ This code needs to be reviewed, I'm not sure it's correct.
*/
#include <string.h> // memset
#include <nvcore/Containers.h> // swap
#include <nvimage/Quantize.h>
#include <nvimage/Image.h>
#include <nvimage/PixelFormat.h>
#include <nvmath/Color.h>
#include <nvimage/Image.h>
#include <nvimage/Quantize.h>
#include <nvcore/Containers.h> // swap
using namespace nv;
@ -51,94 +51,20 @@ void nv::Quantize::BinaryAlpha( Image * image, int alpha_threshold /*= 127*/ )
// Simple quantization.
void nv::Quantize::RGB16( Image * image )
{
nvCheck(image != NULL);
const uint w = image->width();
const uint h = image->height();
for(uint y = 0; y < h; y++) {
for(uint x = 0; x < w; x++) {
Color32 pixel32 = image->pixel(x, y);
// Convert to 16 bit and back to 32 using regular bit expansion.
Color32 pixel16 = toColor32( toColor16(pixel32) );
// Store color.
image->pixel(x, y) = pixel16;
}
}
Truncate(image, 5, 6, 5, 8);
}
// Alpha quantization.
void nv::Quantize::Alpha4( Image * image )
{
nvCheck(image != NULL);
const uint w = image->width();
const uint h = image->height();
for(uint y = 0; y < h; y++) {
for(uint x = 0; x < w; x++) {
Color32 pixel = image->pixel(x, y);
// Convert to 4 bit using regular bit expansion.
pixel.a = (pixel.a & 0xF0) | ((pixel.a & 0xF0) >> 4);
// Store color.
image->pixel(x, y) = pixel;
}
}
Truncate(image, 8, 8, 8, 4);
}
// Error diffusion. Floyd Steinberg.
void nv::Quantize::FloydSteinberg_RGB16( Image * image )
{
nvCheck(image != NULL);
const uint w = image->width();
const uint h = image->height();
// @@ Use fixed point?
Vector3 * row0 = new Vector3[w+2];
Vector3 * row1 = new Vector3[w+2];
memset(row0, 0, sizeof(Vector3)*(w+2));
memset(row1, 0, sizeof(Vector3)*(w+2));
for(uint y = 0; y < h; y++) {
for(uint x = 0; x < w; x++) {
Color32 pixel32 = image->pixel(x, y);
// Add error. // @@ We shouldn't clamp here!
pixel32.r = clamp(int(pixel32.r) + int(row0[1+x].x()), 0, 255);
pixel32.g = clamp(int(pixel32.g) + int(row0[1+x].y()), 0, 255);
pixel32.b = clamp(int(pixel32.b) + int(row0[1+x].z()), 0, 255);
// Convert to 16 bit. @@ Use regular clamp?
Color32 pixel16 = toColor32( toColor16(pixel32) );
// Store color.
image->pixel(x, y) = pixel16;
// Compute new error.
Vector3 diff(float(pixel32.r - pixel16.r), float(pixel32.g - pixel16.g), float(pixel32.b - pixel16.b));
// Propagate new error.
row0[1+x+1] += 7.0f / 16.0f * diff;
row1[1+x-1] += 3.0f / 16.0f * diff;
row1[1+x+0] += 5.0f / 16.0f * diff;
row1[1+x+1] += 1.0f / 16.0f * diff;
}
swap(row0, row1);
memset(row1, 0, sizeof(Vector3)*(w+2));
}
delete [] row0;
delete [] row1;
FloydSteinberg(image, 5, 6, 5, 8);
}
@ -192,34 +118,90 @@ void nv::Quantize::FloydSteinberg_BinaryAlpha( Image * image, int alpha_threshol
// Error diffusion. Floyd Steinberg.
void nv::Quantize::FloydSteinberg_Alpha4( Image * image )
{
FloydSteinberg(image, 8, 8, 8, 4);
}
void nv::Quantize::Truncate(Image * image, uint rsize, uint gsize, uint bsize, uint asize)
{
nvCheck(image != NULL);
const uint w = image->width();
const uint h = image->height();
// @@ Use fixed point?
float * row0 = new float[(w+2)];
float * row1 = new float[(w+2)];
memset(row0, 0, sizeof(float)*(w+2));
memset(row1, 0, sizeof(float)*(w+2));
for(uint y = 0; y < h; y++) {
for(uint x = 0; x < w; x++) {
Color32 pixel = image->pixel(x, y);
// Add error.
int alpha = int(pixel.a) + int(row0[1+x]);
// Convert to 4 bit using regular bit expansion.
pixel.a = (pixel.a & 0xF0) | ((pixel.a & 0xF0) >> 4);
// Convert to our desired size, and reconstruct.
pixel.r = PixelFormat::convert(pixel.r, 8, rsize);
pixel.r = PixelFormat::convert(pixel.r, rsize, 8);
pixel.g = PixelFormat::convert(pixel.g, 8, gsize);
pixel.g = PixelFormat::convert(pixel.g, gsize, 8);
pixel.b = PixelFormat::convert(pixel.b, 8, bsize);
pixel.b = PixelFormat::convert(pixel.b, bsize, 8);
pixel.a = PixelFormat::convert(pixel.a, 8, asize);
pixel.a = PixelFormat::convert(pixel.a, asize, 8);
// Store color.
image->pixel(x, y) = pixel;
}
}
}
// Error diffusion. Floyd Steinberg.
void nv::Quantize::FloydSteinberg(Image * image, uint rsize, uint gsize, uint bsize, uint asize)
{
nvCheck(image != NULL);
const uint w = image->width();
const uint h = image->height();
Vector4 * row0 = new Vector4[w+2];
Vector4 * row1 = new Vector4[w+2];
memset(row0, 0, sizeof(Vector4)*(w+2));
memset(row1, 0, sizeof(Vector4)*(w+2));
for (uint y = 0; y < h; y++) {
for (uint x = 0; x < w; x++) {
Color32 pixel = image->pixel(x, y);
// Add error.
pixel.r = clamp(int(pixel.r) + int(row0[1+x].x()), 0, 255);
pixel.g = clamp(int(pixel.g) + int(row0[1+x].y()), 0, 255);
pixel.b = clamp(int(pixel.b) + int(row0[1+x].z()), 0, 255);
pixel.a = clamp(int(pixel.a) + int(row0[1+x].w()), 0, 255);
int r = pixel.r;
int g = pixel.g;
int b = pixel.b;
int a = pixel.a;
// Convert to our desired size, and reconstruct.
r = PixelFormat::convert(r, 8, rsize);
r = PixelFormat::convert(r, rsize, 8);
g = PixelFormat::convert(g, 8, gsize);
g = PixelFormat::convert(g, gsize, 8);
b = PixelFormat::convert(b, 8, bsize);
b = PixelFormat::convert(b, bsize, 8);
a = PixelFormat::convert(a, 8, asize);
a = PixelFormat::convert(a, asize, 8);
// Store color.
image->pixel(x, y) = Color32(r, g, b, a);
// Compute new error.
float diff = float(alpha - pixel.a);
Vector4 diff(float(int(pixel.r) - r), float(int(pixel.g) - g), float(int(pixel.b) - b), float(int(pixel.a) - a));
// Propagate new error.
row0[1+x+1] += 7.0f / 16.0f * diff;
@ -229,10 +211,9 @@ void nv::Quantize::FloydSteinberg_Alpha4( Image * image )
}
swap(row0, row1);
memset(row1, 0, sizeof(float)*(w+2));
memset(row1, 0, sizeof(Vector4)*(w+2));
}
delete [] row0;
delete [] row1;
}

View File

@ -3,6 +3,9 @@
#ifndef NV_IMAGE_QUANTIZE_H
#define NV_IMAGE_QUANTIZE_H
#include <nvimage/nvimage.h>
namespace nv
{
class Image;
@ -17,6 +20,9 @@ namespace nv
void FloydSteinberg_BinaryAlpha(Image * img, int alpha_threshold = 127);
void FloydSteinberg_Alpha4(Image * img);
void Truncate(Image * image, uint rsize, uint gsize, uint bsize, uint asize);
void FloydSteinberg(Image * image, uint rsize, uint gsize, uint bsize, uint asize);
// @@ Add palette quantization algorithms!
}
}

View File

@ -49,7 +49,7 @@ void Basis::robustOrthonormalize(float epsilon /*= NV_EPSILON*/)
return;
}
}
normal = nv::normalize(normal, epsilon);
normal = ::normalize(normal, epsilon);
tangent -= normal * dot(normal, tangent);
bitangent -= normal * dot(normal, bitangent);
@ -68,8 +68,7 @@ void Basis::robustOrthonormalize(float epsilon /*= NV_EPSILON*/)
}
else
{
#if 0
tangent = nv::normalize(tangent, epsilon);
tangent = ::normalize(tangent, epsilon);
bitangent -= tangent * dot(tangent, bitangent);
if (length(bitangent) < epsilon)
@ -79,47 +78,11 @@ void Basis::robustOrthonormalize(float epsilon /*= NV_EPSILON*/)
}
else
{
bitangent = nv::normalize(bitangent, epsilon);
tangent = ::normalize(tangent, epsilon);
}
#else
if (length(bitangent) < epsilon)
{
bitangent = cross(tangent, normal);
nvCheck(isNormalized(bitangent));
}
else
{
tangent = nv::normalize(tangent);
bitangent = nv::normalize(bitangent);
Vector3 bisector = nv::normalize(tangent + bitangent);
Vector3 axis = cross(bisector, normal);
nvDebugCheck(isNormalized(axis, epsilon));
nvDebugCheck(equal(dot(axis, tangent), -dot(axis, bitangent), epsilon));
if (dot(axis, tangent) > 0)
{
tangent = nv::normalize(bisector + axis);
bitangent = nv::normalize(bisector - axis);
}
else
{
tangent = nv::normalize(bisector - axis);
bitangent = nv::normalize(bisector + axis);
}
}
#endif
}
/*// Check vector lengths.
if (!isNormalized(normal, epsilon))
{
nvDebug("%f %f %f\n", normal.x(), normal.y(), normal.z());
nvDebug("%f %f %f\n", tangent.x(), tangent.y(), tangent.z());
nvDebug("%f %f %f\n", bitangent.x(), bitangent.y(), bitangent.z());
}*/
// Check vector lengths.
nvCheck(isNormalized(normal, epsilon));
nvCheck(isNormalized(tangent, epsilon));
nvCheck(isNormalized(bitangent, epsilon));
@ -162,18 +125,9 @@ void Basis::buildFrameForDirection(Vector3::Arg d)
bitangent = cross(normal, tangent);
}
bool Basis::isValid() const
{
if (equal(normal, Vector3(zero))) return false;
if (equal(tangent, Vector3(zero))) return false;
if (equal(bitangent, Vector3(zero))) return false;
if (equal(determinant(), 0.0f)) return false;
return true;
}
/*
/// Transform by this basis. (From this basis to object space).
Vector3 Basis::transform(Vector3::Arg v) const
{
@ -190,31 +144,30 @@ Vector3 Basis::transformT(Vector3::Arg v)
}
/// Transform by the inverse. (From object space to this basis).
/// @note Uses Cramer's rule so the inverse is not accurate if the basis is ill-conditioned.
/// @note Uses Kramer's rule so the inverse is not accurate if the basis is ill-conditioned.
Vector3 Basis::transformI(Vector3::Arg v) const
{
const float det = determinant();
nvDebugCheck(!equal(det, 0.0f, 0.0f));
nvCheck(!equalf(det, 0.0f));
const float idet = 1.0f / det;
// Rows of the inverse matrix.
Vector3 r0(
(bitangent.y() * normal.z() - bitangent.z() * normal.y()),
-(bitangent.x() * normal.z() - bitangent.z() * normal.x()),
(bitangent.x() * normal.y() - bitangent.y() * normal.x()));
Vector3 r0, r1, r2;
r0.x = (bitangent.y() * normal.z() - bitangent.z() * normal.y()) * idet;
r0.y = -(bitangent.x() * normal.z() - bitangent.z() * normal.x()) * idet;
r0.z = (bitangent.x() * normal.y() - bitangent.y() * normal.x()) * idet;
Vector3 r1(
-(tangent.y() * normal.z() - tangent.z() * normal.y()),
(tangent.x() * normal.z() - tangent.z() * normal.x()),
-(tangent.x() * normal.y() - tangent.y() * normal.x()));
r1.x = -(tangent.y() * normal.z() - tangent.z() * normal.y()) * idet;
r1.y = (tangent.x() * normal.z() - tangent.z() * normal.x()) * idet;
r1.z = -(tangent.x() * normal.y() - tangent.y() * normal.x()) * idet;
Vector3 r2(
(tangent.y() * bitangent.z() - tangent.z() * bitangent.y()),
-(tangent.x() * bitangent.z() - tangent.z() * bitangent.x()),
(tangent.x() * bitangent.y() - tangent.y() * bitangent.x()));
r2.x = (tangent.y() * bitangent.z() - tangent.z() * bitangent.y()) * idet;
r2.y = -(tangent.x() * bitangent.z() - tangent.z() * bitangent.x()) * idet;
r2.z = (tangent.x() * bitangent.y() - tangent.y() * bitangent.x()) * idet;
return Vector3(dot(v, r0), dot(v, r1), dot(v, r2)) * idet;
return Vector3(dot(v, r0), dot(v, r1), dot(v, r2));
}
*/

View File

@ -54,8 +54,7 @@ namespace nv
tangent.z() * bitangent.x() * normal.y() - tangent.x() * bitangent.z() * normal.y();
}
bool isValid() const;
/*
// Get transform matrix for this basis.
NVMATH_API Matrix matrix() const;
@ -67,7 +66,7 @@ namespace nv
// Transform by the inverse. (From object space to this basis).
NVMATH_API Vector3 transformI(Vector3::Arg v) const;
*/
Vector3 tangent;
Vector3 bitangent;

View File

@ -9,7 +9,6 @@
namespace nv
{
class Stream;
/// Axis Aligned Bounding Box.
class Box
@ -28,13 +27,11 @@ public:
// Cast operators.
operator const float * () const { return reinterpret_cast<const float *>(this); }
// Min corner of the box.
Vector3 minCorner() const { return m_mins; }
Vector3 & minCorner() { return m_mins; }
/// Min corner of the box.
Vector3 mins() const { return m_mins; }
// Max corner of the box.
Vector3 maxCorner() const { return m_maxs; }
Vector3 & maxCorner() { return m_maxs; }
/// Max corner of the box.
Vector3 maxs() const { return m_maxs; }
/// Clear the bounds.
void clearBounds()
@ -129,8 +126,6 @@ public:
m_maxs.x() > p.x() && m_maxs.y() > p.y() && m_maxs.z() > p.z();
}
friend Stream & operator<< (Stream & s, Box & box);
private:
Vector3 m_mins;

View File

@ -5,19 +5,13 @@ SET(MATH_SRCS
Vector.h
Matrix.h
Quaternion.h
Plane.h Plane.cpp
Box.h
Color.h
Montecarlo.h Montecarlo.cpp
Random.h Random.cpp
SphericalHarmonic.h SphericalHarmonic.cpp
Basis.h Basis.cpp
Triangle.h Triangle.cpp TriBox.cpp
Polygon.h Polygon.cpp
TypeSerialization.h TypeSerialization.cpp
Sparse.h Sparse.cpp
Solver.h Solver.cpp
KahanSum.h)
Triangle.h Triangle.cpp TriBox.cpp)
INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})

View File

@ -1,38 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#ifndef NV_MATH_KAHANSUM_H
#define NV_MATH_KAHANSUM_H
#include <nvmath/nvmath.h>
namespace nv
{
class KahanSum
{
public:
KahanSum() : accum(0.0f), err(0) {};
void add(float f)
{
float compensated = f + err;
float tmp = accum + compensated;
err = accum - tmp;
err += compensated;
accum = tmp;
}
float sum() const
{
return accum;
}
private:
float accum;
float err;
};
} // nv namespace
#endif // NV_MATH_KAHANSUM_H

View File

@ -1,168 +0,0 @@
// This code is in the public domain -- Ignacio Casta<74>o <castanyo@yahoo.es>
#include <nvmath/Polygon.h>
#include <nvmath/Triangle.h>
#include <nvmath/Plane.h>
using namespace nv;
Polygon::Polygon()
{
}
Polygon::Polygon(const Triangle & t)
{
pointArray.resize(3);
pointArray[0] = t.v[0];
pointArray[1] = t.v[1];
pointArray[2] = t.v[2];
}
Polygon::Polygon(const Vector3 * points, uint vertexCount)
{
pointArray.resize(vertexCount);
for (uint i = 0; i < vertexCount; i++)
{
pointArray[i] = points[i];
}
}
/// Compute polygon area.
float Polygon::area() const
{
float total = 0;
const uint pointCount = pointArray.count();
for (uint i = 2; i < pointCount; i++)
{
Vector3 v1 = pointArray[i-1] - pointArray[0];
Vector3 v2 = pointArray[i] - pointArray[0];
total += 0.5f * length(cross(v1, v2));
}
return total;
}
/// Get the bounds of the polygon.
Box Polygon::bounds() const
{
Box bounds;
bounds.clearBounds();
foreach(p, pointArray)
{
bounds.addPointToBounds(pointArray[p]);
}
return bounds;
}
/// Get the plane of the polygon.
Plane Polygon::plane() const
{
// @@ Do something better than this?
Vector3 n = cross(pointArray[1] - pointArray[0], pointArray[2] - pointArray[0]);
return Vector4(n, dot(n, pointArray[0]));
}
/// Clip polygon to box.
uint Polygon::clipTo(const Box & box)
{
const Plane posX( 1, 0, 0, box.maxCorner().x());
const Plane negX(-1, 0, 0,-box.minCorner().x());
const Plane posY( 0, 1, 0, box.maxCorner().y());
const Plane negY( 0,-1, 0,-box.minCorner().y());
const Plane posZ( 0, 0, 1, box.maxCorner().z());
const Plane negZ( 0, 0,-1,-box.minCorner().z());
if (clipTo(posX) == 0) return 0;
if (clipTo(negX) == 0) return 0;
if (clipTo(posY) == 0) return 0;
if (clipTo(negY) == 0) return 0;
if (clipTo(posZ) == 0) return 0;
if (clipTo(negZ) == 0) return 0;
return pointArray.count();
}
/// Clip polygon to plane.
uint Polygon::clipTo(const Plane & plane)
{
int count = 0;
const uint pointCount = pointArray.count();
Array<Vector3> newPointArray(pointCount + 1); // @@ Do not create copy every time.
Vector3 prevPoint = pointArray[pointCount - 1];
float prevDist = dot(plane.vector(), prevPoint) - plane.offset();
for (uint i = 0; i < pointCount; i++)
{
const Vector3 point = pointArray[i];
float dist = dot(plane.vector(), point) - plane.offset();
// @@ Handle points on plane better.
if (dist <= 0) // interior.
{
if (prevDist > 0) // exterior
{
// Add segment intersection point.
Vector3 dp = point - prevPoint;
float t = dist / prevDist;
newPointArray.append(point - dp * t);
}
// Add interior point.
newPointArray.append(point);
}
else if (dist > 0 && prevDist < 0)
{
// Add segment intersection point.
Vector3 dp = point - prevPoint;
float t = dist / prevDist;
newPointArray.append(point - dp * t);
}
prevPoint = point;
prevDist = dist;
}
swap(pointArray, newPointArray);
return count;
}
void Polygon::removeColinearPoints()
{
const uint pointCount = pointArray.count();
Array<Vector3> newPointArray(pointCount);
for (uint i = 0 ; i < pointCount; i++)
{
int j = (i + 1) % pointCount;
int k = (i + pointCount - 1) % pointCount;
Vector3 v1 = normalize(pointArray[j] - pointArray[i]);
Vector3 v2 = normalize(pointArray[i] - pointArray[k]);
if (dot(v1, v2) < 0.999)
{
newPointArray.append(pointArray[i]);
}
}
swap(pointArray, newPointArray);
}

View File

@ -1,45 +0,0 @@
// This code is in the public domain -- Ignacio Casta<74>o <castanyo@yahoo.es>
#ifndef NV_MATH_POLYGON_H
#define NV_MATH_POLYGON_H
#include <nvcore/Containers.h>
#include <nvmath/nvmath.h>
#include <nvmath/Vector.h>
#include <nvmath/Box.h>
namespace nv
{
class Box;
class Plane;
class Triangle;
class Polygon
{
NV_FORBID_COPY(Polygon);
public:
Polygon();
Polygon(const Triangle & t);
Polygon(const Vector3 * points, uint vertexCount);
float area() const;
Box bounds() const;
Plane plane() const;
uint clipTo(const Box & box);
uint clipTo(const Plane & plane);
void removeColinearPoints();
private:
Array<Vector3> pointArray;
};
} // nv namespace
#endif // NV_MATH_POLYGON_H

View File

@ -51,6 +51,7 @@ namespace nv
inline Quaternion mul(Quaternion::Arg a, Quaternion::Arg b)
{
// @@ Efficient SIMD implementation?
return Quaternion(
+ a.x() * b.w() + a.y()*b.z() - a.z()*b.y() + a.w()*b.x(),
- a.x() * b.z() + a.y()*b.w() + a.z()*b.x() + a.w()*b.y(),
@ -58,40 +59,6 @@ namespace nv
- a.x() * b.x() - a.y()*b.y() - a.z()*b.z() + a.w()*b.w());
}
inline Quaternion mul(Quaternion::Arg a, Vector3::Arg b)
{
return Quaternion(
+ a.y()*b.z() - a.z()*b.y() + a.w()*b.x(),
- a.x() * b.z() + a.z()*b.x() + a.w()*b.y(),
+ a.x() * b.y() - a.y()*b.x() + a.w()*b.z(),
- a.x() * b.x() - a.y()*b.y() - a.z()*b.z() );
}
inline Quaternion mul(Vector3::Arg a, Quaternion::Arg b)
{
return Quaternion(
+ a.x() * b.w() + a.y()*b.z() - a.z()*b.y(),
- a.x() * b.z() + a.y()*b.w() + a.z()*b.x(),
+ a.x() * b.y() - a.y()*b.x() + a.z()*b.w(),
- a.x() * b.x() - a.y()*b.y() - a.z()*b.z());
}
inline Quaternion operator *(Quaternion::Arg a, Quaternion::Arg b)
{
return mul(a, b);
}
inline Quaternion operator *(Quaternion::Arg a, Vector3::Arg b)
{
return mul(a, b);
}
inline Quaternion operator *(Vector3::Arg a, Quaternion::Arg b)
{
return mul(a, b);
}
inline Quaternion scale(Quaternion::Arg q, float s)
{
return scale(q.asVector(), s);
@ -155,24 +122,6 @@ namespace nv
return Quaternion(Vector4(v * s, c));
}
inline Vector3 imag(Quaternion::Arg q)
{
return q.asVector().xyz();
}
inline float real(Quaternion::Arg q)
{
return q.w();
}
/// Transform vector.
inline Vector3 transform(Quaternion::Arg q, Vector3::Arg v)
{
Quaternion t = q * v * conjugate(q);
return imag(t);
}
} // nv namespace

View File

@ -1,726 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#include <nvmath/Solver.h>
using namespace nv;
namespace
{
class Preconditioner
{
public:
// Virtual dtor.
virtual ~Preconditioner() { }
// Apply preconditioning step.
virtual void apply(const FullVector & x, FullVector & y) const = 0;
};
// Jacobi preconditioner.
class JacobiPreconditioner : public Preconditioner
{
public:
JacobiPreconditioner(const SparseMatrix & M, bool symmetric) : m_inverseDiagonal(M.width())
{
nvCheck(M.isSquare());
for(uint x = 0; x < M.width(); x++)
{
float elem = M.getCoefficient(x, x);
nvDebugCheck( elem != 0.0f );
if (symmetric)
{
m_inverseDiagonal[x] = 1.0f / sqrt(fabs(elem));
}
else
{
m_inverseDiagonal[x] = 1.0f / elem;
}
}
}
void apply(const FullVector & x, FullVector & y) const
{
y *= x;
}
private:
FullVector m_inverseDiagonal;
};
} // namespace
static int ConjugateGradientSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon);
static int ConjugateGradientSolver(const Preconditioner & preconditioner, const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon);
// Solve the symmetric system: At<41>A<EFBFBD>x = At<41>b
void nv::LeastSquaresSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon/*1e-5f*/)
{
nvDebugCheck(A.width() == x.dimension());
nvDebugCheck(A.height() == b.dimension());
nvDebugCheck(A.height() >= A.width()); // @@ If height == width we could solve it directly...
const uint D = A.width();
FullVector Atb(D);
mult(Transposed, A, b, Atb);
SparseMatrix AtA(D);
mult(Transposed, A, NoTransposed, A, AtA);
SymmetricSolver(AtA, Atb, x, epsilon);
}
// See section 10.4.3 in: Mesh Parameterization: Theory and Practice, Siggraph Course Notes, August 2007
void nv::LeastSquaresSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, const uint * lockedParameters, uint lockedCount, float epsilon/*= 1e-5f*/)
{
nvDebugCheck(A.width() == x.dimension());
nvDebugCheck(A.height() == b.dimension());
nvDebugCheck(A.height() >= A.width() - lockedCount);
// @@ This is not the most efficient way of building a system with reduced degrees of freedom. It would be faster to do it on the fly.
const uint D = A.width() - lockedCount;
nvDebugCheck(D > 0);
// Compute: b - Al * xl
FullVector b_Alxl(b);
for (uint y = 0; y < A.height(); y++)
{
const uint count = A.getRow(y).count();
for (uint e = 0; e < count; e++)
{
uint column = A.getRow(y)[e].x;
bool isFree = true;
for (uint i = 0; i < lockedCount; i++)
{
isFree &= (lockedParameters[i] != column);
}
if (!isFree)
{
b_Alxl[y] -= x[column] * A.getRow(y)[e].v;
}
}
}
// Remove locked columns from A.
SparseMatrix Af(D, A.height());
for (uint y = 0; y < A.height(); y++)
{
const uint count = A.getRow(y).count();
for (uint e = 0; e < count; e++)
{
uint column = A.getRow(y)[e].x;
uint ix = column;
bool isFree = true;
for (uint i = 0; i < lockedCount; i++)
{
isFree &= (lockedParameters[i] != column);
if (column > lockedParameters[i]) ix--; // shift columns
}
if (isFree)
{
Af.setCoefficient(ix, y, A.getRow(y)[e].v);
}
}
}
// Remove elements from x
FullVector xf(D);
for (uint i = 0, j = 0; i < A.width(); i++)
{
bool isFree = true;
for (uint l = 0; l < lockedCount; l++)
{
isFree &= (lockedParameters[l] != i);
}
if (isFree)
{
xf[j++] = x[i];
}
}
// Solve reduced system.
LeastSquaresSolver(Af, b_Alxl, xf, epsilon);
// Copy results back to x.
for (uint i = 0, j = 0; i < A.width(); i++)
{
bool isFree = true;
for (uint l = 0; l < lockedCount; l++)
{
isFree &= (lockedParameters[l] != i);
}
if (isFree)
{
x[i] = xf[j++];
}
}
}
void nv::SymmetricSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon/*1e-5f*/)
{
nvDebugCheck(A.height() == A.width());
nvDebugCheck(A.height() == b.dimension());
nvDebugCheck(b.dimension() == x.dimension());
// JacobiPreconditioner jacobi(A, true);
// ConjugateGradientSolver(jacobi, A, b, x, epsilon);
ConjugateGradientSolver(A, b, x, epsilon);
}
/**
* Compute the solution of the sparse linear system Ab=x using the Conjugate
* Gradient method.
*
* Solving sparse linear systems:
* (1) A<>x = b
*
* The conjugate gradient algorithm solves (1) only in the case that A is
* symmetric and positive definite. It is based on the idea of minimizing the
* function
*
* (2) f(x) = 1/2<>x<EFBFBD>A<EFBFBD>x - b<>x
*
* This function is minimized when its gradient
*
* (3) df = A<>x - b
*
* is zero, which is equivalent to (1). The minimization is carried out by
* generating a succession of search directions p.k and improved minimizers x.k.
* At each stage a quantity alfa.k is found that minimizes f(x.k + alfa.k<>p.k),
* and x.k+1 is set equal to the new point x.k + alfa.k<>p.k. The p.k and x.k are
* built up in such a way that x.k+1 is also the minimizer of f over the whole
* vector space of directions already taken, {p.1, p.2, . . . , p.k}. After N
* iterations you arrive at the minimizer over the entire vector space, i.e., the
* solution to (1).
*
* For a really good explanation of the method see:
*
* "An Introduction to the Conjugate Gradient Method Without the Agonizing Pain",
* Jonhathan Richard Shewchuk.
*
**/
/*static*/ int ConjugateGradientSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon)
{
nvDebugCheck( A.isSquare() );
nvDebugCheck( A.width() == b.dimension() );
nvDebugCheck( A.width() == x.dimension() );
int i = 0;
const int D = A.width();
const int i_max = 4 * D; // Convergence should be linear, but in some cases, it's not.
FullVector r(D); // residual
FullVector p(D); // search direction
FullVector q(D); //
float delta_0;
float delta_old;
float delta_new;
float alpha;
float beta;
// r = b - A<>x;
copy(b, r);
sgemv(-1, A, x, 1, r);
// p = r;
copy(r, p);
delta_new = dot( r, r );
delta_0 = delta_new;
while (i < i_max && delta_new > epsilon*epsilon*delta_0)
{
i++;
// q = A<>p
mult(A, p, q);
// alpha = delta_new / p<>q
alpha = delta_new / dot( p, q );
// x = alfa<66>p + x
saxpy(alpha, p, x);
if ((i & 31) == 0) // recompute r after 32 steps
{
// r = b - A<>x
copy(b, r);
sgemv(-1, A, x, 1, r);
}
else
{
// r = r - alpha<68>q
saxpy(-alpha, q, r);
}
delta_old = delta_new;
delta_new = dot( r, r );
beta = delta_new / delta_old;
// p = r + beta<74>p
copy(r, p);
saxpy(beta, p, r);
}
return i;
}
// Conjugate gradient with preconditioner.
/*static*/ int ConjugateGradientSolver(const Preconditioner & preconditioner, const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon)
{
nvDebugCheck( A.isSquare() );
nvDebugCheck( A.width() == b.dimension() );
nvDebugCheck( A.width() == x.dimension() );
int i = 0;
const int D = A.width();
const int i_max = 4 * D; // Convergence should be linear, but in some cases, it's not.
FullVector r(D); // residual
FullVector p(D); // search direction
FullVector q(D); //
FullVector s(D); // preconditioned
float delta_0;
float delta_old;
float delta_new;
float alpha;
float beta;
// r = b - A<>x
copy(b, r);
sgemv(-1, A, x, 1, r);
// p = M^-1 <20> r
preconditioner.apply(r, p);
//copy(r, p);
delta_new = dot(r, p);
delta_0 = delta_new;
while (i < i_max && delta_new > epsilon*epsilon*delta_0)
{
i++;
// q = A<>p
mult(A, p, q);
// alpha = delta_new / p<>q
alpha = delta_new / dot(p, q);
// x = alfa<66>p + x
saxpy(alpha, p, x);
if ((i & 31) == 0) // recompute r after 32 steps
{
// r = b - A<>x
copy(b, r);
sgemv(-1, A, x, 1, r);
}
else
{
// r = r - alfa<66>q
saxpy(-alpha, q, r);
}
// s = M^-1 <20> r
preconditioner.apply(r, s);
//copy(r, s);
delta_old = delta_new;
delta_new = dot( r, s );
beta = delta_new / delta_old;
// p = s + beta<74>p
copy(s, p);
saxpy(beta, p, s);
}
return i;
}
#if 0 // Nonsymmetric solvers
/** Bi-conjugate gradient method. */
MATHLIB_API int BiConjugateGradientSolve( const SparseMatrix &A, const DenseVector &b, DenseVector &x, float epsilon ) {
piDebugCheck( A.IsSquare() );
piDebugCheck( A.Width() == b.Dim() );
piDebugCheck( A.Width() == x.Dim() );
int i = 0;
const int D = A.Width();
const int i_max = 4 * D;
float resid;
float rho_1 = 0;
float rho_2 = 0;
float alpha;
float beta;
DenseVector r(D);
DenseVector rtilde(D);
DenseVector p(D);
DenseVector ptilde(D);
DenseVector q(D);
DenseVector qtilde(D);
DenseVector tmp(D); // temporal vector.
// r = b - A<>x;
A.Product( x, tmp );
r.Sub( b, tmp );
// rtilde = r
rtilde.Set( r );
// p = r;
p.Set( r );
// ptilde = rtilde
ptilde.Set( rtilde );
float normb = b.Norm();
if( normb == 0.0 ) normb = 1;
// test convergence
resid = r.Norm() / normb;
if( resid < epsilon ) {
// method converges?
return 0;
}
while( i < i_max ) {
i++;
rho_1 = DenseVectorDotProduct( r, rtilde );
if( rho_1 == 0 ) {
// method fails.
return -i;
}
if (i == 1) {
p.Set( r );
ptilde.Set( rtilde );
}
else {
beta = rho_1 / rho_2;
// p = r + beta * p;
p.Mad( r, p, beta );
// ptilde = ztilde + beta * ptilde;
ptilde.Mad( rtilde, ptilde, beta );
}
// q = A * p;
A.Product( p, q );
// qtilde = A^t * ptilde;
A.TransProduct( ptilde, qtilde );
alpha = rho_1 / DenseVectorDotProduct( ptilde, q );
// x += alpha * p;
x.Mad( x, p, alpha );
// r -= alpha * q;
r.Mad( r, q, -alpha );
// rtilde -= alpha * qtilde;
rtilde.Mad( rtilde, qtilde, -alpha );
rho_2 = rho_1;
// test convergence
resid = r.Norm() / normb;
if( resid < epsilon ) {
// method converges
return i;
}
}
return i;
}
/** Bi-conjugate gradient stabilized method. */
int BiCGSTABSolve( const SparseMatrix &A, const DenseVector &b, DenseVector &x, float epsilon ) {
piDebugCheck( A.IsSquare() );
piDebugCheck( A.Width() == b.Dim() );
piDebugCheck( A.Width() == x.Dim() );
int i = 0;
const int D = A.Width();
const int i_max = 2 * D;
float resid;
float rho_1 = 0;
float rho_2 = 0;
float alpha = 0;
float beta = 0;
float omega = 0;
DenseVector p(D);
DenseVector phat(D);
DenseVector s(D);
DenseVector shat(D);
DenseVector t(D);
DenseVector v(D);
DenseVector r(D);
DenseVector rtilde(D);
DenseVector tmp(D);
// r = b - A<>x;
A.Product( x, tmp );
r.Sub( b, tmp );
// rtilde = r
rtilde.Set( r );
float normb = b.Norm();
if( normb == 0.0 ) normb = 1;
// test convergence
resid = r.Norm() / normb;
if( resid < epsilon ) {
// method converges?
return 0;
}
while( i<i_max ) {
i++;
rho_1 = DenseVectorDotProduct( rtilde, r );
if( rho_1 == 0 ) {
// method fails
return -i;
}
if( i == 1 ) {
p.Set( r );
}
else {
beta = (rho_1 / rho_2) * (alpha / omega);
// p = r + beta * (p - omega * v);
p.Mad( p, v, -omega );
p.Mad( r, p, beta );
}
//phat = M.solve(p);
phat.Set( p );
//Precond( &phat, p );
//v = A * phat;
A.Product( phat, v );
alpha = rho_1 / DenseVectorDotProduct( rtilde, v );
// s = r - alpha * v;
s.Mad( r, v, -alpha );
resid = s.Norm() / normb;
if( resid < epsilon ) {
// x += alpha * phat;
x.Mad( x, phat, alpha );
return i;
}
//shat = M.solve(s);
shat.Set( s );
//Precond( &shat, s );
//t = A * shat;
A.Product( shat, t );
omega = DenseVectorDotProduct( t, s ) / DenseVectorDotProduct( t, t );
// x += alpha * phat + omega * shat;
x.Mad( x, shat, omega );
x.Mad( x, phat, alpha );
//r = s - omega * t;
r.Mad( s, t, -omega );
rho_2 = rho_1;
resid = r.Norm() / normb;
if( resid < epsilon ) {
return i;
}
if( omega == 0 ) {
return -i; // ???
}
}
return i;
}
/** Bi-conjugate gradient stabilized method. */
int BiCGSTABPrecondSolve( const SparseMatrix &A, const DenseVector &b, DenseVector &x, const IPreconditioner &M, float epsilon ) {
piDebugCheck( A.IsSquare() );
piDebugCheck( A.Width() == b.Dim() );
piDebugCheck( A.Width() == x.Dim() );
int i = 0;
const int D = A.Width();
const int i_max = D;
// const int i_max = 1000;
float resid;
float rho_1 = 0;
float rho_2 = 0;
float alpha = 0;
float beta = 0;
float omega = 0;
DenseVector p(D);
DenseVector phat(D);
DenseVector s(D);
DenseVector shat(D);
DenseVector t(D);
DenseVector v(D);
DenseVector r(D);
DenseVector rtilde(D);
DenseVector tmp(D);
// r = b - A<>x;
A.Product( x, tmp );
r.Sub( b, tmp );
// rtilde = r
rtilde.Set( r );
float normb = b.Norm();
if( normb == 0.0 ) normb = 1;
// test convergence
resid = r.Norm() / normb;
if( resid < epsilon ) {
// method converges?
return 0;
}
while( i<i_max ) {
i++;
rho_1 = DenseVectorDotProduct( rtilde, r );
if( rho_1 == 0 ) {
// method fails
return -i;
}
if( i == 1 ) {
p.Set( r );
}
else {
beta = (rho_1 / rho_2) * (alpha / omega);
// p = r + beta * (p - omega * v);
p.Mad( p, v, -omega );
p.Mad( r, p, beta );
}
//phat = M.solve(p);
//phat.Set( p );
M.Precond( &phat, p );
//v = A * phat;
A.Product( phat, v );
alpha = rho_1 / DenseVectorDotProduct( rtilde, v );
// s = r - alpha * v;
s.Mad( r, v, -alpha );
resid = s.Norm() / normb;
//printf( "--- Iteration %d: residual = %f\n", i, resid );
if( resid < epsilon ) {
// x += alpha * phat;
x.Mad( x, phat, alpha );
return i;
}
//shat = M.solve(s);
//shat.Set( s );
M.Precond( &shat, s );
//t = A * shat;
A.Product( shat, t );
omega = DenseVectorDotProduct( t, s ) / DenseVectorDotProduct( t, t );
// x += alpha * phat + omega * shat;
x.Mad( x, shat, omega );
x.Mad( x, phat, alpha );
//r = s - omega * t;
r.Mad( s, t, -omega );
rho_2 = rho_1;
resid = r.Norm() / normb;
if( resid < epsilon ) {
return i;
}
if( omega == 0 ) {
return -i; // ???
}
}
return i;
}
#endif

View File

@ -1,20 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#ifndef NV_MATH_SOLVER_H
#define NV_MATH_SOLVER_H
#include <nvmath/Sparse.h>
namespace nv
{
// Linear solvers.
NVMATH_API void LeastSquaresSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon = 1e-5f);
NVMATH_API void LeastSquaresSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, const uint * lockedParameters, uint lockedCount, float epsilon = 1e-5f);
NVMATH_API void SymmetricSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon = 1e-5f);
// NVMATH_API void NonSymmetricSolver(const SparseMatrix & A, const FullVector & b, FullVector & x, float epsilon = 1e-5f);
} // nv namespace
#endif // NV_MATH_SOLVER_H

View File

@ -1,831 +0,0 @@
// This code is in the public domain -- Ignacio Casta<74>o <castanyo@yahoo.es>
#include <nvmath/Sparse.h>
#include <nvmath/KahanSum.h>
using namespace nv;
/// Ctor.
FullVector::FullVector(uint dim)
{
m_array.resize(dim);
}
/// Copy ctor.
FullVector::FullVector(const FullVector & v) : m_array(v.m_array)
{
}
/// Copy operator
const FullVector & FullVector::operator=(const FullVector & v)
{
nvCheck(dimension() == v.dimension());
m_array = v.m_array;
return *this;
}
void FullVector::fill(float f)
{
const uint dim = dimension();
for (uint i = 0; i < dim; i++)
{
m_array[i] = f;
}
}
void FullVector::operator+= (const FullVector & v)
{
nvDebugCheck(dimension() == v.dimension());
const uint dim = dimension();
for (uint i = 0; i < dim; i++)
{
m_array[i] += v.m_array[i];
}
}
void FullVector::operator-= (const FullVector & v)
{
nvDebugCheck(dimension() == v.dimension());
const uint dim = dimension();
for (uint i = 0; i < dim; i++)
{
m_array[i] -= v.m_array[i];
}
}
void FullVector::operator*= (const FullVector & v)
{
nvDebugCheck(dimension() == v.dimension());
const uint dim = dimension();
for (uint i = 0; i < dim; i++)
{
m_array[i] *= v.m_array[i];
}
}
void FullVector::operator+= (float f)
{
const uint dim = dimension();
for (uint i = 0; i < dim; i++)
{
m_array[i] += f;
}
}
void FullVector::operator-= (float f)
{
const uint dim = dimension();
for (uint i = 0; i < dim; i++)
{
m_array[i] -= f;
}
}
void FullVector::operator*= (float f)
{
const uint dim = dimension();
for (uint i = 0; i < dim; i++)
{
m_array[i] *= f;
}
}
void nv::saxpy(float a, const FullVector & x, FullVector & y)
{
nvDebugCheck(x.dimension() == y.dimension());
const uint dim = x.dimension();
for (uint i = 0; i < dim; i++)
{
y[i] += a * x[i];
}
}
void nv::copy(const FullVector & x, FullVector & y)
{
nvDebugCheck(x.dimension() == y.dimension());
const uint dim = x.dimension();
for (uint i = 0; i < dim; i++)
{
y[i] = x[i];
}
}
void nv::scal(float a, FullVector & x)
{
const uint dim = x.dimension();
for (uint i = 0; i < dim; i++)
{
x[i] *= a;
}
}
float nv::dot(const FullVector & x, const FullVector & y)
{
nvDebugCheck(x.dimension() == y.dimension());
const uint dim = x.dimension();
/*float sum = 0;
for (uint i = 0; i < dim; i++)
{
sum += x[i] * y[i];
}
return sum;*/
KahanSum kahan;
for (uint i = 0; i < dim; i++)
{
kahan.add(x[i] * y[i]);
}
return kahan.sum();
}
FullMatrix::FullMatrix(uint d) : m_width(d), m_height(d)
{
m_array.resize(d*d, 0.0f);
}
FullMatrix::FullMatrix(uint w, uint h) : m_width(w), m_height(h)
{
m_array.resize(w*h, 0.0f);
}
FullMatrix::FullMatrix(const FullMatrix & m) : m_width(m.m_width), m_height(m.m_height)
{
m_array = m.m_array;
}
const FullMatrix & FullMatrix::operator=(const FullMatrix & m)
{
nvCheck(width() == m.width());
nvCheck(height() == m.height());
m_array = m.m_array;
return *this;
}
float FullMatrix::getCoefficient(uint x, uint y) const
{
nvDebugCheck( x < width() );
nvDebugCheck( y < height() );
return m_array[y * width() + x];
}
void FullMatrix::setCoefficient(uint x, uint y, float f)
{
nvDebugCheck( x < width() );
nvDebugCheck( y < height() );
m_array[y * width() + x] = f;
}
void FullMatrix::addCoefficient(uint x, uint y, float f)
{
nvDebugCheck( x < width() );
nvDebugCheck( y < height() );
m_array[y * width() + x] += f;
}
void FullMatrix::mulCoefficient(uint x, uint y, float f)
{
nvDebugCheck( x < width() );
nvDebugCheck( y < height() );
m_array[y * width() + x] *= f;
}
float FullMatrix::dotRow(uint y, const FullVector & v) const
{
nvDebugCheck( v.dimension() == width() );
nvDebugCheck( y < height() );
float sum = 0;
const uint count = v.dimension();
for (uint i = 0; i < count; i++)
{
sum += m_array[y * count + i] * v[i];
}
return sum;
}
void FullMatrix::madRow(uint y, float alpha, FullVector & v) const
{
nvDebugCheck( v.dimension() == width() );
nvDebugCheck( y < height() );
const uint count = v.dimension();
for (uint i = 0; i < count; i++)
{
v[i] += m_array[y * count + i];
}
}
// y = M * x
void nv::mult(const FullMatrix & M, const FullVector & x, FullVector & y)
{
mult(NoTransposed, M, x, y);
}
void nv::mult(Transpose TM, const FullMatrix & M, const FullVector & x, FullVector & y)
{
const uint w = M.width();
const uint h = M.height();
if (TM == Transposed)
{
nvDebugCheck( h == x.dimension() );
nvDebugCheck( w == y.dimension() );
y.fill(0.0f);
for (uint i = 0; i < h; i++)
{
M.madRow(i, x[i], y);
}
}
else
{
nvDebugCheck( w == x.dimension() );
nvDebugCheck( h == y.dimension() );
for (uint i = 0; i < h; i++)
{
y[i] = M.dotRow(i, x);
}
}
}
// y = alpha*A*x + beta*y
void nv::sgemv(float alpha, const FullMatrix & A, const FullVector & x, float beta, FullVector & y)
{
sgemv(alpha, NoTransposed, A, x, beta, y);
}
void nv::sgemv(float alpha, Transpose TA, const FullMatrix & A, const FullVector & x, float beta, FullVector & y)
{
const uint w = A.width();
const uint h = A.height();
if (TA == Transposed)
{
nvDebugCheck( h == x.dimension() );
nvDebugCheck( w == y.dimension() );
for (uint i = 0; i < h; i++)
{
A.madRow(i, alpha * x[i], y);
}
}
else
{
nvDebugCheck( w == x.dimension() );
nvDebugCheck( h == y.dimension() );
for (uint i = 0; i < h; i++)
{
y[i] = alpha * A.dotRow(i, x) + beta * y[i];
}
}
}
// Multiply a row of A by a column of B.
static float dot(uint j, Transpose TA, const FullMatrix & A, uint i, Transpose TB, const FullMatrix & B)
{
const uint w = (TA == NoTransposed) ? A.width() : A.height();
nvDebugCheck(w == (TB == NoTransposed) ? B.height() : A.width());
float sum = 0.0f;
for (uint k = 0; k < w; k++)
{
const float a = (TA == NoTransposed) ? A.getCoefficient(k, j) : A.getCoefficient(j, k); // @@ Move branches out of the loop?
const float b = (TB == NoTransposed) ? B.getCoefficient(i, k) : A.getCoefficient(k, i);
sum += a * b;
}
return sum;
}
// C = A * B
void nv::mult(const FullMatrix & A, const FullMatrix & B, FullMatrix & C)
{
mult(NoTransposed, A, NoTransposed, B, C);
}
void nv::mult(Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, FullMatrix & C)
{
sgemm(1.0f, TA, A, TB, B, 0.0f, C);
}
// C = alpha*A*B + beta*C
void nv::sgemm(float alpha, const FullMatrix & A, const FullMatrix & B, float beta, FullMatrix & C)
{
sgemm(alpha, NoTransposed, A, NoTransposed, B, beta, C);
}
void nv::sgemm(float alpha, Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, float beta, FullMatrix & C)
{
const uint w = C.width();
const uint h = C.height();
uint aw = (TA == NoTransposed) ? A.width() : A.height();
uint ah = (TA == NoTransposed) ? A.height() : A.width();
uint bw = (TB == NoTransposed) ? B.width() : B.height();
uint bh = (TB == NoTransposed) ? B.height() : B.width();
nvDebugCheck(aw == bh);
nvDebugCheck(bw == ah);
nvDebugCheck(w == bw);
nvDebugCheck(h == ah);
for (uint y = 0; y < h; y++)
{
for (uint x = 0; x < w; x++)
{
float c = alpha * ::dot(x, TA, A, y, TB, B) + beta * C.getCoefficient(x, y);
C.setCoefficient(x, y, c);
}
}
}
/// Ctor. Init the size of the sparse matrix.
SparseMatrix::SparseMatrix(uint d) : m_width(d)
{
m_array.resize(d);
}
/// Ctor. Init the size of the sparse matrix.
SparseMatrix::SparseMatrix(uint w, uint h) : m_width(w)
{
m_array.resize(h);
}
SparseMatrix::SparseMatrix(const SparseMatrix & m) : m_width(m.m_width)
{
m_array = m.m_array;
}
const SparseMatrix & SparseMatrix::operator=(const SparseMatrix & m)
{
nvCheck(width() == m.width());
nvCheck(height() == m.height());
m_array = m.m_array;
return *this;
}
// x is column, y is row
float SparseMatrix::getCoefficient(uint x, uint y) const
{
nvDebugCheck( x < width() );
nvDebugCheck( y < height() );
const uint count = m_array[y].count();
for (uint i = 0; i < count; i++)
{
if (m_array[y][i].x == x) return m_array[y][i].v;
}
return 0.0f;
}
void SparseMatrix::setCoefficient(uint x, uint y, float f)
{
nvDebugCheck( x < width() );
nvDebugCheck( y < height() );
const uint count = m_array[y].count();
for (uint i = 0; i < count; i++)
{
if (m_array[y][i].x == x)
{
m_array[y][i].v = f;
return;
}
}
Coefficient c = { x, f };
m_array[y].append( c );
}
void SparseMatrix::addCoefficient(uint x, uint y, float f)
{
nvDebugCheck( x < width() );
nvDebugCheck( y < height() );
const uint count = m_array[y].count();
for (uint i = 0; i < count; i++)
{
if (m_array[y][i].x == x)
{
m_array[y][i].v += f;
return;
}
}
Coefficient c = { x, f };
m_array[y].append( c );
}
void SparseMatrix::mulCoefficient(uint x, uint y, float f)
{
nvDebugCheck( x < width() );
nvDebugCheck( y < height() );
const uint count = m_array[y].count();
for (uint i = 0; i < count; i++)
{
if (m_array[y][i].x == x)
{
m_array[y][i].v *= f;
return;
}
}
Coefficient c = { x, f };
m_array[y].append( c );
}
float SparseMatrix::sumRow(uint y) const
{
nvDebugCheck( y < height() );
const uint count = m_array[y].count();
/*float sum = 0;
for (uint i = 0; i < count; i++)
{
sum += m_array[y][i].v;
}
return sum;*/
KahanSum kahan;
for (uint i = 0; i < count; i++)
{
kahan.add(m_array[y][i].v);
}
return kahan.sum();
}
float SparseMatrix::dotRow(uint y, const FullVector & v) const
{
nvDebugCheck( y < height() );
const uint count = m_array[y].count();
/*float sum = 0;
for (uint i = 0; i < count; i++)
{
sum += m_array[y][i].v * v[m_array[y][i].x];
}
return sum;*/
KahanSum kahan;
for (uint i = 0; i < count; i++)
{
kahan.add(m_array[y][i].v * v[m_array[y][i].x]);
}
return kahan.sum();
}
void SparseMatrix::madRow(uint y, float alpha, FullVector & v) const
{
nvDebugCheck(y < height());
const uint count = m_array[y].count();
for (uint i = 0; i < count; i++)
{
v[m_array[y][i].x] += alpha * m_array[y][i].v;
}
}
void SparseMatrix::clearRow(uint y)
{
nvDebugCheck( y < height() );
m_array[y].clear();
}
void SparseMatrix::scaleRow(uint y, float f)
{
nvDebugCheck( y < height() );
const uint count = m_array[y].count();
for (uint i = 0; i < count; i++)
{
m_array[y][i].v *= f;
}
}
void SparseMatrix::normalizeRow(uint y)
{
nvDebugCheck( y < height() );
float norm = 0.0f;
const uint count = m_array[y].count();
for (uint i = 0; i < count; i++)
{
float f = m_array[y][i].v;
norm += f * f;
}
scaleRow(y, 1.0f / sqrtf(norm));
}
void SparseMatrix::clearColumn(uint x)
{
nvDebugCheck(x < width());
for (uint y = 0; y < height(); y++)
{
const uint count = m_array[y].count();
for (uint e = 0; e < count; e++)
{
if (m_array[y][e].x == x)
{
m_array[y][e].v = 0.0f;
break;
}
}
}
}
void SparseMatrix::scaleColumn(uint x, float f)
{
nvDebugCheck(x < width());
for (uint y = 0; y < height(); y++)
{
const uint count = m_array[y].count();
for (uint e = 0; e < count; e++)
{
if (m_array[y][e].x == x)
{
m_array[y][e].v *= f;
break;
}
}
}
}
const Array<SparseMatrix::Coefficient> & SparseMatrix::getRow(uint y) const
{
return m_array[y];
}
// y = M * x
void nv::mult(const SparseMatrix & M, const FullVector & x, FullVector & y)
{
mult(NoTransposed, M, x, y);
}
void nv::mult(Transpose TM, const SparseMatrix & M, const FullVector & x, FullVector & y)
{
const uint w = M.width();
const uint h = M.height();
if (TM == Transposed)
{
nvDebugCheck( h == x.dimension() );
nvDebugCheck( w == y.dimension() );
y.fill(0.0f);
for (uint i = 0; i < h; i++)
{
M.madRow(i, x[i], y);
}
}
else
{
nvDebugCheck( w == x.dimension() );
nvDebugCheck( h == y.dimension() );
for (uint i = 0; i < h; i++)
{
y[i] = M.dotRow(i, x);
}
}
}
// y = alpha*A*x + beta*y
void nv::sgemv(float alpha, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y)
{
sgemv(alpha, NoTransposed, A, x, beta, y);
}
void nv::sgemv(float alpha, Transpose TA, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y)
{
const uint w = A.width();
const uint h = A.height();
if (TA == Transposed)
{
nvDebugCheck( h == x.dimension() );
nvDebugCheck( w == y.dimension() );
for (uint i = 0; i < h; i++)
{
A.madRow(i, alpha * x[i], y);
}
}
else
{
nvDebugCheck( w == x.dimension() );
nvDebugCheck( h == y.dimension() );
for (uint i = 0; i < h; i++)
{
y[i] = alpha * A.dotRow(i, x) + beta * y[i];
}
}
}
// dot y-row of A by x-column of B
static float dotRowColumn(int y, const SparseMatrix & A, int x, const SparseMatrix & B)
{
const Array<SparseMatrix::Coefficient> & row = A.getRow(y);
const uint count = row.count();
/*float sum = 0.0f;
for (uint i = 0; i < count; i++)
{
const SparseMatrix::Coefficient & c = row[i];
sum += c.v * B.getCoefficient(x, c.x);
}
return sum;*/
KahanSum kahan;
for (uint i = 0; i < count; i++)
{
const SparseMatrix::Coefficient & c = row[i];
kahan.add(c.v * B.getCoefficient(x, c.x));
}
return kahan.sum();
}
// dot y-row of A by x-row of B
static float dotRowRow(int y, const SparseMatrix & A, int x, const SparseMatrix & B)
{
const Array<SparseMatrix::Coefficient> & row = A.getRow(y);
const uint count = row.count();
/*float sum = 0.0f;
for (uint i = 0; i < count; i++)
{
const SparseMatrix::Coefficient & c = row[i];
sum += c.v * B.getCoefficient(c.x, x);
}
//return sum;*/
KahanSum kahan;
for (uint i = 0; i < count; i++)
{
const SparseMatrix::Coefficient & c = row[i];
kahan.add(c.v * B.getCoefficient(c.x, x));
}
return kahan.sum();
}
// dot y-column of A by x-column of B
static float dotColumnColumn(int y, const SparseMatrix & A, int x, const SparseMatrix & B)
{
nvDebugCheck(A.height() == B.height());
const uint h = A.height();
/*float sum = 0.0f;
for (uint i = 0; i < h; i++)
{
sum += A.getCoefficient(y, i) * B.getCoefficient(x, i);
}
//return sum;*/
KahanSum kahan;
for (uint i = 0; i < h; i++)
{
kahan.add(A.getCoefficient(y, i) * B.getCoefficient(x, i));
}
return kahan.sum();
}
// C = A * B
void nv::mult(const SparseMatrix & A, const SparseMatrix & B, SparseMatrix & C)
{
mult(NoTransposed, A, NoTransposed, B, C);
}
void nv::mult(Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, SparseMatrix & C)
{
sgemm(1.0f, TA, A, TB, B, 0.0f, C);
}
// C = alpha*A*B + beta*C
void nv::sgemm(float alpha, const SparseMatrix & A, const SparseMatrix & B, float beta, SparseMatrix & C)
{
sgemm(alpha, NoTransposed, A, NoTransposed, B, beta, C);
}
void nv::sgemm(float alpha, Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, float beta, SparseMatrix & C)
{
const uint w = C.width();
const uint h = C.height();
uint aw = (TA == NoTransposed) ? A.width() : A.height();
uint ah = (TA == NoTransposed) ? A.height() : A.width();
uint bw = (TB == NoTransposed) ? B.width() : B.height();
uint bh = (TB == NoTransposed) ? B.height() : B.width();
nvDebugCheck(aw == bh);
nvDebugCheck(bw == ah);
nvDebugCheck(w == bw);
nvDebugCheck(h == ah);
for (uint y = 0; y < h; y++)
{
for (uint x = 0; x < w; x++)
{
float c = beta * C.getCoefficient(x, y);
if (TA == NoTransposed && TB == NoTransposed)
{
// dot y-row of A by x-column of B.
c += alpha * dotRowColumn(y, A, x, B);
}
else if (TA == Transposed && TB == Transposed)
{
// dot y-column of A by x-row of B.
c += alpha * dotRowColumn(x, B, y, A);
}
else if (TA == Transposed && TB == NoTransposed)
{
// dot y-column of A by x-column of B.
c += alpha * dotColumnColumn(y, A, x, B);
}
else if (TA == NoTransposed && TB == Transposed)
{
// dot y-row of A by x-row of B.
c += alpha * dotRowRow(y, A, x, B);
}
if (c != 0.0f)
{
C.setCoefficient(x, y, c);
}
}
}
}
// C = At * A
void nv::sqm(const SparseMatrix & A, SparseMatrix & C)
{
// This is quite expensive...
mult(Transposed, A, NoTransposed, A, C);
}

View File

@ -1,198 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#ifndef NV_MATH_SPARSE_H
#define NV_MATH_SPARSE_H
#include <nvcore/Containers.h>
#include <nvmath/nvmath.h>
// Full and sparse vector and matrix classes. BLAS subset.
namespace nv
{
class FullVector;
class FullMatrix;
class SparseMatrix;
/// Fixed size vector class.
class FullVector
{
public:
FullVector(uint dim);
FullVector(const FullVector & v);
const FullVector & operator=(const FullVector & v);
uint dimension() const { return m_array.count(); }
const float & operator[]( uint index ) const { return m_array[index]; }
float & operator[] ( uint index ) { return m_array[index]; }
void fill(float f);
void operator+= (const FullVector & v);
void operator-= (const FullVector & v);
void operator*= (const FullVector & v);
void operator+= (float f);
void operator-= (float f);
void operator*= (float f);
private:
Array<float> m_array;
};
// Pseudo-BLAS interface.
NVMATH_API void saxpy(float a, const FullVector & x, FullVector & y); // y = a * x + y
NVMATH_API void copy(const FullVector & x, FullVector & y);
NVMATH_API void scal(float a, FullVector & x);
NVMATH_API float dot(const FullVector & x, const FullVector & y);
enum Transpose
{
NoTransposed = 0,
Transposed = 1
};
/// Full matrix class.
class FullMatrix
{
public:
FullMatrix(uint d);
FullMatrix(uint w, uint h);
FullMatrix(const FullMatrix & m);
const FullMatrix & operator=(const FullMatrix & m);
uint width() const { return m_width; }
uint height() const { return m_height; }
bool isSquare() const { return m_width == m_height; }
float getCoefficient(uint x, uint y) const;
void setCoefficient(uint x, uint y, float f);
void addCoefficient(uint x, uint y, float f);
void mulCoefficient(uint x, uint y, float f);
float dotRow(uint y, const FullVector & v) const;
void madRow(uint y, float alpha, FullVector & v) const;
protected:
bool isValid() const {
return m_array.size() == (m_width * m_height);
}
private:
const uint m_width;
const uint m_height;
Array<float> m_array;
};
NVMATH_API void mult(const FullMatrix & M, const FullVector & x, FullVector & y);
NVMATH_API void mult(Transpose TM, const FullMatrix & M, const FullVector & x, FullVector & y);
// y = alpha*A*x + beta*y
NVMATH_API void sgemv(float alpha, const FullMatrix & A, const FullVector & x, float beta, FullVector & y);
NVMATH_API void sgemv(float alpha, Transpose TA, const FullMatrix & A, const FullVector & x, float beta, FullVector & y);
NVMATH_API void mult(const FullMatrix & A, const FullMatrix & B, FullMatrix & C);
NVMATH_API void mult(Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, FullMatrix & C);
// C = alpha*A*B + beta*C
NVMATH_API void sgemm(float alpha, const FullMatrix & A, const FullMatrix & B, float beta, FullMatrix & C);
NVMATH_API void sgemm(float alpha, Transpose TA, const FullMatrix & A, Transpose TB, const FullMatrix & B, float beta, FullMatrix & C);
/**
* Sparse matrix class. The matrix is assumed to be sparse and to have
* very few non-zero elements, for this reason it's stored in indexed
* format. To multiply column vectors efficiently, the matrix stores
* the elements in indexed-column order, there is a list of indexed
* elements for each row of the matrix. As with the FullVector the
* dimension of the matrix is constant.
**/
class SparseMatrix
{
friend class FullMatrix;
public:
// An element of the sparse array.
struct Coefficient {
uint x; // column
float v; // value
};
public:
SparseMatrix(uint d);
SparseMatrix(uint w, uint h);
SparseMatrix(const SparseMatrix & m);
const SparseMatrix & operator=(const SparseMatrix & m);
uint width() const { return m_width; }
uint height() const { return m_array.count(); }
bool isSquare() const { return width() == height(); }
float getCoefficient(uint x, uint y) const; // x is column, y is row
void setCoefficient(uint x, uint y, float f);
void addCoefficient(uint x, uint y, float f);
void mulCoefficient(uint x, uint y, float f);
float sumRow(uint y) const;
float dotRow(uint y, const FullVector & v) const;
void madRow(uint y, float alpha, FullVector & v) const;
void clearRow(uint y);
void scaleRow(uint y, float f);
void normalizeRow(uint y);
void clearColumn(uint x);
void scaleColumn(uint x, float f);
const Array<Coefficient> & getRow(uint y) const;
private:
/// Number of columns.
const uint m_width;
/// Array of matrix elements.
Array< Array<Coefficient> > m_array;
};
NVMATH_API void mult(const SparseMatrix & M, const FullVector & x, FullVector & y);
NVMATH_API void mult(Transpose TM, const SparseMatrix & M, const FullVector & x, FullVector & y);
// y = alpha*A*x + beta*y
NVMATH_API void sgemv(float alpha, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y);
NVMATH_API void sgemv(float alpha, Transpose TA, const SparseMatrix & A, const FullVector & x, float beta, FullVector & y);
NVMATH_API void mult(const SparseMatrix & A, const SparseMatrix & B, SparseMatrix & C);
NVMATH_API void mult(Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, SparseMatrix & C);
// C = alpha*A*B + beta*C
NVMATH_API void sgemm(float alpha, const SparseMatrix & A, const SparseMatrix & B, float beta, SparseMatrix & C);
NVMATH_API void sgemm(float alpha, Transpose TA, const SparseMatrix & A, Transpose TB, const SparseMatrix & B, float beta, SparseMatrix & C);
// C = At * A
NVMATH_API void sqm(const SparseMatrix & A, SparseMatrix & C);
} // nv namespace
#endif // NV_MATH_SPARSE_H

View File

@ -3,7 +3,6 @@
#ifndef NV_MATH_SPHERICALHARMONIC_H
#define NV_MATH_SPHERICALHARMONIC_H
#include <string.h> // memcpy
#include <nvmath/Vector.h>
namespace nv

View File

@ -96,7 +96,7 @@ static bool planeBoxOverlap(Vector3::Arg normal, Vector3::Arg vert, Vector3::Arg
if(min>rad || max<-rad) return false;
bool nv::triBoxOverlap(Vector3::Arg boxcenter, Vector3::Arg boxhalfsize, const Triangle & tri)
bool triBoxOverlap(Vector3::Arg boxcenter, Vector3::Arg boxhalfsize, const Triangle & tri)
{
// use separating axis theorem to test overlap between triangle and box
// need to test for overlap in these directions:
@ -170,7 +170,7 @@ bool nv::triBoxOverlap(Vector3::Arg boxcenter, Vector3::Arg boxhalfsize, const T
}
bool nv::triBoxOverlapNoBounds(Vector3::Arg boxcenter, Vector3::Arg boxhalfsize, const Triangle & tri)
bool triBoxOverlapNoBounds(Vector3::Arg boxcenter, Vector3::Arg boxhalfsize, const Triangle & tri)
{
// use separating axis theorem to test overlap between triangle and box
// need to test for overlap in these directions:

View File

@ -1,82 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#include <nvcore/Stream.h>
#include <nvmath/Vector.h>
#include <nvmath/Matrix.h>
#include <nvmath/Quaternion.h>
#include <nvmath/Basis.h>
#include <nvmath/Box.h>
#include <nvmath/TypeSerialization.h>
using namespace nv;
Stream & nv::operator<< (Stream & s, Vector2 & v)
{
float x = v.x();
float y = v.y();
s << x << y;
if (s.isLoading())
{
v.set(x, y);
}
return s;
}
Stream & nv::operator<< (Stream & s, Vector3 & v)
{
float x = v.x();
float y = v.y();
float z = v.z();
s << x << y << z;
if (s.isLoading())
{
v.set(x, y, z);
}
return s;
}
Stream & nv::operator<< (Stream & s, Vector4 & v)
{
float x = v.x();
float y = v.y();
float z = v.z();
float w = v.w();
s << x << y << z << w;
if (s.isLoading())
{
v.set(x, y, z, w);
}
return s;
}
Stream & nv::operator<< (Stream & s, Matrix & m)
{
return s;
}
Stream & nv::operator<< (Stream & s, Quaternion & q)
{
return s << q.asVector();
}
Stream & nv::operator<< (Stream & s, Basis & basis)
{
return s << basis.tangent << basis.bitangent << basis.normal;
}
Stream & nv::operator<< (Stream & s, Box & box)
{
return s << box.m_mins << box.m_maxs;
}

View File

@ -1,32 +0,0 @@
// This code is in the public domain -- castanyo@yahoo.es
#ifndef NV_MATH_TYPESERIALIZATION_H
#define NV_MATH_TYPESERIALIZATION_H
#include <nvmath/nvmath.h>
namespace nv
{
class Stream;
class Vector2;
class Vector3;
class Vector4;
class Matrix;
class Quaternion;
struct Basis;
class Box;
NVMATH_API Stream & operator<< (Stream & s, Vector2 & obj);
NVMATH_API Stream & operator<< (Stream & s, Vector3 & obj);
NVMATH_API Stream & operator<< (Stream & s, Vector4 & obj);
NVMATH_API Stream & operator<< (Stream & s, Matrix & obj);
NVMATH_API Stream & operator<< (Stream & s, Quaternion & obj);
NVMATH_API Stream & operator<< (Stream & s, Basis & obj);
NVMATH_API Stream & operator<< (Stream & s, Box & obj);
} // nv namespace
#endif // NV_MATH_TYPESERIALIZATION_H

View File

@ -4,7 +4,7 @@
#define NV_MATH_VECTOR_H
#include <nvmath/nvmath.h>
#include <nvcore/Algorithms.h> // min, max
#include <nvcore/Containers.h> // min, max
namespace nv
{
@ -71,7 +71,6 @@ public:
const Vector2 & xy() const;
scalar component(uint idx) const;
void setComponent(uint idx, scalar f);
const scalar * ptr() const;
@ -240,21 +239,13 @@ inline const Vector2 & Vector3::xy() const
inline scalar Vector3::component(uint idx) const
{
nvDebugCheck(idx < 3);
if (idx == 0) return m_x;
if (idx == 1) return m_y;
if (idx == 2) return m_z;
if (idx == 0) return x();
if (idx == 1) return y();
if (idx == 2) return z();
nvAssume(false);
return 0.0f;
}
inline void Vector3::setComponent(uint idx, float f)
{
nvDebugCheck(idx < 3);
if (idx == 0) m_x = f;
else if (idx == 1) m_y = f;
else if (idx == 2) m_z = f;
}
inline const scalar * Vector3::ptr() const
{
return &m_x;
@ -486,35 +477,6 @@ inline scalar length(Vector2::Arg v)
return sqrtf(length_squared(v));
}
inline scalar inverse_length(Vector2::Arg v)
{
return 1.0f / sqrtf(length_squared(v));
}
inline bool isNormalized(Vector2::Arg v, float epsilon = NV_NORMAL_EPSILON)
{
return equal(length(v), 1, epsilon);
}
inline Vector2 normalize(Vector2::Arg v, float epsilon = NV_EPSILON)
{
float l = length(v);
nvDebugCheck(!isZero(l, epsilon));
Vector2 n = scale(v, 1.0f / l);
nvDebugCheck(isNormalized(n));
return n;
}
inline Vector2 normalizeSafe(Vector2::Arg v, Vector2::Arg fallback, float epsilon = NV_EPSILON)
{
float l = length(v);
if (isZero(l, epsilon)) {
return fallback;
}
return scale(v, 1.0f / l);
}
inline bool equal(Vector2::Arg v1, Vector2::Arg v2, float epsilon = NV_EPSILON)
{
return equal(v1.x(), v2.x(), epsilon) && equal(v1.y(), v2.y(), epsilon);
@ -633,11 +595,6 @@ inline scalar length(Vector3::Arg v)
return sqrtf(length_squared(v));
}
inline scalar inverse_length(Vector3::Arg v)
{
return 1.0f / sqrtf(length_squared(v));
}
inline bool isNormalized(Vector3::Arg v, float epsilon = NV_NORMAL_EPSILON)
{
return equal(length(v), 1, epsilon);
@ -759,11 +716,6 @@ inline scalar length(Vector4::Arg v)
return sqrtf(length_squared(v));
}
inline scalar inverse_length(Vector4::Arg v)
{
return 1.0f / sqrtf(length_squared(v));
}
inline bool isNormalized(Vector4::Arg v, float epsilon = NV_NORMAL_EPSILON)
{
return equal(length(v), 1, epsilon);

View File

@ -48,19 +48,37 @@
#define IS_NEGATIVE_FLOAT(x) (IR(x)&SIGN_BITMASK)
*/
inline float sqrt_assert(const float f)
inline double sqrt_assert(const double f)
{
nvDebugCheck(f >= 0.0f);
return sqrt(f);
}
inline float sqrtf_assert(const float f)
{
nvDebugCheck(f >= 0.0f);
return sqrtf(f);
}
inline float acos_assert(const float f)
inline double acos_assert(const double f)
{
nvDebugCheck(f >= -1.0f && f <= 1.0f);
return acos(f);
}
inline float acosf_assert(const float f)
{
nvDebugCheck(f >= -1.0f && f <= 1.0f);
return acosf(f);
}
inline float asin_assert(const float f)
inline double asin_assert(const double f)
{
nvDebugCheck(f >= -1.0f && f <= 1.0f);
return asin(f);
}
inline float asinf_assert(const float f)
{
nvDebugCheck(f >= -1.0f && f <= 1.0f);
return asinf(f);
@ -68,11 +86,11 @@ inline float asin_assert(const float f)
// Replace default functions with asserting ones.
#define sqrt sqrt_assert
#define sqrtf sqrt_assert
#define sqrtf sqrtf_assert
#define acos acos_assert
#define acosf acos_assert
#define acosf acosf_assert
#define asin asin_assert
#define asinf asin_assert
#define asinf asinf_assert
#if NV_OS_WIN32
#include <float.h>

View File

@ -13,10 +13,10 @@ SET(NVTT_SRCS
CompressDXT.cpp
CompressRGB.h
CompressRGB.cpp
FastCompressDXT.h
FastCompressDXT.cpp
QuickCompressDXT.h
QuickCompressDXT.cpp
OptimalCompressDXT.h
OptimalCompressDXT.cpp
SingleColorLookup.h
CompressionOptions.h
CompressionOptions.cpp
@ -43,8 +43,9 @@ INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})
ADD_DEFINITIONS(-DNVTT_EXPORTS)
IF(NVTT_SHARED)
ADD_LIBRARY(nvtt SHARED ${DXT_SRCS})
IF(NVTT_SHARED)
ADD_DEFINITIONS(-DNVTT_SHARED=1)
ADD_LIBRARY(nvtt SHARED ${NVTT_SRCS})
ELSE(NVTT_SHARED)
ADD_LIBRARY(nvtt ${NVTT_SRCS})
ENDIF(NVTT_SHARED)
@ -79,15 +80,12 @@ TARGET_LINK_LIBRARIES(nvassemble nvcore nvmath nvimage)
ADD_EXECUTABLE(filtertest tests/filtertest.cpp tools/cmdline.h)
TARGET_LINK_LIBRARIES(filtertest nvcore nvmath nvimage)
ADD_EXECUTABLE(stress tests/stress.cpp tools/cmdline.h)
TARGET_LINK_LIBRARIES(stress nvcore nvmath nvimage nvtt)
ADD_EXECUTABLE(nvzoom tools/resize.cpp tools/cmdline.h)
TARGET_LINK_LIBRARIES(nvzoom nvcore nvmath nvimage)
INSTALL(TARGETS nvcompress nvdecompress nvddsinfo nvimgdiff nvassemble nvzoom DESTINATION bin)
# UI tools
# UI tools
IF(QT4_FOUND AND NOT MSVC)
SET(QT_USE_QTOPENGL TRUE)
INCLUDE_DIRECTORIES(${QT_INCLUDE_DIR} ${CMAKE_CURRENT_BINARY_DIR})
@ -109,7 +107,7 @@ IF(QT4_FOUND AND NOT MSVC)
ADD_EXECUTABLE(nvcompressui MACOSX_BUNDLE ${SRCS} ${UICS} ${MOCS})
TARGET_LINK_LIBRARIES(nvcompressui ${LIBS})
ENDIF(QT4_FOUND AND NOT MSVC)

View File

@ -29,8 +29,8 @@
#include "nvtt.h"
#include "CompressDXT.h"
#include "FastCompressDXT.h"
#include "QuickCompressDXT.h"
#include "OptimalCompressDXT.h"
#include "CompressionOptions.h"
#include "OutputOptions.h"
@ -57,26 +57,33 @@ using namespace nv;
using namespace nvtt;
void nv::fastCompressDXT1(const Image * image, const OutputOptions::Private & outputOptions)
nv::FastCompressor::FastCompressor() : m_image(NULL), m_alphaMode(AlphaMode_None)
{
const uint w = image->width();
const uint h = image->height();
}
nv::FastCompressor::~FastCompressor()
{
}
void nv::FastCompressor::setImage(const Image * image, nvtt::AlphaMode alphaMode)
{
m_image = image;
m_alphaMode = alphaMode;
}
void nv::FastCompressor::compressDXT1(const OutputOptions::Private & outputOptions)
{
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT1 block;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(image, x, y);
rgba.init(m_image, x, y);
if (rgba.isSingleColor())
{
QuickCompress::compressDXT1(rgba.color(0), &block);
}
else
{
QuickCompress::compressDXT1(rgba, &block);
}
QuickCompress::compressDXT1(rgba, &block);
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
@ -86,27 +93,19 @@ void nv::fastCompressDXT1(const Image * image, const OutputOptions::Private & ou
}
void nv::fastCompressDXT1a(const Image * image, const OutputOptions::Private & outputOptions)
void nv::FastCompressor::compressDXT1a(const OutputOptions::Private & outputOptions)
{
const uint w = image->width();
const uint h = image->height();
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT1 block;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(image, x, y);
rgba.init(m_image, x, y);
// @@ We could do better here: check for single RGB, but varying alpha.
if (rgba.isSingleColor())
{
QuickCompress::compressDXT1a(rgba.color(0), &block);
}
else
{
QuickCompress::compressDXT1a(rgba, &block);
}
QuickCompress::compressDXT1a(rgba, &block);
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
@ -116,17 +115,18 @@ void nv::fastCompressDXT1a(const Image * image, const OutputOptions::Private & o
}
void nv::fastCompressDXT3(const Image * image, const nvtt::OutputOptions::Private & outputOptions)
void nv::FastCompressor::compressDXT3(const nvtt::OutputOptions::Private & outputOptions)
{
const uint w = image->width();
const uint h = image->height();
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT3 block;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(image, x, y);
rgba.init(m_image, x, y);
QuickCompress::compressDXT3(rgba, &block);
if (outputOptions.outputHandler != NULL) {
@ -137,19 +137,19 @@ void nv::fastCompressDXT3(const Image * image, const nvtt::OutputOptions::Privat
}
void nv::fastCompressDXT5(const Image * image, const nvtt::OutputOptions::Private & outputOptions)
void nv::FastCompressor::compressDXT5(const nvtt::OutputOptions::Private & outputOptions)
{
const uint w = image->width();
const uint h = image->height();
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT5 block;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(image, x, y);
//QuickCompress::compressDXT5(rgba, &block); // @@ Use fast version!!
nv::compressBlock_BoundsRange(rgba, &block);
rgba.init(m_image, x, y);
QuickCompress::compressDXT5(rgba, &block, 0);
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
@ -159,23 +159,21 @@ void nv::fastCompressDXT5(const Image * image, const nvtt::OutputOptions::Privat
}
void nv::fastCompressDXT5n(const Image * image, const nvtt::OutputOptions::Private & outputOptions)
void nv::FastCompressor::compressDXT5n(const nvtt::OutputOptions::Private & outputOptions)
{
const uint w = image->width();
const uint h = image->height();
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT5 block;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(image, x, y);
rgba.init(m_image, x, y);
// copy X coordinate to alpha channel and Y coordinate to green channel.
rgba.swizzleDXT5n();
//QuickCompress::compressDXT5(rgba, &block); // @@ Use fast version!!
nv::compressBlock_BoundsRange(rgba, &block);
QuickCompress::compressDXT5(rgba, &block, 0);
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
@ -185,42 +183,28 @@ void nv::fastCompressDXT5n(const Image * image, const nvtt::OutputOptions::Priva
}
void nv::fastCompressBC4(const Image * image, const nvtt::OutputOptions::Private & outputOptions)
nv::SlowCompressor::SlowCompressor() : m_image(NULL), m_alphaMode(AlphaMode_None)
{
// @@ TODO
// compress red channel (X)
}
void nv::fastCompressBC5(const Image * image, const nvtt::OutputOptions::Private & outputOptions)
nv::SlowCompressor::~SlowCompressor()
{
// @@ TODO
// compress red, green channels (X,Y)
}
void nv::doPrecomputation()
void nv::SlowCompressor::setImage(const Image * image, nvtt::AlphaMode alphaMode)
{
static bool done = false; // @@ Stop using statics for reentrancy. Although the worst that could happen is that this stuff is precomputed multiple times.
if (!done)
{
done = true;
squish::FastClusterFit::DoPrecomputation();
}
m_image = image;
m_alphaMode = alphaMode;
}
void nv::compressDXT1(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
void nv::SlowCompressor::compressDXT1(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
{
const uint w = image->width();
const uint h = image->height();
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT1 block;
doPrecomputation();
//squish::WeightedClusterFit fit;
//squish::ClusterFit fit;
squish::FastClusterFit fit;
@ -229,11 +213,11 @@ void nv::compressDXT1(const Image * image, const OutputOptions::Private & output
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(image, x, y);
rgba.init(m_image, x, y);
if (rgba.isSingleColor())
{
QuickCompress::compressDXT1(rgba.color(0), &block);
OptimalCompress::compressDXT1(rgba.color(0), &block);
}
else
{
@ -250,10 +234,10 @@ void nv::compressDXT1(const Image * image, const OutputOptions::Private & output
}
void nv::compressDXT1a(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
void nv::SlowCompressor::compressDXT1a(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
{
const uint w = image->width();
const uint h = image->height();
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT1 block;
@ -264,11 +248,20 @@ void nv::compressDXT1a(const Image * image, const OutputOptions::Private & outpu
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(image, x, y);
rgba.init(m_image, x, y);
if (rgba.isSingleColor())
bool anyAlpha = false;
bool allAlpha = true;
for (uint i = 0; i < 16; i++)
{
QuickCompress::compressDXT1a(rgba.color(0), &block);
if (rgba.color(i).a < 128) anyAlpha = true;
else allAlpha = false;
}
if ((!anyAlpha && rgba.isSingleColor() || allAlpha))
{
OptimalCompress::compressDXT1a(rgba.color(0), &block);
}
else
{
@ -285,29 +278,37 @@ void nv::compressDXT1a(const Image * image, const OutputOptions::Private & outpu
}
void nv::compressDXT3(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
void nv::SlowCompressor::compressDXT3(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
{
const uint w = image->width();
const uint h = image->height();
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT3 block;
squish::WeightedClusterFit fit;
//squish::FastClusterFit fit;
fit.SetMetric(compressionOptions.colorWeight.x(), compressionOptions.colorWeight.y(), compressionOptions.colorWeight.z());
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(image, x, y);
rgba.init(m_image, x, y);
// Compress explicit alpha.
QuickCompress::compressDXT3A(rgba, &block.alpha);
OptimalCompress::compressDXT3A(rgba, &block.alpha);
// Compress color.
squish::ColourSet colours((uint8 *)rgba.colors(), squish::kWeightColourByAlpha);
fit.SetColourSet(&colours, 0);
fit.Compress(&block.color);
if (rgba.isSingleColor())
{
OptimalCompress::compressDXT1(rgba.color(0), &block.color);
}
else
{
squish::ColourSet colours((uint8 *)rgba.colors(), squish::kWeightColourByAlpha);
fit.SetColourSet(&colours, 0);
fit.Compress(&block.color);
}
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
@ -316,10 +317,10 @@ void nv::compressDXT3(const Image * image, const OutputOptions::Private & output
}
}
void nv::compressDXT5(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
void nv::SlowCompressor::compressDXT5(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
{
const uint w = image->width();
const uint h = image->height();
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT5 block;
@ -330,22 +331,29 @@ void nv::compressDXT5(const Image * image, const OutputOptions::Private & output
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(image, x, y);
rgba.init(m_image, x, y);
// Compress alpha.
if (compressionOptions.quality == Quality_Highest)
{
compressBlock_BruteForce(rgba, &block.alpha);
OptimalCompress::compressDXT5A(rgba, &block.alpha);
}
else
{
QuickCompress::compressDXT5A(rgba, &block.alpha);
}
// Compress color.
squish::ColourSet colours((uint8 *)rgba.colors(), squish::kWeightColourByAlpha);
fit.SetColourSet(&colours, 0);
fit.Compress(&block.color);
if (rgba.isSingleColor())
{
OptimalCompress::compressDXT1(rgba.color(0), &block.color);
}
else
{
squish::ColourSet colours((uint8 *)rgba.colors(), squish::kWeightColourByAlpha);
fit.SetColourSet(&colours, 0);
fit.Compress(&block.color);
}
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
@ -355,28 +363,25 @@ void nv::compressDXT5(const Image * image, const OutputOptions::Private & output
}
void nv::compressDXT5n(const Image * image, const OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
void nv::SlowCompressor::compressDXT5n(const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions)
{
const uint w = image->width();
const uint h = image->height();
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
BlockDXT5 block;
doPrecomputation();
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(image, x, y);
rgba.init(m_image, x, y);
// copy X coordinate to green channel and Y coordinate to alpha channel.
rgba.swizzleDXT5n();
// Compress X.
if (compressionOptions.quality == Quality_Highest)
{
compressBlock_BruteForce(rgba, &block.alpha);
OptimalCompress::compressDXT5A(rgba, &block.alpha);
}
else
{
@ -384,7 +389,7 @@ void nv::compressDXT5n(const Image * image, const OutputOptions::Private & outpu
}
// Compress Y.
QuickCompress::compressDXT1G(rgba, &block.color);
OptimalCompress::compressDXT1G(rgba, &block.color);
if (outputOptions.outputHandler != NULL) {
outputOptions.outputHandler->writeData(&block, sizeof(block));
@ -394,10 +399,10 @@ void nv::compressDXT5n(const Image * image, const OutputOptions::Private & outpu
}
void nv::compressBC4(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
void nv::SlowCompressor::compressBC4(const CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
{
const uint w = image->width();
const uint h = image->height();
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock rgba;
AlphaBlockDXT5 block;
@ -405,11 +410,11 @@ void nv::compressBC4(const Image * image, const nvtt::OutputOptions::Private & o
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
rgba.init(image, x, y);
rgba.init(m_image, x, y);
if (compressionOptions.quality == Quality_Highest)
{
compressBlock_BruteForce(rgba, &block);
OptimalCompress::compressDXT5A(rgba, &block);
}
else
{
@ -424,10 +429,10 @@ void nv::compressBC4(const Image * image, const nvtt::OutputOptions::Private & o
}
void nv::compressBC5(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const CompressionOptions::Private & compressionOptions)
void nv::SlowCompressor::compressBC5(const CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions)
{
const uint w = image->width();
const uint h = image->height();
const uint w = m_image->width();
const uint h = m_image->height();
ColorBlock xcolor;
ColorBlock ycolor;
@ -437,16 +442,16 @@ void nv::compressBC5(const Image * image, const nvtt::OutputOptions::Private & o
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
xcolor.init(image, x, y);
xcolor.init(m_image, x, y);
xcolor.splatX();
ycolor.init(image, x, y);
ycolor.init(m_image, x, y);
ycolor.splatY();
if (compressionOptions.quality == Quality_Highest)
{
compressBlock_BruteForce(xcolor, &block.x);
compressBlock_BruteForce(ycolor, &block.y);
OptimalCompress::compressDXT5A(xcolor, &block.x);
OptimalCompress::compressDXT5A(ycolor, &block.y);
}
else
{

View File

@ -32,26 +32,46 @@ namespace nv
class Image;
class FloatImage;
void doPrecomputation();
// Fast compressors.
void fastCompressDXT1(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
void fastCompressDXT1a(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
void fastCompressDXT3(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
void fastCompressDXT5(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
void fastCompressDXT5n(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
void fastCompressBC4(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
void fastCompressBC5(const Image * image, const nvtt::OutputOptions::Private & outputOptions);
class FastCompressor
{
public:
FastCompressor();
~FastCompressor();
void setImage(const Image * image, nvtt::AlphaMode alphaMode);
void compressDXT1(const nvtt::OutputOptions::Private & outputOptions);
void compressDXT1a(const nvtt::OutputOptions::Private & outputOptions);
void compressDXT3(const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5(const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5n(const nvtt::OutputOptions::Private & outputOptions);
private:
const Image * m_image;
nvtt::AlphaMode m_alphaMode;
};
class SlowCompressor
{
public:
SlowCompressor();
~SlowCompressor();
void setImage(const Image * image, nvtt::AlphaMode alphaMode);
void compressDXT1(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT1a(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT3(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5n(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressBC4(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressBC5(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
private:
const Image * m_image;
nvtt::AlphaMode m_alphaMode;
};
// Normal compressors.
void compressDXT1(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void compressDXT1a(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void compressDXT3(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void compressDXT5(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void compressDXT5n(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void compressBC4(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
void compressBC5(const Image * image, const nvtt::OutputOptions::Private & outputOptions, const nvtt::CompressionOptions::Private & compressionOptions);
// External compressors.
#if defined(HAVE_S3QUANT)
void s3CompressDXT1(const Image * image, const nvtt::OutputOptions::Private & outputOptions);

View File

@ -123,7 +123,7 @@ void nv::compressRGB(const Image * image, const OutputOptions::Private & outputO
}
// Zero padding.
for (uint x = w; x < pitch; x++)
for (uint x = w * byteCount; x < pitch; x++)
{
*(dst + x) = 0;
}

View File

@ -34,6 +34,7 @@
#include <nvimage/Filter.h>
#include <nvimage/Quantize.h>
#include <nvimage/NormalMap.h>
#include <nvimage/PixelFormat.h>
#include "Compressor.h"
#include "InputOptions.h"
@ -41,7 +42,6 @@
#include "OutputOptions.h"
#include "CompressDXT.h"
#include "FastCompressDXT.h"
#include "CompressRGB.h"
#include "cuda/CudaUtils.h"
#include "cuda/CudaCompressDXT.h"
@ -56,7 +56,7 @@ namespace
static int blockSize(Format format)
{
if (format == Format_DXT1 || format == Format_DXT1a || format == Format_DXT1n) {
if (format == Format_DXT1 || format == Format_DXT1a) {
return 8;
}
else if (format == Format_DXT3) {
@ -71,9 +71,6 @@ namespace
else if (format == Format_BC5) {
return 16;
}
else if (format == Format_CTX1) {
return 8;
}
return 0;
}
@ -203,7 +200,7 @@ namespace nvtt
AutoPtr<FloatImage> m_floatImage;
};
}
} // nvtt namespace
Compressor::Compressor() : m(*new Compressor::Private())
@ -214,6 +211,10 @@ Compressor::Compressor() : m(*new Compressor::Private())
if (m.cudaEnabled)
{
// Select fastest CUDA device.
int device = cuda::getFastestDevice();
cuda::setDevice(device);
m.cuda = new CudaCompressor();
if (!m.cuda->isValid())
@ -227,6 +228,7 @@ Compressor::Compressor() : m(*new Compressor::Private())
Compressor::~Compressor()
{
delete &m;
cuda::exit();
}
@ -240,6 +242,10 @@ void Compressor::enableCudaAcceleration(bool enable)
if (m.cudaEnabled && m.cuda == NULL)
{
// Select fastest CUDA device.
int device = cuda::getFastestDevice();
cuda::setDevice(device);
m.cuda = new CudaCompressor();
if (!m.cuda->isValid())
@ -348,7 +354,7 @@ bool Compressor::Private::outputHeader(const InputOptions::Private & inputOption
{
header.setLinearSize(computeImageSize(inputOptions.targetWidth, inputOptions.targetHeight, inputOptions.targetDepth, compressionOptions.bitcount, compressionOptions.format));
if (compressionOptions.format == Format_DXT1 || compressionOptions.format == Format_DXT1a || compressionOptions.format == Format_DXT1n) {
if (compressionOptions.format == Format_DXT1 || compressionOptions.format == Format_DXT1a) {
header.setFourCC('D', 'X', 'T', '1');
if (inputOptions.isNormalMap) header.setNormalFlag(true);
}
@ -369,10 +375,6 @@ bool Compressor::Private::outputHeader(const InputOptions::Private & inputOption
header.setFourCC('A', 'T', 'I', '2');
if (inputOptions.isNormalMap) header.setNormalFlag(true);
}
else if (compressionOptions.format == Format_CTX1) {
header.setFourCC('C', 'T', 'X', '1');
if (inputOptions.isNormalMap) header.setNormalFlag(true);
}
}
// Swap bytes if necessary.
@ -478,11 +480,6 @@ bool Compressor::Private::initMipmap(Mipmap & mipmap, const InputOptions::Privat
// Convert linear float image to fixed image ready for compression.
mipmap.toFixedImage(inputOptions);
if (inputOptions.premultiplyAlpha)
{
premultiplyAlphaMipmap(mipmap, inputOptions);
}
return true;
}
@ -583,33 +580,10 @@ void Compressor::Private::scaleMipmap(Mipmap & mipmap, const InputOptions::Priva
// Resize image.
BoxFilter boxFilter;
mipmap.setImage(mipmap.asFloatImage()->downSample(boxFilter, w, h, (FloatImage::WrapMode)inputOptions.wrapMode));
mipmap.setImage(mipmap.asFloatImage()->resize(boxFilter, w, h, (FloatImage::WrapMode)inputOptions.wrapMode));
}
void Compressor::Private::premultiplyAlphaMipmap(Mipmap & mipmap, const InputOptions::Private & inputOptions) const
{
nvDebugCheck(mipmap.asFixedImage() != NULL);
Image * image = mipmap.asMutableFixedImage();
const uint w = image->width();
const uint h = image->height();
const uint count = w * h;
for (uint i = 0; i < count; ++i)
{
Color32 c = image->pixel(i);
c.r = (uint(c.r) * uint(c.a)) >> 8;
c.g = (uint(c.g) * uint(c.a)) >> 8;
c.b = (uint(c.b) * uint(c.a)) >> 8;
image->pixel(i) = c;
}
}
// Process an input image: Convert to normal map, normalize, or convert to linear space.
void Compressor::Private::processInputImage(Mipmap & mipmap, const InputOptions::Private & inputOptions) const
{
@ -653,13 +627,6 @@ void Compressor::Private::quantizeMipmap(Mipmap & mipmap, const CompressionOptio
{
nvDebugCheck(mipmap.asFixedImage() != NULL);
if (compressionOptions.enableColorDithering)
{
if (compressionOptions.format >= Format_DXT1 && compressionOptions.format <= Format_DXT5)
{
Quantize::FloydSteinberg_RGB16(mipmap.asMutableFixedImage());
}
}
if (compressionOptions.binaryAlpha)
{
if (compressionOptions.enableAlphaDithering)
@ -671,19 +638,50 @@ void Compressor::Private::quantizeMipmap(Mipmap & mipmap, const CompressionOptio
Quantize::BinaryAlpha(mipmap.asMutableFixedImage(), compressionOptions.alphaThreshold);
}
}
else
if (compressionOptions.enableColorDithering || compressionOptions.enableAlphaDithering)
{
uint rsize = 8;
uint gsize = 8;
uint bsize = 8;
uint asize = 8;
if (compressionOptions.enableColorDithering)
{
if (compressionOptions.format >= Format_DXT1 && compressionOptions.format <= Format_DXT5)
{
rsize = 5;
gsize = 6;
bsize = 5;
}
else if (compressionOptions.format == Format_RGB)
{
uint rshift, gshift, bshift;
PixelFormat::maskShiftAndSize(compressionOptions.rmask, &rshift, &rsize);
PixelFormat::maskShiftAndSize(compressionOptions.gmask, &gshift, &gsize);
PixelFormat::maskShiftAndSize(compressionOptions.bmask, &bshift, &bsize);
}
}
if (compressionOptions.enableAlphaDithering)
{
if (compressionOptions.format == Format_DXT3)
{
Quantize::Alpha4(mipmap.asMutableFixedImage());
asize = 4;
}
else if (compressionOptions.format == Format_DXT1a)
else if (compressionOptions.format == Format_RGB)
{
Quantize::BinaryAlpha(mipmap.asMutableFixedImage(), compressionOptions.alphaThreshold);
uint ashift;
PixelFormat::maskShiftAndSize(compressionOptions.amask, &ashift, &asize);
}
}
if (compressionOptions.binaryAlpha)
{
asize = 8; // Already quantized.
}
Quantize::FloydSteinberg(mipmap.asMutableFixedImage(), rsize, gsize, bsize, asize);
}
}
@ -692,9 +690,16 @@ void Compressor::Private::quantizeMipmap(Mipmap & mipmap, const CompressionOptio
bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptions::Private & inputOptions, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const
{
const Image * image = mipmap.asFixedImage();
nvDebugCheck(image != NULL);
FastCompressor fast;
fast.setImage(image, inputOptions.alphaMode);
SlowCompressor slow;
slow.setImage(image, inputOptions.alphaMode);
const bool useCuda = cudaEnabled && image->width() * image->height() >= 512;
if (compressionOptions.format == Format_RGBA || compressionOptions.format == Format_RGB)
{
compressRGB(image, outputOptions, compressionOptions);
@ -718,18 +723,19 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
#endif
if (compressionOptions.quality == Quality_Fastest)
{
fastCompressDXT1(image, outputOptions);
fast.compressDXT1(outputOptions);
}
else
{
if (cudaEnabled)
if (useCuda)
{
nvDebugCheck(cudaSupported);
cuda->compressDXT1(image, compressionOptions, outputOptions);
cuda->setImage(image, inputOptions.alphaMode);
cuda->compressDXT1(compressionOptions, outputOptions);
}
else
{
compressDXT1(image, outputOptions, compressionOptions);
slow.compressDXT1(compressionOptions, outputOptions);
}
}
}
@ -737,49 +743,38 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
{
if (compressionOptions.quality == Quality_Fastest)
{
fastCompressDXT1a(image, outputOptions);
fast.compressDXT1a(outputOptions);
}
else
{
if (cudaEnabled)
if (useCuda)
{
nvDebugCheck(cudaSupported);
/*cuda*/compressDXT1a(image, outputOptions, compressionOptions);
/*cuda*/slow.compressDXT1a(compressionOptions, outputOptions);
}
else
{
compressDXT1a(image, outputOptions, compressionOptions);
slow.compressDXT1a(compressionOptions, outputOptions);
}
}
}
else if (compressionOptions.format == Format_DXT1n)
{
if (cudaEnabled)
{
nvDebugCheck(cudaSupported);
cuda->compressDXT1n(image, compressionOptions, outputOptions);
}
else
{
if (outputOptions.errorHandler) outputOptions.errorHandler->error(Error_UnsupportedFeature);
}
}
else if (compressionOptions.format == Format_DXT3)
{
if (compressionOptions.quality == Quality_Fastest)
{
fastCompressDXT3(image, outputOptions);
fast.compressDXT3(outputOptions);
}
else
{
if (cudaEnabled)
if (useCuda)
{
nvDebugCheck(cudaSupported);
cuda->compressDXT3(image, inputOptions, compressionOptions, outputOptions);
cuda->setImage(image, inputOptions.alphaMode);
cuda->compressDXT3(compressionOptions, outputOptions);
}
else
{
compressDXT3(image, outputOptions, compressionOptions);
slow.compressDXT3(compressionOptions, outputOptions);
}
}
}
@ -787,18 +782,19 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
{
if (compressionOptions.quality == Quality_Fastest)
{
fastCompressDXT5(image, outputOptions);
fast.compressDXT5(outputOptions);
}
else
{
if (cudaEnabled)
if (useCuda)
{
nvDebugCheck(cudaSupported);
cuda->compressDXT5(image, inputOptions, compressionOptions, outputOptions);
cuda->setImage(image, inputOptions.alphaMode);
cuda->compressDXT5(compressionOptions, outputOptions);
}
else
{
compressDXT5(image, outputOptions, compressionOptions);
slow.compressDXT5(compressionOptions, outputOptions);
}
}
}
@ -806,32 +802,20 @@ bool Compressor::Private::compressMipmap(const Mipmap & mipmap, const InputOptio
{
if (compressionOptions.quality == Quality_Fastest)
{
fastCompressDXT5n(image, outputOptions);
fast.compressDXT5n(outputOptions);
}
else
{
compressDXT5n(image, outputOptions, compressionOptions);
slow.compressDXT5n(compressionOptions, outputOptions);
}
}
else if (compressionOptions.format == Format_BC4)
{
compressBC4(image, outputOptions, compressionOptions);
slow.compressBC4(compressionOptions, outputOptions);
}
else if (compressionOptions.format == Format_BC5)
{
compressBC5(image, outputOptions, compressionOptions);
}
else if (compressionOptions.format == Format_CTX1)
{
if (cudaEnabled)
{
nvDebugCheck(cudaSupported);
cuda->compressCTX1(image, compressionOptions, outputOptions);
}
else
{
if (outputOptions.errorHandler) outputOptions.errorHandler->error(Error_UnsupportedFeature);
}
slow.compressBC5(compressionOptions, outputOptions);
}
return true;

View File

@ -58,7 +58,6 @@ namespace nvtt
void downsampleMipmap(Mipmap & mipmap, const InputOptions::Private & inputOptions) const;
void scaleMipmap(Mipmap & mipmap, const InputOptions::Private & inputOptions, uint w, uint h, uint d) const;
void premultiplyAlphaMipmap(Mipmap & mipmap, const InputOptions::Private & inputOptions) const;
void processInputImage(Mipmap & mipmap, const InputOptions::Private & inputOptions) const;
void quantizeMipmap(Mipmap & mipmap, const CompressionOptions::Private & compressionOptions) const;
bool compressMipmap(const Mipmap & mipmap, const InputOptions::Private & inputOptions, const CompressionOptions::Private & compressionOptions, const OutputOptions::Private & outputOptions) const;

View File

@ -1,456 +0,0 @@
// Copyright NVIDIA Corporation 2007 -- Ignacio Castano <icastano@nvidia.com>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#include <nvmath/Color.h>
#include <nvimage/ColorBlock.h>
#include <nvimage/BlockDXT.h>
#include "FastCompressDXT.h"
#if defined(__SSE2__)
#include <emmintrin.h>
#endif
#if defined(__SSE__)
#include <xmmintrin.h>
#endif
#if defined(__MMX__)
#include <mmintrin.h>
#endif
#undef __VEC__
#if defined(__VEC__)
#include <altivec.h>
#undef bool
#endif
// Online Resources:
// - http://www.jasondorie.com/ImageLib.zip
// - http://homepage.hispeed.ch/rscheidegger/dri_experimental/s3tc_index.html
// - http://www.sjbrown.co.uk/?article=dxt
using namespace nv;
#if defined(__SSE2__) && 0
// @@ TODO
typedef __m128i VectorColor;
inline static __m128i loadColor(Color32 c)
{
return ...;
}
inline static __m128i absoluteDifference(__m128i a, __m128i b)
{
return ...;
}
inline uint colorDistance(__m128i a, __m128i b)
{
return 0;
}
#elif defined(__MMX__) && 0
typedef __m64 VectorColor;
inline static __m64 loadColor(Color32 c)
{
return _mm_unpacklo_pi8(_mm_cvtsi32_si64(c), _mm_setzero_si64());
}
inline static __m64 absoluteDifference(__m64 a, __m64 b)
{
// = |a-b| or |b-a|
return _mm_or_si64(_mm_subs_pu16(a, b), _mm_subs_pu16(b, a));
}
inline uint colorDistance(__m64 a, __m64 b)
{
union {
__m64 v;
uint16 part[4];
} s;
s.v = absoluteDifference(a, b);
// @@ This is very slow!
return s.part[0] + s.part[1] + s.part[2] + s.part[3];
}
#define vectorEnd _mm_empty
#elif defined(__VEC__)
typedef vector signed int VectorColor;
inline static vector signed int loadColor(Color32 c)
{
return (vector signed int) (c.r, c.g, c.b, c.a);
}
// Get the absolute distance between the given colors.
inline static uint colorDistance(vector signed int c0, vector signed int c1)
{
int result;
vector signed int v = vec_sums(vec_abs(vec_sub(c0, c1)), (vector signed int)0);
vec_ste(vec_splat(v, 3), 0, &result);
return result;
}
inline void vectorEnd()
{
}
#else
typedef Color32 VectorColor;
inline static Color32 loadColor(Color32 c)
{
return c;
}
inline static Color32 premultiplyAlpha(Color32 c)
{
Color32 pm;
pm.r = (c.r * c.a) >> 8;
pm.g = (c.g * c.a) >> 8;
pm.b = (c.b * c.a) >> 8;
pm.a = c.a;
return pm;
}
inline static uint sqr(uint s)
{
return s*s;
}
// Get the absolute distance between the given colors.
inline static uint colorDistance(Color32 c0, Color32 c1)
{
return sqr(c0.r - c1.r) + sqr(c0.g - c1.g) + sqr(c0.b - c1.b);
//return abs(c0.r - c1.r) + abs(c0.g - c1.g) + abs(c0.b - c1.b);
}
inline void vectorEnd()
{
}
#endif
inline static uint computeIndices(const ColorBlock & rgba, const Color32 palette[4])
{
const VectorColor vcolor0 = loadColor(palette[0]);
const VectorColor vcolor1 = loadColor(palette[1]);
const VectorColor vcolor2 = loadColor(palette[2]);
const VectorColor vcolor3 = loadColor(palette[3]);
uint indices = 0;
for(int i = 0; i < 16; i++) {
const VectorColor vcolor = loadColor(rgba.color(i));
uint d0 = colorDistance(vcolor0, vcolor);
uint d1 = colorDistance(vcolor1, vcolor);
uint d2 = colorDistance(vcolor2, vcolor);
uint d3 = colorDistance(vcolor3, vcolor);
uint b0 = d0 > d3;
uint b1 = d1 > d2;
uint b2 = d0 > d2;
uint b3 = d1 > d3;
uint b4 = d2 > d3;
uint x0 = b1 & b2;
uint x1 = b0 & b3;
uint x2 = b0 & b4;
indices |= (x2 | ((x0 | x1) << 1)) << (2 * i);
}
vectorEnd();
return indices;
}
// Compressor that uses bounding box.
void nv::compressBlock_BoundsRange(const ColorBlock & rgba, BlockDXT1 * block)
{
Color32 c0, c1;
rgba.boundsRange(&c1, &c0);
block->col0 = toColor16(c0);
block->col1 = toColor16(c1);
nvDebugCheck(block->col0.u > block->col1.u);
// Use 4 color mode only.
//if (block->col0.u < block->col1.u) {
// swap(block->col0.u, block->col1.u);
//}
Color32 palette[4];
block->evaluatePalette4(palette);
block->indices = computeIndices(rgba, palette);
}
// Encode DXT3 block.
void nv::compressBlock_BoundsRange(const ColorBlock & rgba, BlockDXT3 * block)
{
compressBlock_BoundsRange(rgba, &block->color);
compressBlock(rgba, &block->alpha);
}
// Encode DXT3 alpha block.
void nv::compressBlock(const ColorBlock & rgba, AlphaBlockDXT3 * block)
{
block->alpha0 = rgba.color(0).a >> 4;
block->alpha1 = rgba.color(1).a >> 4;
block->alpha2 = rgba.color(2).a >> 4;
block->alpha3 = rgba.color(3).a >> 4;
block->alpha4 = rgba.color(4).a >> 4;
block->alpha5 = rgba.color(5).a >> 4;
block->alpha6 = rgba.color(6).a >> 4;
block->alpha7 = rgba.color(7).a >> 4;
block->alpha8 = rgba.color(8).a >> 4;
block->alpha9 = rgba.color(9).a >> 4;
block->alphaA = rgba.color(10).a >> 4;
block->alphaB = rgba.color(11).a >> 4;
block->alphaC = rgba.color(12).a >> 4;
block->alphaD = rgba.color(13).a >> 4;
block->alphaE = rgba.color(14).a >> 4;
block->alphaF = rgba.color(15).a >> 4;
}
static uint computeAlphaIndices(const ColorBlock & rgba, AlphaBlockDXT5 * block)
{
uint8 alphas[8];
block->evaluatePalette(alphas);
uint totalError = 0;
for (uint i = 0; i < 16; i++)
{
uint8 alpha = rgba.color(i).a;
uint besterror = 256*256;
uint best = 8;
for(uint p = 0; p < 8; p++)
{
int d = alphas[p] - alpha;
uint error = d * d;
if (error < besterror)
{
besterror = error;
best = p;
}
}
nvDebugCheck(best < 8);
totalError += besterror;
block->setIndex(i, best);
}
return totalError;
}
static uint computeAlphaError(const ColorBlock & rgba, const AlphaBlockDXT5 * block)
{
uint8 alphas[8];
block->evaluatePalette(alphas);
uint totalError = 0;
for (uint i = 0; i < 16; i++)
{
uint8 alpha = rgba.color(i).a;
uint besterror = 256*256;
uint best;
for(uint p = 0; p < 8; p++)
{
int d = alphas[p] - alpha;
uint error = d * d;
if (error < besterror)
{
besterror = error;
best = p;
}
}
totalError += besterror;
}
return totalError;
}
void nv::compressBlock_BoundsRange(const ColorBlock & rgba, BlockDXT5 * block)
{
Color32 c0, c1;
rgba.boundsRangeAlpha(&c1, &c0);
block->color.col0 = toColor16(c0);
block->color.col1 = toColor16(c1);
nvDebugCheck(block->color.col0.u > block->color.col1.u);
Color32 palette[4];
block->color.evaluatePalette4(palette);
block->color.indices = computeIndices(rgba, palette);
nvDebugCheck(c0.a <= c1.a);
block->alpha.alpha0 = c0.a;
block->alpha.alpha1 = c1.a;
computeAlphaIndices(rgba, &block->alpha);
}
uint nv::compressBlock_BoundsRange(const ColorBlock & rgba, AlphaBlockDXT5 * block)
{
uint8 alpha0 = 0;
uint8 alpha1 = 255;
// Get min/max alpha.
for (uint i = 0; i < 16; i++)
{
uint8 alpha = rgba.color(i).a;
alpha0 = max(alpha0, alpha);
alpha1 = min(alpha1, alpha);
}
alpha0 = alpha0 - (alpha0 - alpha1) / 32;
alpha1 = alpha1 + (alpha0 - alpha1) / 32;
AlphaBlockDXT5 block0;
block0.alpha0 = alpha0;
block0.alpha1 = alpha1;
uint error0 = computeAlphaIndices(rgba, &block0);
AlphaBlockDXT5 block1;
block1.alpha0 = alpha1;
block1.alpha1 = alpha0;
uint error1 = computeAlphaIndices(rgba, &block1);
if (error0 < error1)
{
*block = block0;
return error0;
}
else
{
*block = block1;
return error1;
}
}
uint nv::compressBlock_BruteForce(const ColorBlock & rgba, AlphaBlockDXT5 * block)
{
uint8 mina = 255;
uint8 maxa = 0;
// Get min/max alpha.
for (uint i = 0; i < 16; i++)
{
uint8 alpha = rgba.color(i).a;
mina = min(mina, alpha);
maxa = max(maxa, alpha);
}
block->alpha0 = maxa;
block->alpha1 = mina;
/*int centroidDist = 256;
int centroid;
// Get the closest to the centroid.
for (uint i = 0; i < 16; i++)
{
uint8 alpha = rgba.color(i).a;
int dist = abs(alpha - (maxa + mina) / 2);
if (dist < centroidDist)
{
centroidDist = dist;
centroid = alpha;
}
}*/
if (maxa - mina > 8)
{
int besterror = computeAlphaError(rgba, block);
int besta0 = maxa;
int besta1 = mina;
for (int a0 = mina+9; a0 < maxa; a0++)
{
for (int a1 = mina; a1 < a0-8; a1++)
//for (int a1 = mina; a1 < maxa; a1++)
{
//nvCheck(abs(a1-a0) > 8);
//if (abs(a0 - a1) < 8) continue;
//if ((maxa-a0) + (a1-mina) + min(abs(centroid-a0), abs(centroid-a1)) > besterror)
if ((maxa-a0) + (a1-mina) > besterror)
continue;
block->alpha0 = a0;
block->alpha1 = a1;
int error = computeAlphaError(rgba, block);
if (error < besterror)
{
besterror = error;
besta0 = a0;
besta1 = a1;
}
}
}
block->alpha0 = besta0;
block->alpha1 = besta1;
}
return computeAlphaIndices(rgba, block);
}

View File

@ -1,84 +0,0 @@
// Copyright NVIDIA Corporation 2007 -- Ignacio Castano <icastano@nvidia.com>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#ifndef NV_TT_FASTCOMPRESSDXT_H
#define NV_TT_FASTCOMPRESSDXT_H
#include <nvimage/nvimage.h>
namespace nv
{
struct ColorBlock;
struct BlockDXT1;
struct BlockDXT3;
struct BlockDXT5;
struct AlphaBlockDXT3;
struct AlphaBlockDXT5;
// Color compression:
// Compressor that uses the extremes of the luminance axis.
// void compressBlock_DiameterAxis(const ColorBlock & rgba, BlockDXT1 * block);
// Compressor that uses the extremes of the luminance axis.
// void compressBlock_LuminanceAxis(const ColorBlock & rgba, BlockDXT1 * block);
// Compressor that uses bounding box.
void compressBlock_BoundsRange(const ColorBlock & rgba, BlockDXT1 * block);
// Compressor that uses bounding box and takes alpha into account.
// void compressBlock_BoundsRangeAlpha(const ColorBlock & rgba, BlockDXT1 * block);
// Simple, but slow compressor that tests all color pairs.
// void compressBlock_TestAllPairs(const ColorBlock & rgba, BlockDXT1 * block);
// Brute force 6d search along the best fit axis.
// void compressBlock_AnalyzeBestFitAxis(const ColorBlock & rgba, BlockDXT1 * block);
// Spatial greedy search.
// void refineSolution_1dSearch(const ColorBlock & rgba, BlockDXT1 * block);
// void refineSolution_3dSearch(const ColorBlock & rgba, BlockDXT1 * block);
// void refineSolution_6dSearch(const ColorBlock & rgba, BlockDXT1 * block);
// Brute force compressor for DXT5n
// void compressGreenBlock_BruteForce(const ColorBlock & rgba, BlockDXT1 * block);
// Minimize error of the endpoints.
// void optimizeEndPoints(const ColorBlock & rgba, BlockDXT1 * block);
// uint blockError(const ColorBlock & rgba, const BlockDXT1 & block);
// uint blockError(const ColorBlock & rgba, const AlphaBlockDXT5 & block);
// Alpha compression:
void compressBlock(const ColorBlock & rgba, AlphaBlockDXT3 * block);
void compressBlock_BoundsRange(const ColorBlock & rgba, BlockDXT3 * block);
void compressBlock_BoundsRange(const ColorBlock & rgba, BlockDXT5 * block);
uint compressBlock_BoundsRange(const ColorBlock & rgba, AlphaBlockDXT5 * block);
uint compressBlock_BruteForce(const ColorBlock & rgba, AlphaBlockDXT5 * block);
// uint compressBlock_Iterative(const ColorBlock & rgba, AlphaBlockDXT5 * block);
} // nv namespace
#endif // NV_TT_FASTCOMPRESSDXT_H

View File

@ -23,8 +23,6 @@
#include <string.h> // memcpy
#include <nvcore/Containers.h> // nextPowerOfTwo
#include <nvcore/Memory.h>
#include "nvtt.h"
@ -120,8 +118,6 @@ void InputOptions::reset()
m.maxExtent = 0;
m.roundMode = RoundMode_None;
m.premultiplyAlpha = false;
}
@ -309,19 +305,6 @@ void InputOptions::setLinearTransform(int channel, float w0, float w1, float w2,
//m.linearTransform.setRow(channel, w);
}
void InputOptions::setSwizzleTransform(int x, int y, int z, int w)
{
nvCheck(x >= 0 && x < 3);
nvCheck(y >= 0 && y < 3);
nvCheck(z >= 0 && z < 3);
nvCheck(w >= 0 && w < 3);
// m.xswizzle = x;
// m.yswizzle = y;
// m.zswizzle = z;
// m.wswizzle = w;
}
void InputOptions::setMaxExtents(int e)
{
nvDebugCheck(e > 0);
@ -333,10 +316,6 @@ void InputOptions::setRoundMode(RoundMode mode)
m.roundMode = mode;
}
void InputOptions::setPremultiplyAlpha(bool b)
{
m.premultiplyAlpha = b;
}
void InputOptions::Private::computeTargetExtents() const
{

View File

@ -78,8 +78,6 @@ namespace nvtt
uint maxExtent;
RoundMode roundMode;
bool premultiplyAlpha;
// @@ These are computed in nvtt::compress, so they should be mutable or stored elsewhere...
mutable uint targetWidth;
mutable uint targetHeight;
@ -91,7 +89,7 @@ namespace nvtt
int realMipmapCount() const;
const nv::Image * image(uint face, uint mipmap) const;
const nv::Image * image(uint idx) const;
const nv::Image * image(uint idx) const;
};

View File

@ -0,0 +1,368 @@
// Copyright NVIDIA Corporation 2007 -- Ignacio Castano <icastano@nvidia.com>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#include <nvcore/Containers.h> // swap
#include <nvmath/Color.h>
#include <nvimage/ColorBlock.h>
#include <nvimage/BlockDXT.h>
#include "OptimalCompressDXT.h"
#include "SingleColorLookup.h"
using namespace nv;
using namespace OptimalCompress;
namespace
{
static int computeGreenError(const ColorBlock & rgba, const BlockDXT1 * block)
{
nvDebugCheck(block != NULL);
int palette[4];
palette[0] = (block->col0.g << 2) | (block->col0.g >> 4);
palette[1] = (block->col1.g << 2) | (block->col1.g >> 4);
palette[2] = (2 * palette[0] + palette[1]) / 3;
palette[3] = (2 * palette[1] + palette[0]) / 3;
int totalError = 0;
for (int i = 0; i < 16; i++)
{
const int green = rgba.color(i).g;
int error = abs(green - palette[0]);
error = min(error, abs(green - palette[1]));
error = min(error, abs(green - palette[2]));
error = min(error, abs(green - palette[3]));
totalError += error;
}
return totalError;
}
static uint computeGreenIndices(const ColorBlock & rgba, const Color32 palette[4])
{
const int color0 = palette[0].g;
const int color1 = palette[1].g;
const int color2 = palette[2].g;
const int color3 = palette[3].g;
uint indices = 0;
for (int i = 0; i < 16; i++)
{
const int color = rgba.color(i).g;
uint d0 = abs(color0 - color);
uint d1 = abs(color1 - color);
uint d2 = abs(color2 - color);
uint d3 = abs(color3 - color);
uint b0 = d0 > d3;
uint b1 = d1 > d2;
uint b2 = d0 > d2;
uint b3 = d1 > d3;
uint b4 = d2 > d3;
uint x0 = b1 & b2;
uint x1 = b0 & b3;
uint x2 = b0 & b4;
indices |= (x2 | ((x0 | x1) << 1)) << (2 * i);
}
return indices;
}
// Choose quantized color that produces less error. Used by DXT3 compressor.
inline static uint quantize4(uint8 a)
{
int q0 = (a >> 4) - 1;
int q1 = (a >> 4);
int q2 = (a >> 4) + 1;
q0 = (q0 << 4) | q0;
q1 = (q1 << 4) | q1;
q2 = (q2 << 4) | q2;
int d0 = abs(q0 - a);
int d1 = abs(q1 - a);
int d2 = abs(q2 - a);
if (d0 < d1 && d0 < d2) return q0 >> 4;
if (d1 < d2) return q1 >> 4;
return q2 >> 4;
}
static uint computeAlphaError(const ColorBlock & rgba, const AlphaBlockDXT5 * block)
{
uint8 alphas[8];
block->evaluatePalette(alphas);
uint totalError = 0;
for (uint i = 0; i < 16; i++)
{
uint8 alpha = rgba.color(i).a;
uint besterror = 256*256;
uint best;
for (uint p = 0; p < 8; p++)
{
int d = alphas[p] - alpha;
uint error = d * d;
if (error < besterror)
{
besterror = error;
best = p;
}
}
totalError += besterror;
}
return totalError;
}
static void computeAlphaIndices(const ColorBlock & rgba, AlphaBlockDXT5 * block)
{
uint8 alphas[8];
block->evaluatePalette(alphas);
for (uint i = 0; i < 16; i++)
{
uint8 alpha = rgba.color(i).a;
uint besterror = 256*256;
uint best = 8;
for(uint p = 0; p < 8; p++)
{
int d = alphas[p] - alpha;
uint error = d * d;
if (error < besterror)
{
besterror = error;
best = p;
}
}
nvDebugCheck(best < 8);
block->setIndex(i, best);
}
}
} // namespace
// Single color compressor, based on:
// https://mollyrocket.com/forums/viewtopic.php?t=392
void OptimalCompress::compressDXT1(Color32 c, BlockDXT1 * dxtBlock)
{
dxtBlock->col0.r = OMatch5[c.r][0];
dxtBlock->col0.g = OMatch6[c.g][0];
dxtBlock->col0.b = OMatch5[c.b][0];
dxtBlock->col1.r = OMatch5[c.r][1];
dxtBlock->col1.g = OMatch6[c.g][1];
dxtBlock->col1.b = OMatch5[c.b][1];
dxtBlock->indices = 0xaaaaaaaa;
if (dxtBlock->col0.u < dxtBlock->col1.u)
{
swap(dxtBlock->col0.u, dxtBlock->col1.u);
dxtBlock->indices ^= 0x55555555;
}
}
void OptimalCompress::compressDXT1a(Color32 rgba, BlockDXT1 * dxtBlock)
{
if (rgba.a < 128)
{
dxtBlock->col0.u = 0;
dxtBlock->col1.u = 0;
dxtBlock->indices = 0xFFFFFFFF;
}
else
{
compressDXT1(rgba, dxtBlock);
}
}
// Brute force green channel compressor
void OptimalCompress::compressDXT1G(const ColorBlock & rgba, BlockDXT1 * block)
{
nvDebugCheck(block != NULL);
uint8 ming = 63;
uint8 maxg = 0;
// Get min/max green.
for (uint i = 0; i < 16; i++)
{
uint8 green = rgba.color(i).g >> 2;
ming = min(ming, green);
maxg = max(maxg, green);
}
block->col0.r = 31;
block->col1.r = 31;
block->col0.g = maxg;
block->col1.g = ming;
block->col0.b = 0;
block->col1.b = 0;
if (maxg - ming > 4)
{
int besterror = computeGreenError(rgba, block);
int bestg0 = maxg;
int bestg1 = ming;
for (int g0 = ming+5; g0 < maxg; g0++)
{
for (int g1 = ming; g1 < g0-4; g1++)
{
if ((maxg-g0) + (g1-ming) > besterror)
continue;
block->col0.g = g0;
block->col1.g = g1;
int error = computeGreenError(rgba, block);
if (error < besterror)
{
besterror = error;
bestg0 = g0;
bestg1 = g1;
}
}
}
block->col0.g = bestg0;
block->col1.g = bestg1;
}
Color32 palette[4];
block->evaluatePalette(palette);
block->indices = computeGreenIndices(rgba, palette);
}
void OptimalCompress::compressDXT3A(const ColorBlock & rgba, AlphaBlockDXT3 * dxtBlock)
{
dxtBlock->alpha0 = quantize4(rgba.color(0).a);
dxtBlock->alpha1 = quantize4(rgba.color(1).a);
dxtBlock->alpha2 = quantize4(rgba.color(2).a);
dxtBlock->alpha3 = quantize4(rgba.color(3).a);
dxtBlock->alpha4 = quantize4(rgba.color(4).a);
dxtBlock->alpha5 = quantize4(rgba.color(5).a);
dxtBlock->alpha6 = quantize4(rgba.color(6).a);
dxtBlock->alpha7 = quantize4(rgba.color(7).a);
dxtBlock->alpha8 = quantize4(rgba.color(8).a);
dxtBlock->alpha9 = quantize4(rgba.color(9).a);
dxtBlock->alphaA = quantize4(rgba.color(10).a);
dxtBlock->alphaB = quantize4(rgba.color(11).a);
dxtBlock->alphaC = quantize4(rgba.color(12).a);
dxtBlock->alphaD = quantize4(rgba.color(13).a);
dxtBlock->alphaE = quantize4(rgba.color(14).a);
dxtBlock->alphaF = quantize4(rgba.color(15).a);
}
void OptimalCompress::compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock)
{
uint8 mina = 255;
uint8 maxa = 0;
// Get min/max alpha.
for (uint i = 0; i < 16; i++)
{
uint8 alpha = rgba.color(i).a;
mina = min(mina, alpha);
maxa = max(maxa, alpha);
}
dxtBlock->alpha0 = maxa;
dxtBlock->alpha1 = mina;
/*int centroidDist = 256;
int centroid;
// Get the closest to the centroid.
for (uint i = 0; i < 16; i++)
{
uint8 alpha = rgba.color(i).a;
int dist = abs(alpha - (maxa + mina) / 2);
if (dist < centroidDist)
{
centroidDist = dist;
centroid = alpha;
}
}*/
if (maxa - mina > 8)
{
int besterror = computeAlphaError(rgba, dxtBlock);
int besta0 = maxa;
int besta1 = mina;
for (int a0 = mina+9; a0 < maxa; a0++)
{
for (int a1 = mina; a1 < a0-8; a1++)
//for (int a1 = mina; a1 < maxa; a1++)
{
//nvCheck(abs(a1-a0) > 8);
//if (abs(a0 - a1) < 8) continue;
//if ((maxa-a0) + (a1-mina) + min(abs(centroid-a0), abs(centroid-a1)) > besterror)
if ((maxa-a0) + (a1-mina) > besterror)
continue;
dxtBlock->alpha0 = a0;
dxtBlock->alpha1 = a1;
int error = computeAlphaError(rgba, dxtBlock);
if (error < besterror)
{
besterror = error;
besta0 = a0;
besta1 = a1;
}
}
}
dxtBlock->alpha0 = besta0;
dxtBlock->alpha1 = besta1;
}
computeAlphaIndices(rgba, dxtBlock);
}

View File

@ -0,0 +1,49 @@
// Copyright NVIDIA Corporation 2008 -- Ignacio Castano <icastano@nvidia.com>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#ifndef NV_TT_OPTIMALCOMPRESSDXT_H
#define NV_TT_OPTIMALCOMPRESSDXT_H
#include <nvimage/nvimage.h>
namespace nv
{
struct ColorBlock;
struct BlockDXT1;
struct BlockDXT3;
struct BlockDXT5;
struct AlphaBlockDXT3;
struct AlphaBlockDXT5;
namespace OptimalCompress
{
void compressDXT1(Color32 rgba, BlockDXT1 * dxtBlock);
void compressDXT1a(Color32 rgba, BlockDXT1 * dxtBlock);
void compressDXT1G(const ColorBlock & rgba, BlockDXT1 * block);
void compressDXT3A(const ColorBlock & rgba, AlphaBlockDXT3 * dxtBlock);
void compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock);
}
} // nv namespace
#endif // NV_TT_OPTIMALCOMPRESSDXT_H

View File

@ -21,15 +21,13 @@
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#include <nvcore/Containers.h> // swap
#include <nvmath/Color.h>
#include <nvimage/ColorBlock.h>
#include <nvimage/BlockDXT.h>
#include "QuickCompressDXT.h"
#include "SingleColorLookup.h"
#include "OptimalCompressDXT.h"
using namespace nv;
@ -290,70 +288,6 @@ static void optimizeEndPoints4(Vector3 block[16], BlockDXT1 * dxtBlock)
dxtBlock->indices = computeIndices3(block, a, b);
}*/
namespace
{
static int computeGreenError(const ColorBlock & rgba, const BlockDXT1 * block)
{
nvDebugCheck(block != NULL);
int palette[4];
palette[0] = (block->col0.g << 2) | (block->col0.g >> 4);
palette[1] = (block->col1.g << 2) | (block->col1.g >> 4);
palette[2] = (2 * palette[0] + palette[1]) / 3;
palette[3] = (2 * palette[1] + palette[0]) / 3;
int totalError = 0;
for (int i = 0; i < 16; i++)
{
const int green = rgba.color(i).g;
int error = abs(green - palette[0]);
error = min(error, abs(green - palette[1]));
error = min(error, abs(green - palette[2]));
error = min(error, abs(green - palette[3]));
totalError += error;
}
return totalError;
}
static uint computeGreenIndices(const ColorBlock & rgba, const Color32 palette[4])
{
const int color0 = palette[0].g;
const int color1 = palette[1].g;
const int color2 = palette[2].g;
const int color3 = palette[3].g;
uint indices = 0;
for (int i = 0; i < 16; i++)
{
const int color = rgba.color(i).g;
uint d0 = abs(color0 - color);
uint d1 = abs(color1 - color);
uint d2 = abs(color2 - color);
uint d3 = abs(color3 - color);
uint b0 = d0 > d3;
uint b1 = d1 > d2;
uint b2 = d0 > d2;
uint b3 = d1 > d3;
uint b4 = d2 > d3;
uint x0 = b1 & b2;
uint x1 = b0 & b3;
uint x2 = b0 & b4;
indices |= (x2 | ((x0 | x1) << 1)) << (2 * i);
}
return indices;
}
} // namespace
namespace
{
@ -505,79 +439,63 @@ namespace
// Single color compressor, based on:
// https://mollyrocket.com/forums/viewtopic.php?t=392
void QuickCompress::compressDXT1(Color32 c, BlockDXT1 * dxtBlock)
{
dxtBlock->col0.r = OMatch5[c.r][0];
dxtBlock->col0.g = OMatch6[c.g][0];
dxtBlock->col0.b = OMatch5[c.b][0];
dxtBlock->col1.r = OMatch5[c.r][1];
dxtBlock->col1.g = OMatch6[c.g][1];
dxtBlock->col1.b = OMatch5[c.b][1];
dxtBlock->indices = 0xaaaaaaaa;
if (dxtBlock->col0.u < dxtBlock->col1.u)
{
swap(dxtBlock->col0.u, dxtBlock->col1.u);
dxtBlock->indices ^= 0x55555555;
}
}
void QuickCompress::compressDXT1(const ColorBlock & rgba, BlockDXT1 * dxtBlock)
{
// read block
Vector3 block[16];
extractColorBlockRGB(rgba, block);
// find min and max colors
Vector3 maxColor, minColor;
findMinMaxColorsBox(block, 16, &maxColor, &minColor);
selectDiagonal(block, 16, &maxColor, &minColor);
insetBBox(&maxColor, &minColor);
uint16 color0 = roundAndExpand(&maxColor);
uint16 color1 = roundAndExpand(&minColor);
if (color0 < color1)
if (rgba.isSingleColor())
{
swap(maxColor, minColor);
swap(color0, color1);
}
dxtBlock->col0 = Color16(color0);
dxtBlock->col1 = Color16(color1);
dxtBlock->indices = computeIndices4(block, maxColor, minColor);
optimizeEndPoints4(block, dxtBlock);
}
void QuickCompress::compressDXT1a(Color32 rgba, BlockDXT1 * dxtBlock)
{
if (rgba.a == 0)
{
dxtBlock->col0.u = 0;
dxtBlock->col1.u = 0;
dxtBlock->indices = 0xFFFFFFFF;
OptimalCompress::compressDXT1(rgba.color(0), dxtBlock);
}
else
{
compressDXT1(rgba, dxtBlock);
// read block
Vector3 block[16];
extractColorBlockRGB(rgba, block);
// find min and max colors
Vector3 maxColor, minColor;
findMinMaxColorsBox(block, 16, &maxColor, &minColor);
selectDiagonal(block, 16, &maxColor, &minColor);
insetBBox(&maxColor, &minColor);
uint16 color0 = roundAndExpand(&maxColor);
uint16 color1 = roundAndExpand(&minColor);
if (color0 < color1)
{
swap(maxColor, minColor);
swap(color0, color1);
}
dxtBlock->col0 = Color16(color0);
dxtBlock->col1 = Color16(color1);
dxtBlock->indices = computeIndices4(block, maxColor, minColor);
optimizeEndPoints4(block, dxtBlock);
}
}
void QuickCompress::compressDXT1a(const ColorBlock & rgba, BlockDXT1 * dxtBlock)
{
if (!rgba.hasAlpha())
bool hasAlpha = false;
for (uint i = 0; i < 16; i++)
{
if (rgba.color(i).a < 128) {
hasAlpha = true;
break;
}
}
if (!hasAlpha)
{
compressDXT1(rgba, dxtBlock);
}
else
// @@ Handle single RGB, with varying alpha? We need tables for single color compressor in 3 color mode.
//else if (rgba.isSingleColorNoAlpha()) { ... }
else
{
// read block
Vector3 block[16];
@ -609,95 +527,14 @@ void QuickCompress::compressDXT1a(const ColorBlock & rgba, BlockDXT1 * dxtBlock)
}
// Brute force green channel compressor
void QuickCompress::compressDXT1G(const ColorBlock & rgba, BlockDXT1 * block)
{
nvDebugCheck(block != NULL);
uint8 ming = 63;
uint8 maxg = 0;
// Get min/max green.
for (uint i = 0; i < 16; i++)
{
uint8 green = rgba.color(i).g >> 2;
ming = min(ming, green);
maxg = max(maxg, green);
}
block->col0.r = 31;
block->col1.r = 31;
block->col0.g = maxg;
block->col1.g = ming;
block->col0.b = 0;
block->col1.b = 0;
if (maxg - ming > 4)
{
int besterror = computeGreenError(rgba, block);
int bestg0 = maxg;
int bestg1 = ming;
for (int g0 = ming+5; g0 < maxg; g0++)
{
for (int g1 = ming; g1 < g0-4; g1++)
{
if ((maxg-g0) + (g1-ming) > besterror)
continue;
block->col0.g = g0;
block->col1.g = g1;
int error = computeGreenError(rgba, block);
if (error < besterror)
{
besterror = error;
bestg0 = g0;
bestg1 = g1;
}
}
}
block->col0.g = bestg0;
block->col1.g = bestg1;
}
Color32 palette[4];
block->evaluatePalette(palette);
block->indices = computeGreenIndices(rgba, palette);
}
void QuickCompress::compressDXT3A(const ColorBlock & rgba, AlphaBlockDXT3 * dxtBlock)
{
// @@ Round instead of truncate. When rounding take into account bit expansion.
dxtBlock->alpha0 = rgba.color(0).a >> 4;
dxtBlock->alpha1 = rgba.color(1).a >> 4;
dxtBlock->alpha2 = rgba.color(2).a >> 4;
dxtBlock->alpha3 = rgba.color(3).a >> 4;
dxtBlock->alpha4 = rgba.color(4).a >> 4;
dxtBlock->alpha5 = rgba.color(5).a >> 4;
dxtBlock->alpha6 = rgba.color(6).a >> 4;
dxtBlock->alpha7 = rgba.color(7).a >> 4;
dxtBlock->alpha8 = rgba.color(8).a >> 4;
dxtBlock->alpha9 = rgba.color(9).a >> 4;
dxtBlock->alphaA = rgba.color(10).a >> 4;
dxtBlock->alphaB = rgba.color(11).a >> 4;
dxtBlock->alphaC = rgba.color(12).a >> 4;
dxtBlock->alphaD = rgba.color(13).a >> 4;
dxtBlock->alphaE = rgba.color(14).a >> 4;
dxtBlock->alphaF = rgba.color(15).a >> 4;
}
void QuickCompress::compressDXT3(const ColorBlock & rgba, BlockDXT3 * dxtBlock)
{
compressDXT1(rgba, &dxtBlock->color);
compressDXT3A(rgba, &dxtBlock->alpha);
OptimalCompress::compressDXT3A(rgba, &dxtBlock->alpha);
}
void QuickCompress::compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock)
void QuickCompress::compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock, int iterationCount/*=8*/)
{
uint8 alpha0 = 0;
uint8 alpha1 = 255;
@ -716,8 +553,8 @@ void QuickCompress::compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtB
uint besterror = computeAlphaIndices(rgba, &block);
AlphaBlockDXT5 bestblock = block;
while(true)
for (int i = 0; i < iterationCount; i++)
{
optimizeAlpha8(rgba, &block);
uint error = computeAlphaIndices(rgba, &block);
@ -741,9 +578,8 @@ void QuickCompress::compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtB
*dxtBlock = bestblock;
}
void QuickCompress::compressDXT5(const ColorBlock & rgba, BlockDXT5 * dxtBlock)
void QuickCompress::compressDXT5(const ColorBlock & rgba, BlockDXT5 * dxtBlock, int iterationCount/*=8*/)
{
compressDXT1(rgba, &dxtBlock->color);
compressDXT5A(rgba, &dxtBlock->alpha);
compressDXT5A(rgba, &dxtBlock->alpha, iterationCount);
}

View File

@ -37,17 +37,13 @@ namespace nv
namespace QuickCompress
{
void compressDXT1(Color32 rgba, BlockDXT1 * dxtBlock);
void compressDXT1(const ColorBlock & rgba, BlockDXT1 * dxtBlock);
void compressDXT1a(Color32 rgba, BlockDXT1 * dxtBlock);
void compressDXT1a(const ColorBlock & rgba, BlockDXT1 * dxtBlock);
void compressDXT1G(const ColorBlock & rgba, BlockDXT1 * block);
void compressDXT3A(const ColorBlock & rgba, AlphaBlockDXT3 * dxtBlock);
void compressDXT3(const ColorBlock & rgba, BlockDXT3 * dxtBlock);
void compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock);
void compressDXT5(const ColorBlock & rgba, BlockDXT5 * dxtBlock);
void compressDXT5A(const ColorBlock & rgba, AlphaBlockDXT5 * dxtBlock, int iterationCount=8);
void compressDXT5(const ColorBlock & rgba, BlockDXT5 * dxtBlock, int iterationCount=8);
}
} // nv namespace

File diff suppressed because it is too large Load Diff

View File

@ -159,7 +159,7 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
}
}
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16])
__device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sums[16], float weights[16], int xrefs[16], int * sameColor)
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
@ -189,6 +189,11 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
colorSums(colors, sums);
float3 axis = bestFitLine(colors, sums[0], kColorMetric);
*sameColor = (axis == make_float3(0, 0, 0));
// Single color compressor needs unweighted colors.
if (*sameColor) colors[idx] = rawColors[idx];
dps[idx] = dot(rawColors[idx], axis);
#if __DEVICE_EMULATION__
@ -205,43 +210,6 @@ __device__ void loadColorBlock(const uint * image, float3 colors[16], float3 sum
}
}
__device__ void loadColorBlock(const uint * image, float2 colors[16], float2 sums[16], int xrefs[16])
{
const int bid = blockIdx.x;
const int idx = threadIdx.x;
__shared__ float dps[16];
if (idx < 16)
{
// Read color and copy to shared mem.
uint c = image[(bid) * 16 + idx];
colors[idx].y = ((c >> 8) & 0xFF) * (1.0f / 255.0f);
colors[idx].x = ((c >> 16) & 0xFF) * (1.0f / 255.0f);
// No need to synchronize, 16 < warp size.
#if __DEVICE_EMULATION__
} __debugsync(); if (idx < 16) {
#endif
// Sort colors along the best fit line.
colorSums(colors, sums);
float2 axis = bestFitLine(colors, sums[0]);
dps[idx] = dot(colors[idx], axis);
#if __DEVICE_EMULATION__
} __debugsync(); if (idx < 16) {
#endif
sortColors(dps, xrefs);
float2 tmp = colors[idx];
colors[xrefs[idx]] = tmp;
}
}
////////////////////////////////////////////////////////////////////////////////
// Round color to RGB565 and expand
@ -258,26 +226,6 @@ inline __device__ float3 roundAndExpand565(float3 v, ushort * w)
return v;
}
inline __device__ float2 roundAndExpand56(float2 v, ushort * w)
{
v.x = rintf(__saturatef(v.x) * 31.0f);
v.y = rintf(__saturatef(v.y) * 63.0f);
*w = ((ushort)v.x << 11) | ((ushort)v.y << 5);
v.x *= 0.03227752766457f; // approximate integer bit expansion.
v.y *= 0.01583151765563f;
return v;
}
inline __device__ float2 roundAndExpand88(float2 v, ushort * w)
{
v.x = rintf(__saturatef(v.x) * 255.0f);
v.y = rintf(__saturatef(v.y) * 255.0f);
*w = ((ushort)v.x << 8) | ((ushort)v.y);
v.x *= 1.0f / 255.0f;
v.y *= 1.0f / 255.0f;
return v;
}
////////////////////////////////////////////////////////////////////////////////
// Evaluate permutations
@ -521,114 +469,6 @@ __device__ float evalPermutation3(const float3 * colors, const float * weights,
}
*/
__device__ float evalPermutation4(const float2 * colors, float2 color_sum, uint permutation, ushort * start, ushort * end)
{
// Compute endpoints using least squares.
float2 alphax_sum = make_float2(0.0f, 0.0f);
uint akku = 0;
// Compute alpha & beta for this permutation.
#pragma unroll
for (int i = 0; i < 16; i++)
{
const uint bits = permutation >> (2*i);
alphax_sum += alphaTable4[bits & 3] * colors[i];
akku += prods4[bits & 3];
}
float alpha2_sum = float(akku >> 16);
float beta2_sum = float((akku >> 8) & 0xff);
float alphabeta_sum = float(akku & 0xff);
float2 betax_sum = 9.0f * color_sum - alphax_sum;
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float2 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float2 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6 color and expand...
a = roundAndExpand56(a, start);
b = roundAndExpand56(b, end);
// compute the error
float2 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
return (1.0f / 9.0f) * (e.x + e.y);
}
__device__ float evalPermutation3(const float2 * colors, float2 color_sum, uint permutation, ushort * start, ushort * end)
{
// Compute endpoints using least squares.
float2 alphax_sum = make_float2(0.0f, 0.0f);
uint akku = 0;
// Compute alpha & beta for this permutation.
#pragma unroll
for (int i = 0; i < 16; i++)
{
const uint bits = permutation >> (2*i);
alphax_sum += alphaTable3[bits & 3] * colors[i];
akku += prods3[bits & 3];
}
float alpha2_sum = float(akku >> 16);
float beta2_sum = float((akku >> 8) & 0xff);
float alphabeta_sum = float(akku & 0xff);
float2 betax_sum = 4.0f * color_sum - alphax_sum;
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float2 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float2 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6 color and expand...
a = roundAndExpand56(a, start);
b = roundAndExpand56(b, end);
// compute the error
float2 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
return (1.0f / 4.0f) * (e.x + e.y);
}
__device__ float evalPermutationCTX(const float2 * colors, float2 color_sum, uint permutation, ushort * start, ushort * end)
{
// Compute endpoints using least squares.
float2 alphax_sum = make_float2(0.0f, 0.0f);
uint akku = 0;
// Compute alpha & beta for this permutation.
#pragma unroll
for (int i = 0; i < 16; i++)
{
const uint bits = permutation >> (2*i);
alphax_sum += alphaTable4[bits & 3] * colors[i];
akku += prods4[bits & 3];
}
float alpha2_sum = float(akku >> 16);
float beta2_sum = float((akku >> 8) & 0xff);
float alphabeta_sum = float(akku & 0xff);
float2 betax_sum = 9.0f * color_sum - alphax_sum;
const float factor = 1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float2 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float2 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 8-8 color and expand...
a = roundAndExpand88(a, start);
b = roundAndExpand88(b, end);
// compute the error
float2 e = a * a * alpha2_sum + b * b * beta2_sum + 2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
return (1.0f / 9.0f) * (e.x + e.y);
}
////////////////////////////////////////////////////////////////////////////////
// Evaluate all permutations
@ -757,14 +597,12 @@ __device__ void evalAllPermutations(const float3 * colors, const float * weights
}
*/
__device__ void evalAllPermutations(const float2 * colors, float2 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
__device__ void evalLevel4Permutations(const float3 * colors, float3 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
{
const int idx = threadIdx.x;
float bestError = FLT_MAX;
__shared__ uint s_permutations[160];
for(int i = 0; i < 16; i++)
{
int pidx = idx + NUM_THREADS * i;
@ -772,8 +610,7 @@ __device__ void evalAllPermutations(const float2 * colors, float2 colorSum, cons
ushort start, end;
uint permutation = permutations[pidx];
if (pidx < 160) s_permutations[pidx] = permutation;
float error = evalPermutation4(colors, colorSum, permutation, &start, &end);
if (error < bestError)
@ -791,30 +628,6 @@ __device__ void evalAllPermutations(const float2 * colors, float2 colorSum, cons
bestPermutation ^= 0x55555555; // Flip indices.
}
for(int i = 0; i < 3; i++)
{
int pidx = idx + NUM_THREADS * i;
if (pidx >= 160) break;
ushort start, end;
uint permutation = s_permutations[pidx];
float error = evalPermutation3(colors, colorSum, permutation, &start, &end);
if (error < bestError)
{
bestError = error;
bestPermutation = permutation;
bestStart = start;
bestEnd = end;
if (bestStart > bestEnd)
{
swap(bestEnd, bestStart);
bestPermutation ^= (~bestPermutation >> 1) & 0x55555555; // Flip indices.
}
}
}
errors[idx] = bestError;
}
@ -852,40 +665,6 @@ __device__ void evalLevel4Permutations(const float3 * colors, const float * weig
errors[idx] = bestError;
}
__device__ void evalAllPermutationsCTX(const float2 * colors, float2 colorSum, const uint * permutations, ushort & bestStart, ushort & bestEnd, uint & bestPermutation, float * errors)
{
const int idx = threadIdx.x;
float bestError = FLT_MAX;
for(int i = 0; i < 16; i++)
{
int pidx = idx + NUM_THREADS * i;
if (pidx >= 992) break;
ushort start, end;
uint permutation = permutations[pidx];
float error = evalPermutationCTX(colors, colorSum, permutation, &start, &end);
if (error < bestError)
{
bestError = error;
bestPermutation = permutation;
bestStart = start;
bestEnd = end;
}
}
if (bestStart < bestEnd)
{
swap(bestEnd, bestStart);
bestPermutation ^= 0x55555555; // Flip indices.
}
errors[idx] = bestError;
}
////////////////////////////////////////////////////////////////////////////////
// Find index with minimum error
@ -996,11 +775,6 @@ __device__ void saveBlockDXT1(ushort start, ushort end, uint permutation, int xr
result[bid].y = indices;
}
__device__ void saveBlockCTX1(ushort start, ushort end, uint permutation, int xrefs[16], uint2 * result)
{
saveBlockDXT1(start, end, permutation, xrefs, result);
}
__device__ void saveSingleColorBlockDXT1(float3 color, uint2 * result)
{
const int bid = blockIdx.x;
@ -1062,6 +836,39 @@ __global__ void compressDXT1(const uint * permutations, const uint * image, uint
}
}
__global__ void compressLevel4DXT1(const uint * permutations, const uint * image, uint2 * result)
{
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlock(image, colors, sums, xrefs, &sameColor);
__syncthreads();
if (sameColor)
{
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
return;
}
ushort bestStart, bestEnd;
uint bestPermutation;
__shared__ float errors[NUM_THREADS];
evalLevel4Permutations(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
// Use a parallel reduction to find minimum error.
const int minIdx = findMinError(errors);
// Only write the result of the winner thread.
if (threadIdx.x == minIdx)
{
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result);
}
}
__global__ void compressWeightedDXT1(const uint * permutations, const uint * image, uint2 * result)
{
@ -1069,11 +876,18 @@ __global__ void compressWeightedDXT1(const uint * permutations, const uint * ima
__shared__ float3 sums[16];
__shared__ float weights[16];
__shared__ int xrefs[16];
__shared__ int sameColor;
loadColorBlock(image, colors, sums, weights, xrefs);
loadColorBlock(image, colors, sums, weights, xrefs, &sameColor);
__syncthreads();
if (sameColor)
{
if (threadIdx.x == 0) saveSingleColorBlockDXT1(colors[0], result);
return;
}
ushort bestStart, bestEnd;
uint bestPermutation;
@ -1092,61 +906,6 @@ __global__ void compressWeightedDXT1(const uint * permutations, const uint * ima
}
__global__ void compressNormalDXT1(const uint * permutations, const uint * image, uint2 * result)
{
__shared__ float2 colors[16];
__shared__ float2 sums[16];
__shared__ int xrefs[16];
loadColorBlock(image, colors, sums, xrefs);
__syncthreads();
ushort bestStart, bestEnd;
uint bestPermutation;
__shared__ float errors[NUM_THREADS];
evalAllPermutations(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
// Use a parallel reduction to find minimum error.
const int minIdx = findMinError(errors);
// Only write the result of the winner thread.
if (threadIdx.x == minIdx)
{
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result);
}
}
__global__ void compressCTX1(const uint * permutations, const uint * image, uint2 * result)
{
__shared__ float2 colors[16];
__shared__ float2 sums[16];
__shared__ int xrefs[16];
loadColorBlock(image, colors, sums, xrefs);
__syncthreads();
ushort bestStart, bestEnd;
uint bestPermutation;
__shared__ float errors[NUM_THREADS];
evalAllPermutationsCTX(colors, sums[0], permutations, bestStart, bestEnd, bestPermutation, errors);
// Use a parallel reduction to find minimum error.
const int minIdx = findMinError(errors);
// Only write the result of the winner thread.
if (threadIdx.x == minIdx)
{
saveBlockCTX1(bestStart, bestEnd, bestPermutation, xrefs, result);
}
}
/*
__device__ float computeError(const float weights[16], uchar a0, uchar a1)
{
@ -1352,17 +1111,12 @@ extern "C" void compressKernelDXT1(uint blockNum, uint * d_data, uint * d_result
compressDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}
extern "C" void compressKernelDXT1_Level4(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
{
compressLevel4DXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}
extern "C" void compressWeightedKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
{
compressWeightedDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}
extern "C" void compressNormalKernelDXT1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
{
compressNormalDXT1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}
extern "C" void compressKernelCTX1(uint blockNum, uint * d_data, uint * d_result, uint * d_bitmaps)
{
compressCTX1<<<blockNum, NUM_THREADS>>>(d_bitmaps, d_data, (uint2 *)d_result);
}

File diff suppressed because it is too large Load Diff

View File

@ -39,17 +39,20 @@ namespace nv
bool isValid() const;
void compressDXT1(const Image * image, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT3(const Image * image, const nvtt::InputOptions::Private & inputOptions, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5(const Image * image, const nvtt::InputOptions::Private & inputOptions, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT1n(const Image * image, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressCTX1(const Image * image, const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void setImage(const Image * image, nvtt::AlphaMode alphaMode);
void compressDXT1(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT3(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
void compressDXT5(const nvtt::CompressionOptions::Private & compressionOptions, const nvtt::OutputOptions::Private & outputOptions);
private:
uint * m_bitmapTable;
uint * m_data;
uint * m_result;
const Image * m_image;
nvtt::AlphaMode m_alphaMode;
};
} // nv namespace

View File

@ -87,64 +87,6 @@ inline __device__ __host__ bool operator ==(float3 a, float3 b)
return a.x == b.x && a.y == b.y && a.z == b.z;
}
// float2 operators
inline __device__ __host__ float2 operator *(float2 a, float2 b)
{
return make_float2(a.x*b.x, a.y*b.y);
}
inline __device__ __host__ float2 operator *(float f, float2 v)
{
return make_float2(v.x*f, v.y*f);
}
inline __device__ __host__ float2 operator *(float2 v, float f)
{
return make_float2(v.x*f, v.y*f);
}
inline __device__ __host__ float2 operator +(float2 a, float2 b)
{
return make_float2(a.x+b.x, a.y+b.y);
}
inline __device__ __host__ void operator +=(float2 & b, float2 a)
{
b.x += a.x;
b.y += a.y;
}
inline __device__ __host__ float2 operator -(float2 a, float2 b)
{
return make_float2(a.x-b.x, a.y-b.y);
}
inline __device__ __host__ void operator -=(float2 & b, float2 a)
{
b.x -= a.x;
b.y -= a.y;
}
inline __device__ __host__ float2 operator /(float2 v, float f)
{
float inv = 1.0f / f;
return v * inv;
}
inline __device__ __host__ void operator /=(float2 & b, float f)
{
float inv = 1.0f / f;
b.x *= inv;
b.y *= inv;
}
inline __device__ __host__ float dot(float2 a, float2 b)
{
return a.x * b.x + a.y * b.y;
}
inline __device__ __host__ float dot(float3 a, float3 b)
{
return a.x * b.x + a.y * b.y + a.z * b.z;
@ -206,7 +148,7 @@ inline __device__ bool singleColor(const float3 * colors)
bool sameColor = false;
for (int i = 0; i < 16; i++)
{
sameColor &= (colors[idx] == colors[0]);
sameColor &= (colors[i] == colors[0]);
}
return sameColor;
#else
@ -301,89 +243,5 @@ inline __device__ float3 bestFitLine(const float3 * colors, float3 color_sum, fl
return firstEigenVector(covariance);
}
// @@ For 2D this may not be the most efficient method. It's a quadratic equation, right?
inline __device__ __host__ float2 firstEigenVector2D( float matrix[3] )
{
// @@ 8 iterations is probably more than enough.
float2 v = make_float2(1.0f, 1.0f);
for(int i = 0; i < 8; i++) {
float x = v.x * matrix[0] + v.y * matrix[1];
float y = v.x * matrix[1] + v.y * matrix[2];
float m = max(x, y);
float iv = 1.0f / m;
if (m == 0.0f) iv = 0.0f;
v = make_float2(x*iv, y*iv);
}
return v;
}
inline __device__ void colorSums(const float2 * colors, float2 * sums)
{
#if __DEVICE_EMULATION__
float2 color_sum = make_float2(0.0f, 0.0f, 0.0f);
for (int i = 0; i < 16; i++)
{
color_sum += colors[i];
}
for (int i = 0; i < 16; i++)
{
sums[i] = color_sum;
}
#else
const int idx = threadIdx.x;
sums[idx] = colors[idx];
sums[idx] += sums[idx^8];
sums[idx] += sums[idx^4];
sums[idx] += sums[idx^2];
sums[idx] += sums[idx^1];
#endif
}
inline __device__ float2 bestFitLine(const float2 * colors, float2 color_sum)
{
// Compute covariance matrix of the given colors.
#if __DEVICE_EMULATION__
float covariance[3] = {0, 0, 0};
for (int i = 0; i < 16; i++)
{
float2 a = (colors[i] - color_sum * (1.0f / 16.0f));
covariance[0] += a.x * a.x;
covariance[1] += a.x * a.y;
covariance[3] += a.y * a.y;
}
#else
const int idx = threadIdx.x;
float2 diff = (colors[idx] - color_sum * (1.0f / 16.0f));
__shared__ float covariance[16*3];
covariance[3 * idx + 0] = diff.x * diff.x;
covariance[3 * idx + 1] = diff.x * diff.y;
covariance[3 * idx + 2] = diff.y * diff.y;
for(int d = 8; d > 0; d >>= 1)
{
if (idx < d)
{
covariance[3 * idx + 0] += covariance[3 * (idx+d) + 0];
covariance[3 * idx + 1] += covariance[3 * (idx+d) + 1];
covariance[3 * idx + 2] += covariance[3 * (idx+d) + 2];
}
}
#endif
// Compute first eigen vector.
return firstEigenVector2D(covariance);
}
#endif // CUDAMATH_H

View File

@ -22,15 +22,18 @@
// OTHER DEALINGS IN THE SOFTWARE.
#include <nvcore/Debug.h>
#include <nvcore/Library.h>
#include "CudaUtils.h"
#if defined HAVE_CUDA
#include <cuda_runtime.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#endif
using namespace nv;
using namespace cuda;
/* @@ Move this to win32 utils or somewhere else.
#if NV_OS_WIN32
#define WINDOWS_LEAN_AND_MEAN
@ -52,31 +55,93 @@ static bool isWow32()
{
LPFN_ISWOW64PROCESS fnIsWow64Process = (LPFN_ISWOW64PROCESS)GetProcAddress(GetModuleHandle("kernel32"), "IsWow64Process");
BOOL bIsWow64 = FALSE;
BOOL bIsWow64 = FALSE;
if (NULL != fnIsWow64Process)
{
if (!fnIsWow64Process(GetCurrentProcess(), &bIsWow64))
{
if (NULL != fnIsWow64Process)
{
if (!fnIsWow64Process(GetCurrentProcess(), &bIsWow64))
{
// Assume 32 bits.
return true;
}
}
return true;
}
}
return !bIsWow64;
return !bIsWow64;
}
#endif
*/
static bool isCudaDriverAvailable(int version)
{
#if defined HAVE_CUDA
#if NV_OS_WIN32
Library nvcuda("nvcuda.dll");
#else
Library nvcuda(NV_LIBRARY_NAME(cuda));
#endif
if (!nvcuda.isValid())
{
nvDebug("*** CUDA driver not found.\n");
return false;
}
if (version >= 2000)
{
void * address = nvcuda.bindSymbol("cuStreamCreate");
if (address == NULL) {
nvDebug("*** CUDA driver version < 2.0.\n");
return false;
}
}
if (version >= 2010)
{
void * address = nvcuda.bindSymbol("cuModuleLoadDataEx");
if (address == NULL) {
nvDebug("*** CUDA driver version < 2.1.\n");
return false;
}
}
if (version >= 2020)
{
typedef CUresult (CUDAAPI * PFCU_DRIVERGETVERSION)(int * version);
PFCU_DRIVERGETVERSION driverGetVersion = (PFCU_DRIVERGETVERSION)nvcuda.bindSymbol("cuDriverGetVersion");
if (driverGetVersion == NULL) {
nvDebug("*** CUDA driver version < 2.2.\n");
return false;
}
int driverVersion;
CUresult err = driverGetVersion(&driverVersion);
if (err != CUDA_SUCCESS) {
nvDebug("*** Error querying driver version: '%s'.\n", cudaGetErrorString((cudaError_t)err));
return false;
}
return driverVersion >= version;
}
#endif // HAVE_CUDA
return true;
}
/// Determine if CUDA is available.
bool nv::cuda::isHardwarePresent()
{
#if defined HAVE_CUDA
#if NV_OS_WIN32
if (isWindowsVista()) return false;
//if (isWindowsVista() || !isWow32()) return false;
#endif
// Make sure that CUDA driver matches CUDA runtime.
if (!isCudaDriverAvailable(CUDART_VERSION))
{
nvDebug("CUDA driver not available for CUDA runtime %d\n", CUDART_VERSION);
return false;
}
int count = deviceCount();
if (count == 1)
{
@ -89,10 +154,10 @@ bool nv::cuda::isHardwarePresent()
{
return false;
}
// @@ Make sure that warp size == 32
}
// @@ Make sure that warp size == 32
return count > 0;
#else
return false;
@ -115,14 +180,60 @@ int nv::cuda::deviceCount()
return 0;
}
int nv::cuda::getFastestDevice()
{
int max_gflops_device = 0;
#if defined HAVE_CUDA
int max_gflops = 0;
const int device_count = deviceCount();
int current_device = 0;
while (current_device < device_count)
{
cudaDeviceProp device_properties;
cudaGetDeviceProperties(&device_properties, current_device);
int gflops = device_properties.multiProcessorCount * device_properties.clockRate;
if (device_properties.major != -1 && device_properties.minor != -1)
{
if( gflops > max_gflops )
{
max_gflops = gflops;
max_gflops_device = current_device;
}
}
current_device++;
}
#endif
return max_gflops_device;
}
/// Activate the given devices.
bool nv::cuda::setDevice(int i)
{
nvCheck(i < deviceCount());
#if defined HAVE_CUDA
cudaError_t result = cudaSetDevice(i);
if (result != cudaSuccess) {
nvDebug("*** CUDA Error: %s\n", cudaGetErrorString(result));
}
return result == cudaSuccess;
#else
return false;
#endif
}
void nv::cuda::exit()
{
#if defined HAVE_CUDA
cudaError_t result = cudaThreadExit();
if (result != cudaSuccess) {
nvDebug("*** CUDA Error: %s\n", cudaGetErrorString(result));
}
#endif
}

View File

@ -31,7 +31,9 @@ namespace nv
{
bool isHardwarePresent();
int deviceCount();
int getFastestDevice();
bool setDevice(int i);
void exit();
};
} // nv namespace

View File

@ -1,60 +0,0 @@
#include "nvtt_experimental.h"
struct NvttImage
{
NvttImage() :
m_constant(false),
m_image(NULL),
m_floatImage(NULL)
{
}
~NvttImage()
{
if (m_constant && m_image) m_image->unwrap();
delete m_image;
delete m_floatImage;
}
bool m_constant;
Image * m_image;
FloatImage * m_floatImage;
};
NvttImage * nvttCreateImage()
{
return new NvttImage();
}
void nvttDestroyImage(NvttImage * img)
{
delete img;
}
void nvttSetImageData(NvttImage * img, NvttInputFormat format, uint w, uint h, void * data)
{
nvCheck(img != NULL);
if (format == NVTT_InputFormat_BGRA_8UB)
{
img->m_constant = false;
img->m_image->allocate(w, h);
memcpy(img->m_image->pixels(), data, w * h * 4);
}
else
{
nvCheck(false);
}
}
void nvttCompressImage(NvttImage * img, NvttFormat format)
{
nvCheck(img != NULL);
// @@ Invoke appropriate compressor.
}
#endif // NVTT_EXPERIMENTAL_H

View File

@ -1,55 +0,0 @@
#ifndef NVTT_EXPERIMENTAL_H
#define NVTT_EXPERIMENTAL_H
#include <nvtt/nvtt.h>
typedef struct NvttImage NvttImage;
NvttImage * nvttCreateImage();
void nvttDestroyImage(NvttImage * img);
void nvttSetImageData(NvttImage * img, NvttInputFormat format, uint w, uint h, void * data);
void nvttCompressImage(NvttImage * img, NvttFormat format);
// How to control the compression parameters?
// Using many arguments:
// void nvttCompressImage(img, format, quality, r, g, b, a, ...);
// Using existing compression option class:
// compressionOptions = nvttCreateCompressionOptions();
// nvttSetCompressionOptionsFormat(compressionOptions, format);
// nvttSetCompressionOptionsQuality(compressionOptions, quality);
// nvttSetCompressionOptionsQuality(compressionOptions, quality);
// nvttSetCompressionOptionsColorWeights(compressionOptions, r, g, b, a);
// ...
// nvttCompressImage(img, compressionOptions);
// Using thread local context state:
// void nvttSetCompressionFormat(format);
// void nvttSetCompressionQuality(quality);
// void nvttSetCompressionColorWeights(r, g, b, a);
// ...
// nvttCompressImage(img);
// Using thread local context state, but with GL style function arguments:
// nvttCompressorParameteri(NVTT_FORMAT, format);
// nvttCompressorParameteri(NVTT_QUALITY, quality);
// nvttCompressorParameterf(NVTT_COLOR_WEIGHT_RED, r);
// nvttCompressorParameterf(NVTT_COLOR_WEIGHT_GREEN, g);
// nvttCompressorParameterf(NVTT_COLOR_WEIGHT_BLUE, b);
// nvttCompressorParameterf(NVTT_COLOR_WEIGHT_ALPHA, a);
// or nvttCompressorParameter4f(NVTT_COLOR_WEIGHTS, r, g, b, a);
// ...
// nvttCompressImage(img);
// How do we get the compressed output?
// - Using callbacks. (via new entrypoints, or through outputOptions)
// - Return it explicitely from nvttCompressImage.
// - Store it along the image, retrieve later explicitely with 'nvttGetCompressedData(img, ...)'
#endif // NVTT_EXPERIMENTAL_H

View File

@ -83,9 +83,6 @@ namespace nvtt
Format_BC3n = Format_DXT5n,
Format_BC4, // ATI1
Format_BC5, // 3DC, ATI2
Format_DXT1n,
Format_CTX1,
};
/// Quality modes.
@ -157,7 +154,6 @@ namespace nvtt
{
ColorTransform_None,
ColorTransform_Linear,
ColorTransform_Swizzle
};
/// Extents rounding mode.
@ -222,14 +218,10 @@ namespace nvtt
// Set color transforms. @@ Not implemented!
NVTT_API void setColorTransform(ColorTransform t);
NVTT_API void setLinearTransform(int channel, float w0, float w1, float w2, float w3);
NVTT_API void setSwizzleTransform(int x, int y, int z, int w);
// Set resizing options.
NVTT_API void setMaxExtents(int d);
NVTT_API void setRoundMode(RoundMode mode);
// Set whether or not to premultiply color by alpha
NVTT_API void setPremultiplyAlpha(bool b);
};

View File

@ -1,13 +1,8 @@
PROJECT(squish)
ENABLE_TESTING()
INCLUDE_DIRECTORIES(${CMAKE_CURRENT_SOURCE_DIR})
SET(SQUISH_SRCS
# alpha.cpp
# alpha.h
# clusterfit.cpp
# clusterfit.h
fastclusterfit.cpp
fastclusterfit.h
weightedclusterfit.cpp
@ -21,32 +16,13 @@ SET(SQUISH_SRCS
config.h
maths.cpp
maths.h
# rangefit.cpp
# rangefit.h
# singlecolourfit.cpp
# singlecolourfit.h
# singlecolourlookup.inl
# squish.cpp
# squish.h
simd.h
simd_sse.h
simd_ve.h)
ADD_LIBRARY(squish STATIC ${SQUISH_SRCS})
# libpng
#FIND_PACKAGE(PNG)
#IF(PNG_FOUND)
# INCLUDE_DIRECTORIES(${PNG_INCLUDE_DIR})
# ADD_EXECUTABLE(squishpng extra/squishpng.cpp)
# TARGET_LINK_LIBRARIES(squishpng squish ${PNG_LIBRARY})
#ENDIF(PNG_FOUND)
##ADD_EXECUTABLE(squishgen extra/squishgen.cpp)
#ADD_EXECUTABLE(squishtest extra/squishtest.cpp)
#TARGET_LINK_LIBRARIES(squishtest squish)
#ADD_TEST(SQUISHTEST squishtest)
IF(CMAKE_COMPILER_IS_GNUCXX)
SET_TARGET_PROPERTIES(squish PROPERTIES COMPILE_FLAGS -fPIC)
ENDIF(CMAKE_COMPILER_IS_GNUCXX)

View File

@ -29,6 +29,8 @@
#include "colourblock.h"
#include <cfloat>
#include "fastclusterlookup.inl"
namespace squish {
FastClusterFit::FastClusterFit()
@ -97,91 +99,6 @@ void FastClusterFit::SetColourSet( ColourSet const* colours, int flags )
}
struct Precomp {
float alpha2_sum;
float beta2_sum;
float alphabeta_sum;
float factor;
};
static SQUISH_ALIGN_16 Precomp s_threeElement[153];
static SQUISH_ALIGN_16 Precomp s_fourElement[969];
void FastClusterFit::DoPrecomputation()
{
int i = 0;
// Three element clusters:
for( int c0 = 0; c0 <= 16; c0++) // At least two clusters.
{
for( int c1 = 0; c1 <= 16-c0; c1++)
{
int c2 = 16 - c0 - c1;
/*if (c2 == 16) {
// a = b = x2 / 16
s_threeElement[i].alpha2_sum = 0;
s_threeElement[i].beta2_sum = 16;
s_threeElement[i].alphabeta_sum = -16;
s_threeElement[i].factor = 1.0f / 256.0f;
}
else if (c0 == 16) {
// a = b = x0 / 16
s_threeElement[i].alpha2_sum = 16;
s_threeElement[i].beta2_sum = 0;
s_threeElement[i].alphabeta_sum = -16;
s_threeElement[i].factor = 1.0f / 256.0f;
}
else*/ {
s_threeElement[i].alpha2_sum = c0 + c1 * 0.25f;
s_threeElement[i].beta2_sum = c2 + c1 * 0.25f;
s_threeElement[i].alphabeta_sum = c1 * 0.25f;
s_threeElement[i].factor = 1.0f / (s_threeElement[i].alpha2_sum * s_threeElement[i].beta2_sum - s_threeElement[i].alphabeta_sum * s_threeElement[i].alphabeta_sum);
}
i++;
}
}
//printf("%d three cluster elements\n", i);
// Four element clusters:
i = 0;
for( int c0 = 0; c0 <= 16; c0++)
{
for( int c1 = 0; c1 <= 16-c0; c1++)
{
for( int c2 = 0; c2 <= 16-c0-c1; c2++)
{
int c3 = 16 - c0 - c1 - c2;
/*if (c3 == 16) {
// a = b = x3 / 16
s_fourElement[i].alpha2_sum = 16.0f;
s_fourElement[i].beta2_sum = 0.0f;
s_fourElement[i].alphabeta_sum = -16.0f;
s_fourElement[i].factor = 1.0f / 256.0f;
}
else if (c0 == 16) {
// a = b = x0 / 16
s_fourElement[i].alpha2_sum = 0.0f;
s_fourElement[i].beta2_sum = 16.0f;
s_fourElement[i].alphabeta_sum = -16.0f;
s_fourElement[i].factor = 1.0f / 256.0f;
}
else*/ {
s_fourElement[i].alpha2_sum = c0 + c1 * (4.0f/9.0f) + c2 * (1.0f/9.0f);
s_fourElement[i].beta2_sum = c3 + c2 * (4.0f/9.0f) + c1 * (1.0f/9.0f);
s_fourElement[i].alphabeta_sum = (c1 + c2) * (2.0f/9.0f);
s_fourElement[i].factor = 1.0f / (s_fourElement[i].alpha2_sum * s_fourElement[i].beta2_sum - s_fourElement[i].alphabeta_sum * s_fourElement[i].alphabeta_sum);
}
i++;
}
}
}
//printf("%d four cluster elements\n", i);
}
void FastClusterFit::SetMetric(float r, float g, float b)
{
#if SQUISH_USE_SIMD

View File

@ -44,8 +44,6 @@ public:
void SetMetric(float r, float g, float b);
float GetBestError() const;
static void DoPrecomputation();
// Make them public
virtual void Compress3( void* block );
virtual void Compress4( void* block );

File diff suppressed because it is too large Load Diff

View File

@ -1,221 +0,0 @@
// Copyright NVIDIA Corporation 2007 -- Ignacio Castano <icastano@nvidia.com>
//
// Permission is hereby granted, free of charge, to any person
// obtaining a copy of this software and associated documentation
// files (the "Software"), to deal in the Software without
// restriction, including without limitation the rights to use,
// copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
// OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
// WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
#include <nvtt/nvtt.h>
#include <stdio.h> // printf
#include <stdlib.h> // rand
#include <time.h> // clock
#include <string.h> // memcpy, memcmp
#include <assert.h>
#define FRAME_COUNT 1000
#define WIDTH 2048
#define HEIGHT 2048
#define INPUT_SIZE (WIDTH*HEIGHT)
#define OUTPUT_SIZE (WIDTH*HEIGHT/16*2)
static int s_input[INPUT_SIZE];
static int s_reference[OUTPUT_SIZE];
static int s_output[OUTPUT_SIZE];
static int s_frame = 0;
struct MyOutputHandler : public nvtt::OutputHandler
{
MyOutputHandler() : m_ptr(NULL) {}
virtual void beginImage(int size, int width, int height, int depth, int face, int miplevel)
{
assert(size == sizeof(int) * OUTPUT_SIZE);
assert(width == WIDTH);
assert(height == HEIGHT);
assert(depth == 1);
assert(face == 0);
assert(miplevel == 0);
m_ptr = (unsigned char *)s_output;
if (s_frame == 1)
{
// Save first result as reference.
memcpy(s_reference, s_output, sizeof(int) * OUTPUT_SIZE);
}
else if (s_frame > 1)
{
// Compare against reference.
if (memcmp(s_output, s_reference, sizeof(int) * OUTPUT_SIZE) != 0)
{
printf("Compressed image different to original.\n");
exit(EXIT_FAILURE);
}
}
}
virtual bool writeData(const void * data, int size)
{
memcpy(m_ptr, data, size);
m_ptr += size;
return true;
}
unsigned char * m_ptr;
};
void precomp()
{
unsigned int bitmaps[1024];
int num = 0;
printf("{\n");
printf("\t%8X,\n", 0);
bitmaps[0] = 0;
num = 1;
for (int a = 1; a <= 15; a++)
{
for (int b = a; b <= 15; b++)
{
for (int c = b; c <= 15; c++)
{
int indices[16];
int i = 0;
for(; i < a; i++) {
indices[i] = 0;
}
for(; i < a+b; i++) {
indices[i] = 2;
}
for(; i < a+b+c; i++) {
indices[i] = 3;
}
for(; i < 16; i++) {
indices[i] = 1;
}
unsigned int bm = 0;
for(i = 0; i < 16; i++) {
bm |= indices[i] << (i * 2);
}
printf("\t0x%8X, // %d %d %d %d\n", bm, a-0, b-a, c-b, 16-c);
bitmaps[num] = bm;
num++;
}
}
}
printf("}\n");
printf("// num = %d\n", num);
/*
for( int i = imax; i >= 0; --i )
{
// second cluster [i,j) is one third along
for( int m = i; m < 16; ++m )
{
indices[m] = 2;
}
const int jmax = ( i == 0 ) ? 15 : 16;
for( int j = jmax; j >= i; --j )
{
// third cluster [j,k) is two thirds along
for( int m = j; m < 16; ++m )
{
indices[m] = 3;
}
int kmax = ( j == 0 ) ? 15 : 16;
for( int k = kmax; k >= j; --k )
{
// last cluster [k,n) is at the end
if( k < 16 )
{
indices[k] = 1;
}
uint bitmap = 0;
bool hasThree = false;
for(int p = 0; p < 16; p++) {
bitmap |= indices[p] << (p * 2);
}
bitmaps[num] = bitmap;
num++;
}
}
}
*/
}
int main(int argc, char *argv[])
{
//precomp();
nvtt::InputOptions inputOptions;
inputOptions.setTextureLayout(nvtt::TextureType_2D, WIDTH, HEIGHT);
for (int i = 0; i < INPUT_SIZE; i++)
{
s_input[i] = rand();
}
inputOptions.setMipmapData(s_input, WIDTH, HEIGHT);
inputOptions.setMipmapGeneration(false);
nvtt::CompressionOptions compressionOptions;
compressionOptions.setFormat(nvtt::Format_DXT1);
// compressionOptions.setFormat(nvtt::Format_DXT1n);
// compressionOptions.setFormat(nvtt::Format_CTX1);
nvtt::OutputOptions outputOptions;
outputOptions.setOutputHeader(false);
MyOutputHandler outputHandler;
outputOptions.setOutputHandler(&outputHandler);
nvtt::Compressor compressor;
for (s_frame = 0; s_frame < FRAME_COUNT; s_frame++)
{
clock_t start = clock();
printf("compressing frame %d:\n", s_frame);
compressor.process(inputOptions, compressionOptions, outputOptions);
clock_t end = clock();
printf("time taken: %.3f seconds\n", float(end-start) / CLOCKS_PER_SEC);
}
return EXIT_SUCCESS;
}

View File

@ -42,11 +42,11 @@ struct MyOutputHandler : public nvtt::OutputHandler
MyOutputHandler(const char * name) : total(0), progress(0), percentage(0), stream(new nv::StdOutputStream(name)) {}
virtual ~MyOutputHandler() { delete stream; }
virtual void setTotal(int64 t)
void setTotal(int64 t)
{
total = t + 128;
}
virtual void setDisplayProgress(bool b)
void setDisplayProgress(bool b)
{
verbose = b;
}
@ -140,7 +140,6 @@ int main(int argc, char *argv[])
bool silent = false;
bool bc1n = false;
nvtt::Format format = nvtt::Format_BC1;
bool premultiplyAlpha = false;
const char * externalCompressor = NULL;
@ -174,10 +173,6 @@ int main(int argc, char *argv[])
{
noMipmaps = true;
}
else if (strcmp("-premula", argv[i]) == 0)
{
premultiplyAlpha = true;
}
// Compression options.
else if (strcmp("-fast", argv[i]) == 0)
@ -271,8 +266,7 @@ int main(int argc, char *argv[])
printf(" -tonormal\tConvert input to normal map.\n");
printf(" -clamp \tClamp wrapping mode (default).\n");
printf(" -repeat \tRepeat wrapping mode.\n");
printf(" -nomips \tDisable mipmap generation.\n");
printf(" -premula \tPremultiply alpha into color channel.\n\n");
printf(" -nomips \tDisable mipmap generation.\n\n");
printf("Compression options:\n");
printf(" -fast \tFast compression.\n");
@ -379,12 +373,6 @@ int main(int argc, char *argv[])
inputOptions.setMipmapGeneration(false);
}
if (premultiplyAlpha)
{
inputOptions.setPremultiplyAlpha(true);
inputOptions.setAlphaMode(nvtt::AlphaMode_Premultiplied);
}
nvtt::CompressionOptions compressionOptions;
compressionOptions.setFormat(format);
if (fast)
@ -420,6 +408,16 @@ int main(int argc, char *argv[])
nvtt::Compressor compressor;
compressor.enableCudaAcceleration(!nocuda);
printf("CUDA acceleration ");
if (compressor.isCudaAccelerationEnabled())
{
printf("ENABLED\n\n");
}
else
{
printf("DISABLED\n\n");
}
outputHandler.setTotal(compressor.estimateSize(inputOptions, compressionOptions));
outputHandler.setDisplayProgress(!silent);

Some files were not shown because too many files have changed in this diff Show More